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Abstract. A simple first moment argument shows that in a randomly chosenk-SAT formula withm clauses overn
boolean variables, the fraction of satisfiable clauses is at most1−2−k +o(1) asm/n →∞ almost surely. In this paper,
we deal with the corresponding algorithmicstrong refutation problem: given a randomk-SAT formula, can we find a
certificatethat the fraction of satisfiable clauses is at most1 − 2−k + o(1) in polynomial time? We present heuristics
based on spectral techniques that in the casek = 3, m ≥ ln(n)6n3/2 and in the casek = 4, m ≥ Cn2 find such
certificates almost surely. Our methods also apply to a variety of further problems such as hypergraph coloring.

1 Introduction and Results

The k-SAT problem– given a set ofk-clauses, i.e. disjunctions ofk literals over a set of boolean variables,
decide whether there exists an assignment of the variables that satisfies all clauses – isthegeneric NP-complete
problem. In addition to the decision version, the optimization version MAXk-SAT – given a set ofk-clauses,
find an assignment that satisfies the maximum number of clauses – is of fundamental interest as well. However,
Håstad [17] has shown that there is no polynomial time algorithm that approximates MAXk-SAT within a
factor better than1− 2−k, unlessP = NP . Hence, it is NP-hard to distinguish between instances ofk-SAT in
which a(1− ε)-fraction of the clauses can be satisfied, and instances in which every truth assignment satisfies
at most a(1−2−k +ε)-share of the clauses for anyε > 0. Indeed, H̊astad’s NP-hardness result is best possible,
as by picking a random assignment, we can satisfy a(1− 2−k)-fraction of the clauses in polynomial time.

These hardness results motivate the study ofheuristicsfor k-SAT or MAX k-SAT that are successful at
least on a large class of instances. From this point of view, the satisfiability problem is interesting in two
respects. First, one could ask for heuristics forfinding a satisfying assignment (in the case ofk-SAT) or a
“good” assignment (in the case of MAXk-SAT). This problem has been studied e.g. by Flaxman [10], who
has shown that in a rather general model of random satisfiable formulas a satisfying assignment can be found
in polynomial time almost surely (cf. also [21] for an extension to semirandom formulas). Secondly, one can
ask for heuristics that canrefutea k-SAT instance, i.e. find a certificate that no satisfying assignment exists;
of course, in the worst-case this problem is coNP-complete. In this paper, we deal with the second problem.
More precisely, we presentstrong refutation heuristics, i.e. heuristics that certify that no assignment satisfying
considerably more than the trivial(1 − 2−k)-fraction of the clauses exists. One motivation for studying this
problem is the relationship between the existence of strong refutation heuristics and approximation complexity
pointed out by Feige [7].

In order to analyze a heuristic rigorously, we need to specify on which type of instances the heuristic is
supposed to work properly. In this paper, we consider a standard model ofrandominstances of MAXk-SAT.
Let V = {x1, . . . , xn} be a set ofn boolean variables. Then, there are(2n)k possiblek-clauses over the
variablesV . If 0 < p < 1, then we letFormn,k,p be a random set ofk-clauses obtained by including each of the
(2n)k possible clauses with probabilityp independently. Hence, the expected number of clauses inFormn,k,p is
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m = (2n)kp. (Thus, in this paper, clauses are orderk-tuples, and we allow for multiple occurrences of literals
in a clause. Several slightly different models exist, but the differences are only of technical relevance.)

The combinatorial structure of randomk-SAT formulas has attracted considerable attention. Friedgut [11]
has shown thatFormn,k,p exhibits asharp threshold behavior: there exist numbersck = ck(n) such that
Formn,k,p is satisfiable almost surely ifm < (1 − ε)ckn, whereasFormn,k,p is unsatisfiable almost surely if
m > (1 + ε)ckn. The asymptotic behavior ofck ask → ∞ has been determined by Achlioptas and Peres [2].
Moreover, a simple first moment argument shows that the maximum number of clauses ofFormn,k,p that can
be satisfied by any assignment is at most(1 − 2k + o(1))m asm/n → ∞. More precise results have been
obtained by Achlioptas, Naor, and Peres [1].

