TU CHEMNITZ Sommersemester 2017 06.04.2017

Effiziente Algorithmen / Theoretische Informatik III

1. Übung

- 1. Aufgabe: Wir Betrachten *Dijkstras Algorithmus* für *kürzeste Wege* in gerichteten Graphen mit *nichtnegativen* Kantengewichten.
 - (a) Wiederholen Sie die Funktionsweise des Algorithmus!
 - (b) Welche Laufzeiten ergeben sich mit verschiedenen Datenstrukturen (Array, Heap) zur Verwaltung der Menge Q?
 - (c) Überlegen Sie sich, warum der Dijkstra-Algorithmus, unabhängig von der verwendeten Datenstruktur, im Allgemeinen keine Laufzeit besser als $O(|V| \cdot \log |V|)$ erreichen kann.
- 2. Aufgabe: Wir verwenden in Dijkstras Algorithmus einen Heap.
 - (a) Welche Operationen muß der Heap zur Verfügung stellen?
 - (b) Implementieren Sie diese Operationen in Pseudocode und analysieren Sie die Laufzeit.
 - (c) Geben Sie an, wie aus n Elementen in Zeit O(n) ein Heap aufgebaut werden kann.
 - (d) Kann die Operation DeleteMin so implementiert werden, dass die k-malige Ausführung von DeleteMin insgesamt die Zeit O(k) braucht?
 - (e) Welche Operationen werden vom Heap nicht zufriedenstellend unterstützt?

- 3. Aufgabe: Beweisen Sie die folgenden Sätze.
 - (a) Für alle $k, n \in \mathbb{N}$ mit $n, k \ge 1$ ist

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

(b) Für alle $n \ge 0$ ist

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n}.$$

(c) Für alle $k, l, n \in \mathbb{N}, k \leq l + n$ gilt

$$\binom{l+n}{k} = \sum_{i=0}^{l} \binom{l}{i} \cdot \binom{n}{k-i}.$$

Dabei gilt $\binom{a}{b} = 0$ falls a < b ist.

Hinweis: Arbeiten Sie mit der "kombinatorischen Interpretation" der Binomialkoeffizienten: