Theoretische Informatik II

7. Übung

1. Aufgabe: Zeigen Sie, dass folgende Funktionen LOOP-berechenbar sind.

(a) if $x_1 \geq x_2$ then A else B

(A, B sind LOOP-Programme)

(b) $\max(x_1, x_2)$

(d) $x_1 \text{ MOD } x_2$

(c) x_1 DIV x_2

(e) $FIB(x_1)$ (x_1 -te Fibonacci-Zahl)

2. Aufgabe: Simulieren Sie folgendes WHILE-Programm durch eine Turingmaschine.

WHILE
$$x_1 \neq 0$$
 DO
 $x_0 = x_0 + 2$
 $x_1 = x_1 - 1$
END

- 3. Aufgabe: Vollziehen Sie den Beweis für die Unentscheidbarkeit des speziellen Halteproblems aus der Vorlesung nach.
- 4. Aufgabe: Formulieren Sie eine Eingabe für das modifizierte Post'sche Korrespondenzproblem (MPCP).

Das MPCP soll genau dann eine Lösung haben, wenn die folgende Turingmaschine Mauf dem Wort 1011 hält.

$$\Sigma = \{0,1\}
\Gamma = \{0,1,\square\}
Z = \{z_0,z_1,z_2,z_E\}
$$\delta(z_0,0) = (z_0,0,R)
\delta(z_0,1) = (z_0,1,R)
\delta(z_0,\square) = (z_1,\square,L)
\delta(z_1,0) = (z_2,1,L)
\delta(z_1,1) = (z_1,0,L)
\delta(z_1,1) = (z_1,0,L)
\delta(z_1,1) = (z_2,1,L)
\delta(z_2,0) = (z_2,0,L)
\delta(z_2,1) = (z_2,1,L)
\delta(z_2,1) = (z_2,1,L)
\delta(z_2,\square) = (z_E,\square,R)$$$$

Was macht die gegebene Turingmaschine? Geben Sie die Lösung für das MPCP an.