TU CHEMNITZ Sommersemester 2012 15.05.2012

Theoretische Informatik II

6. Übung

- 1. Aufgabe: Bestimmen Sie die Endsprachen der Sprache $L = \{w \in \{0,1\}^* \mid w = w^R\}.$
- **2. Aufgabe:** Wir betrachten zwei reguläre Sprachen L_1 und L_2 . Gehören die folgenden Sprachen dann ebenfalls zur Klasse der regulären Sprachen? Begründen Sei ihre Antwort.
 - (a) $L_1 \cup L_2$ (Alle Worte, die in L_1 oder L_2 oder beiden sind.)
 - (b) $L_1 \cap L_2$ (Alle Worte, die sowohl in L_1 als auch L_2 vorkommen.)
 - (c) $\overline{L_1} = \Sigma^* \setminus L_1$ (Alle Worte, die nicht in L_1 vorkommen.)
- **3. Aufgabe:** Angenommen, wir haben die Beschreibungen für zwei reguläre Sprachen L_1 und L_2 vorliegen. Kann man feststellen, ob die beiden Beschreibungen die selbe Sprache beschreiben? Wenn ja, wie? Wenn nein, warum nicht?

4. Aufgabe:

- (a) Zeigen Sie, dass die Sprache $L=\{a^kb^k\mid k\geq 1\}$ das kontextfreie Pumping Lemma erfüllt.
- (b) Zeigen Sie direkt (d.h. ohne Umweg über die *Chomsky-Normalform*), dass jede reguläre Sprache das kontextfreie Pumping Lemma erfüllt.

5. Aufgabe:

(a) Bringen Sie die folgende kontextfreie Grammatik in die Chomsky-Normalform.

$$G = (V, \Sigma, P, S)$$

$$V = \{S, A, B\}$$

$$\Sigma = \{a, b\}$$

$$P = \{S \rightarrow aB \mid bA$$

$$A \rightarrow aS \mid bAA \mid a$$

$$B \rightarrow bS \mid aBB \mid b \}$$

(b) Welche Form hat der *Ableitungsbaum* eines Wortes $x \in L$, wenn die zugehörige Sprache L durch eine Grammatik in Chomsky-Normalform gegeben ist? Wieviele Ableitungsschritte werden benötigt, um x anhand dieser Grammatik zu erzeugen?