With respect to proof complexity, various types of resolution proofs for the non-existence of satisfying
assignments inFormn,k,p have been investigated. Ben-Sasson [4] has shown that tree-like resolution proofs to
refuteFormn,k,p almost surely have sizeexp(Ω(n/∆1/(k−2)+ε)), where∆ = nk−1p and0 < ε < 1/2 is an
arbitrary constant. Hence, tree-like resolution proofs are of exponential length even if the expected number of
clauses isnk−1−ε (i.e. p = n−ε−k/2). Furthermore, [4, Theorem 2.24] shows that general resolution proofs
for the nonexistence of satisfying assignments ofFormn,k,p almost surely have super polynomial size ifp ≤
n−k/2−δ (δ > 0 constant).

Goerdt and Krivelevich [16] have suggested a heuristic that uses spectral techniques for refutingFormn,4,p

with p = ln(n)7n−2 (i.e. the expected number of clauses ism = ln(n)7n2). No efficient resolution-based
refutation heuristic is known for this range ofp; in fact, tree-like resolution proofs are of exponential length
by the aforementioned results. Removing the polylogarithmic factor, Feige and Ofek [8] and (independently)
Coja-Oghlan, Goerdt, Lanka, and Schädlich [6] have shown that spectral techniques can be used to refute
Formn,4,p if p ≥ Cn−2 for a sufficiently large constantC > 0. Moreover, Feige and Ofek [9] have shown
that a heuristic that combines spectral techniques with extracting and refuting a XOR formula fromFormn,3,p

can refuteFormn,3,p for p ≥ Cn−3/2 (i.e. m = Cn3/2). This result improves on previous work by Friedman
and Goerdt [12], and Goerdt and Lanka [15]. We emphasize that in all of the above cases, the values ofp
to which the refutation heuristics apply exceed the threshold whenFormn,k,p actually becomes unsatisfiable
almost surely by at least a factor ofn(k−2)/2.

The new aspect in the present paper is that we deal withstrong refutation heuristics. That is, our aim
are heuristics that on inputFormn,k,p almost surely certify that not more than a(1 − 2−k + ε)-fraction of
the clauses can be satisfied, for anyε > 0. This aspect has not (at least not explicitly) been studied in the
aforementioned references. For instance, resolution proofs cannot provide strong refutation. Moreover, the
spectral heuristics studied so far [8, 9, 6, 15, 12, 16] only certify that every assignment leaves ao(1)-fraction of
the clauses unsatisfied. With respect to MAX 3-SAT, we have the following result.

Theorem 1. Suppose thatp ≥ ln(n)6n−3/2. Letε > 0 be an arbitrarily small constant. There is a polynomial
time algorithm3-Refute that satisfies the following conditions.

– Correctness:For any MAX3-SAT instanceϕ, the output of3-Refute (ϕ) is an upper bound on the number
of satisfiable clauses.

– Completeness:If ϕ = Formn,3,p, then almost surely3-Refute (ϕ) ≤ (7 + ε)n3p.

Since the number of clauses ofFormn,3,p is (8 + o(1))n3p almost surely,3-Refute does indeed certify
almost surely that not more than a7

8 +ε fraction of the clauses can be satisfied by any assignment. Note that the
value ofp required for Theorem 1 is by a factor ofln(n)6 larger than that required by the heuristic of Feige and
Ofek [9] (which does not provide strong refutation). Moreover, the following result addresses MAX 4-SAT.

Theorem 2. Suppose thatp ≥ c0n
−2 for a sufficiently large constantc0 > 0. There is a polynomial time

algorithm4-Refute that satisfies the following conditions.
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– Correctness:For any MAX4-SAT instanceϕ, the output of4-Refute (ϕ) is an upper bound on the number
of satisfiable clauses.

– Completeness:If ϕ = Formn,4,p, then almost surely4-Refute (ϕ) ≤ 15n4p + c1n
3√p, wherec1 > 0 is

a constant.

4-Refute almost surely provides a certificate that not more than a15
16 +O( 1

n
√

p) fraction of the clauses can

be satisfied. The second order termO( 1
n
√

p) gets arbitrarily small asn2p grows. Theorem 2 applies to the same
range ofp as the best previously known refutation heuristics [6, 8] for 4-SAT, but provides strong refutation.

The algorithms for Theorems 1 and 2 build on and extend the techniques proposed in [6, 14]. For in-
stance,4-Refute constructs several graphs from the input formulaϕ = Formn,4,p. To each of these graphs,
4-Refute applies a subroutine that tries to certify that the graph has “low discrepancy”; i.e. every set of
vertices spans approximately the expected number of edges. This subroutine in turn relies on computing the
eigenvalues of a certain auxiliary matrix. Finally, if all graphs have passed the discrepancy check, then we
conclude that the input formulaϕ does not admit an assignment that satisfies more than15n4p + c1n

3√p
clauses. The MAX 3-SAT algorithm for Theorem 1 proceeds similarly, but is a bit more involved. Though in
contrast to [6, 14] we obtain strong refutation heuristics, the algorithms and the proofs in the present paper are
considerably simpler.

The techniques that the algorithms3-Refute and4-Refute rely on yield heuristics for a variety of
further hard computational problems, e.g. for hypergraph problems. Recall that ak-uniform hypergraphH
consists of a setV (H) of vertices and a setE(H) of edges. The edges are subsets ofV (H) of cardinalityk. An
independent setin H is a setS ⊂ V (H) such that there is no edgee ∈ E(H) with e ⊂ S. The independence
numberα(H) is the number of vertices in a maximum independent set. Moreover,H is calledκ-colorable, if
there existsκ independent setsS1, . . . , Sκ in H such thatS1 ∪ · · · ∪Sκ = V (H). Thechromatic numberχ(H)
is the least integerκ ≥ 1 such thatH is κ-colorable.

In analogy with theFormn,k,p model of randomk-SAT instances, there is theHn,k,p-model of randomk-
uniform hypergraphs: the vertex set ofHn,k,p is V = {1, . . . , n}, and each of the

(
n
k

)
possible edges is present

with probability0 < p < 1 independently. Krivelevich and Sudakov [20] have solved the combinatorial prob-
lem of determining the probable value of the independence number and of the chromatic number of random
hypergraphs. The following two theorems deal with thealgorithmicproblem of refuting that a3-uniform hy-
pergraph has a large independent set, or that a4-uniform hypergraph isκ-colorable.

Theorem 3. Let ε > 0 be arbitrarily small but fixed. Suppose thatp = f/n3/2, whereln6 n ≤ f = o(n1/2).
There is a polynomial time algorithm3-RefuteInd that satisfies the following conditions.

– Correctness:If H is a 3-uniform hypergraph, then3-RefuteInd (H) either outputs “α is small” or
“fail”. If 3-RefuteInd (H) answers “α is small”, thenα(H) < εn.

– Completeness:On inputH = Hn,3,p, 3-RefuteInd (H) outputs “α is small” almost surely.

Theorem 4. Let κ ≥ 2 be an integer. Suppose thatp ≥ c0κ
4n−2 for some sufficiently large constantc0 > 0.

There is a polynomial time algorithm4-RefuteCol that satisfies the following conditions.

– Correctness:If H is a 4-uniform hypergraph, then4-RefuteCol (H) either outputs “notκ-colorable”
or “fail”. If 4-RefuteCol (H) answers “notκ-colorable”, thenχ(H) > κ.

– Completeness:On inputH = Hn,4,p, 4-RefuteCol (H) outputs “notκ-colorable” almost surely.

Organization of the paper. We start with the algorithm4-Refute for Theorem 2 in Section 2.4-Refute is
a bit simpler than the algorithm3-Refute for Theorem 1, which comes in Section 3. We sketch the heuristics
for Theorems 3 and 4 in Section 4.
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2 Random MAX 4-SAT

In Section 2.2 we peresent the heuristic for Theorems 2. The main tool is a procedure for certifying that a
random bipartite graph is of low discrepancy. This procedure is the content of Section 2.1.

