Effiziente Algorithmen / Theoretische Informatik III

6. Übung

- 1. Aufgabe: Berechnen Sie alle komplexen Lösungen von \sqrt{i} , $\sqrt{-i}$ und $\sqrt[n]{i}$.
- 2. Aufgabe: Zeigen Sie mit Hilfe der Potenzreihen für $\sin(z)$, $\cos(z)$ und e^z :

$$\cos(z) = \frac{1}{2} \cdot \left(e^{iz} + e^{-iz} \right)$$

für alle $z \in \mathbb{C}$.

- 3. Aufgabe: Zeigen Sie mit Hilfe der Potenzreihe von e^z , dass die Formel $e^z \cdot e^w = e^{z+w}$ für alle Zahlen $z, w \in \mathbb{C}$ gilt.
- **4. Aufgabe:** Zeigen Sie für alle $z \in \mathbb{C}, z \neq 1$:

$$\sum_{j=0}^{n} z^j = \frac{z^{n+1} - 1}{z - 1}$$

5. Aufgabe: Zeigen Sie, dass für 0 < l < 2n gilt:

$$\sum_{k=0}^{n-1} \cos\left(\frac{\pi}{n} \cdot l \cdot k\right) = \frac{1 - (-1)^l}{2}$$

 $\it Hinweis:$ Benutzen Sie $\cos\phi=({\rm e}^{i\cdot\phi}+{\rm e}^{-i\cdot\phi})/2$ und die Formel für die geometrische Reihe.

6. Aufgabe: Betrachten Sie die folgende Matrix $C = (c_{ij})_{1 \leq i,j \leq n}$ für die diskrete Cosinus-Transformation.

$$\begin{pmatrix} \sqrt{\frac{1}{n}} & \sqrt{\frac{1}{n}} & \sqrt{\frac{1}{n}} & \cdots & \sqrt{\frac{1}{n}} \\ \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot 1 \cdot 1\right) & \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot 1 \cdot 3\right) & \cdots & \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot 1 \cdot (2n-1)\right) \\ \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot 2 \cdot 1\right) & \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot 2 \cdot 3\right) & \cdots & \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot 2 \cdot (2n-1)\right) \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot (n-1) \cdot 1\right) & \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot (n-1) \cdot 3\right) & \cdots & \sqrt{\frac{2}{n}} \cdot \cos\left(\frac{\pi}{2n} \cdot (n-1) \cdot (2n-1)\right) \end{pmatrix}$$

Für
$$i = 2, \ldots, n$$
 ist also $c_{ij} = \sqrt{2/n} \cdot \cos\left(\frac{\pi}{2n} \cdot (i-1) \cdot (2j-1)\right)$.

Zeigen Sie, dass C orthogonal ist, d.h. alle Spalten haben die euklidische Norm 1 und je zwei verschiedene Spalten stehen senkrecht aufeinander.

Hinweis: Benutzen Sie $\cos \phi_1 \cdot \cos \phi_2 = (\cos(\phi_1 + \phi_2) + \cos(\phi_1 - \phi_2))/2$.

7. Aufgabe: Entwickeln Sie auf Basis der FFT, sowie der Beziehung $\cos \phi = (e^{i \cdot \phi} + e^{-i \cdot \phi})/2$ einen Algorithmus, der das Produkt $C \cdot a$ in Zeit $O(n \cdot \log n)$ berechnet.