2.1 Discrepancy in Random Bipartite Graphs

Throughout, we letV1 = {v1, . . . , vn} andV2 = {w1, . . . , wn} be two disjoint sets consisting ofn labeled
vertices each. We consider bipartite graphsG with bipartition(V1, V2), i.e. the vertex set ofG is V1 ∪ V2, and
all edges ofG have one endpoint inV1, and one inV2. If S1 ⊂ V1 andS2 ⊂ V2, then we letEG(S1, S2) denote
the set of edges inG that connect a vertex inS1 with a vertex inS2. Furthermore,Bn,p denotes a random
bipartite graph obtained by including each possible edge{vi, wj} with probabilityp independently. The aim in
this section is to prove the following proposition.

Proposition 5. Suppose thatnp ≥ c0 for some sufficiently large constantc0 > 0. There is a polynomial time
algorithmBipDisc and a constantc1 > 0 such that the following two conditions hold.

1. LetG be a bipartite graph with bipartition(V1, V2). On inputG, BipDisc either outputs “low discrep-
ancy” or “fail”. If BipDisc (G) outputs “low discrepancy”, then for any two setsSi ⊂ Vi, i = 1, 2, we
have

||S1||S2|p− |EB(S1, S2)|| ≤ c1

√
|S1||S2|np + n exp(−np/c1). (1)

2. BipDisc (Bn,p) outputs “low discrepancy” almost surely.

If |S1|, |S2| = Ω(n), then Eq. (1) entails that the number|EG(S1, S2)| of edges fromS1 to S2 in G deviates
from its expectation|S1||S2|p “not too much”. The crucial point is thatBipDisc certifies that Eq. (1) holds
for all setsS1, S2.

BipDisc is based on computing the eigenvalues of a certain auxiliary matrix. Given a graphB with
bipartition(V1, V2), we letA = A(B) = (aij)i,j=1,...,n be the matrix with entriesaij = 1 if {vi, wj} ∈ E(B),
andaij = 0 if {vi, wj} 6∈ E(B). Let J denote ann × n matrix with all entries equal to1. Then, we let
M = M(B) = pJ − A(B). Furthermore, let‖M‖ = sup{‖Mξ‖ : ξ ∈ Rn, ‖ξ‖ = 1} denote the norm
of M . On inputB, ‖M‖ can be computed in polynomial time up to an arbitrarily small additive error (e.g. by
computing the largest eigenvalue of the positive semidefinite matrixMT M ). The next lemma shows what‖M‖
has to do with discrepancy certification.

Lemma 6. LetB be a graph with bipartition(V1, V2). Then, for any two setsSi ⊂ Vi, i = 1, 2, the inequality
| |EB(S1, S2)| − |S1||S2|p | ≤

√
|S1||S2| · ‖M(B)‖ holds.

Sketch of proof.Let ξi be the characteristic vector ofSi, i.e. thej’th entry of ξ1 (resp.ξ2) is 1 if vj ∈ S1

(resp.wj ∈ S2), and0 otherwise. Then‖ξi‖ =
√
|Si|. Hence,|〈Mξ2, ξ1〉| ≤

√
|S1||S2|‖M‖.Moreover, a

direct computation shows that〈Mξ2, ξ1〉 = |S1||S2|p− |EB(S1, S2)|. ut
In the casenp ≥ ln(n)7/n, one can show that‖M‖ ≤ O(

√
np) almost surely (via the “trace method”

from [13]). Hence, in this case, by Lemma 6 we could certify that (1) holds almost surely just by comput-
ing ‖M(Bn,p)‖. In the casenp = O(1), however, we almost surely have that‖M(Bn,p)‖ = Θ(lnn), i.e.
‖M(Bn,p)‖ is much too large to give the bound (1). The reason is that in this case, there will be vertices of
degree up toΘ(lnn) in B = Bn,p (cf. [19] for a more detailed discussion). Following an idea of Alon and
Kahale [3], we avoid this problem by removing all edges that are incident with vertices whose degree is too
high (at least10np, say). This leads to the following algorithm.
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Algorithm 7. BipDisc (G)
Input: A bipartite graphG = (V1, V2, E). Output:Either “low discrepancy” or “fail”.

1. If the number of vertices inG that have degree> 10np is > n exp(−c2np), then output “fail” and halt.
Herec2 > 0 is a sufficiently small constant (cf. Lemma 8 below).

2. If the number of edges inG that are incident with vertices of degree> 10np is larger thanc3n
2p exp(−c2np),

wherec3 > 0 is a sufficiently large constant, then halt with output “fail”.
3. LetG′ be the graph obtained fromG by deleting all edges that are incident with vertices of degree> 10np.

Let M = M(G′). If ‖M‖ > c4
√

np for a certain constantc4, then output “fail” and halt.
4. Output “G has low discrepancy”.

The analysis ofBipDisc is based on two lemmas.

Lemma 8. There are constantsc2, c3 > 0 such that whp.B = Bn,p has the following properties.

1. LetS be the set of all vertices that have degree> 10np in B. Then|S| ≤ n exp(−c2np).
2. The number of edges inB that are incident with at least one vertex inS is≤ c3n

2p exp(−c2np).

Lemma 9. There is a constantc4 > 0 such that whp. the random bipartite graphB = Bn,p enjoys the
following property. LetB′ be the graph obtained fromB by deleting all edges that are incident with vertices of
degree> 10np in B. Then,‖M(B′)‖ ≤ c4

√
np.

Lemma 8 follows from a standard computation. The proof of Lemma 9 is based on estimates on the eigen-
values of random matrices from [3] (cf. Appendix A).

Proof of Proposition 5.Let G = Bn,p, and letSi ⊂ Vi for i = 1, 2. Moreover, letS be the set of vertices of
degree> 10np in G. Suppose thatBipDisc (G) answers “low discrepancy”. Then, by Lemma 6,

|EG(S1 \ S, S2 \ S)| − |S1 \ S||S2 \ S|p | ≤ c4

√
|S1||S2|np.

Moreover, because of Step 2 ofBipDisc , we have|EG(S1, S2)|−|EG(S1 \S, S2 \S)| ≤ c3n
2p exp(−c2np).

Finally, |S1||S2|p − |S1 \ S||S2 \ S|p ≤ 3np|S| ≤ n exp(−c2np/2),as otherwise Step 1 would have failed.
Thus, (1) holds forS1, S2. Finally, Lemmas 8 and 9 imply thatBipDisc (Bn,p) outputs “low discrepancy”
almost surely. ut

2.2 The Refutation Heuristic for 4-SAT

Throughout this section, we letV = {x1, . . . , xn} be a set ofn propositional variables. Moreover, we assume
thatn2p ≥ c0 for a sufficiently large constantc0.

Let ϕ be a set of4-clauses overV . To employ the procedureBipDisc from Section 2.1, we construct16
bipartite graphsG(1), . . . , G(16) from ϕ. EachG(i) is a graph with bipartition(V1, V2), whereVi = V ×V ×{i}
(i.e.V1, V2 are disjoint copies ofV ×V ). Each graphG(i) corresponds to one of the 16 possible ways to place the
negation signs in a4-clause: inG(i), the edge{(xi1 , xi2 , 1), (xi3 , xi4 , 2)} is present iff the clauseli1∨li2∨li3∨li4
is contained inϕ, wherelij is eitherxij or x̄ij , according to the negation signs in Table 1. For instance, the
edge{(xi1 , xi2 , 1), (xi3 , xi4 , 2)} is in G(7) iff the clausexi1 ∨ x̄i2 ∨ x̄i3 ∨ xi4 occurs inϕ. Thus, each clause
of ϕ induces an edge in one of the graphsG(i), and each edge results from a unique clause. The algorithm for
Theorem 2 is as follows.

Algorithm 10. 4-Refute (ϕ)
Input: A setϕ of 4-clauses overV . Output:An upper bound on the number of satisfiable clauses.
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i type Ai ⊂ V1 Bi ⊂ V2

1 x1 ∨ x2 ∨ x3 ∨ x4 F × F F × F
2 x1 ∨ x2 ∨ x3 ∨ x̄4 F × F F × T
3 x1 ∨ x2 ∨ x̄3 ∨ x4 F × F T × F
4 x1 ∨ x2 ∨ x̄3 ∨ x̄4 F × F T × T
5 x1 ∨ x̄2 ∨ x3 ∨ x4 F × T F × F
6 x1 ∨ x̄2 ∨ x3 ∨ x̄4 F × T F × T
7 x1 ∨ x̄2 ∨ x̄3 ∨ x4 F × T T × F
8 x1 ∨ x̄2 ∨ x̄3 ∨ x̄4 F × T T × T

i type Ai ⊂ V1 Bi ⊂ V2

9 x̄1 ∨ x2 ∨ x3 ∨ x4 T × F F × F
10 x̄1 ∨ x2 ∨ x3 ∨ x̄4 T × F F × T
11 x̄1 ∨ x2 ∨ x̄3 ∨ x4 T × F T × F
12 x̄1 ∨ x2 ∨ x̄3 ∨ x̄4 T × F T × T
13 x̄1 ∨ x̄2 ∨ x3 ∨ x4 T × T F × F
14 x̄1 ∨ x̄2 ∨ x3 ∨ x̄4 T × T F × T
15 x̄1 ∨ x̄2 ∨ x̄3 ∨ x4 T × T T × F
16 x̄1 ∨ x̄2 ∨ x̄3 ∨ x̄4 T × T T × T

Table 1.Clause types and unsatisfied clauses in the case of 4-SAT.

1. If the number of clauses inϕ is larger than16n4p + n3√p, then return the total number of clauses inϕ as
an upper bound and halt.

2. Compute the graphsG(i) for i = 1, . . . , 16 and runBipDisc (G(i)) for i = 1, . . . , 16. If BipDisc (G(i))
answers “fail” for at least onei, then return the total number of clauses inϕ and halt.

3. Return15n4p + c1n
3√p, wherec1 is a sufficiently large consant.

Let us first prove that4-Refute outputs an upper bound on the number of clauses that can be satisfied.

Lemma 11. There is a constantc2 > 0 such that the following holds. Letϕ be a set of4-clauses such that
BipDisc (G(i)) answers “low discrepancy” for alli. Then there is no assignment that satisfies more than
|ϕ| − n4p + c2n

3√p clauses ofϕ.

Proof. Consider an assignment that sets the variablesT ⊂ V to true, andF = V \ T to false. We shall bound
the number of edges in the graphsG(i) that correspond to unsatisfied clauses. LetAi ⊂ V1 andBi ⊂ V2 be the
sets defined in Table 1 fori = 1, . . . , 16. Then, in the graphG(i), the edges corresponding to unsatisfied clauses
are precisely theAi-Bi-edges. Thus, invoking Proposition 5, we have the following bound on the number of
unsatisfied clauses:

16∑
i=1

|EGi(Ai, Bi)| ≥
4∑

i=0

(
4
i

) (
|F |i|T |4−ip− c3n

3√p
)
≥ (|F |+ |T |)4p− c2n

3√p = n4p− c2n
3√p,

wherec2, c3 are suitable constants. ut

Proof of Theorem 2.The correctness claimed in the theorem follows from Lemma 11. Since by Chernoff
bounds (cf. [18, p. 26]) the total number of clauses inFormn,4,p is at most16n4p+ o(n3√p) almost surely, the
completeness follows from Proposition 5. ut

Remark 12.Though this issue is not addressed explicitly in that paper, a strong refutation heuristic could also be
obtained from the techniques presented in [6]. However, the approach in the present paper has some advantages.
First of all, the algorithm is much simpler both to execute and to analyze. Secondly, the bound on the number
of satisfiable clauses that could be obtained using the techniques in [6] is not as precise as those obtained in
Theorem 2. Indeed, the approach in [6] can only be used to show that the fraction of satisfiable clauses is
≤ 15

16 + ε for an arbitrarily small but fixedε > 0. By contrast, the Theorem 2 gives a the bound15
16 + O( 1

n
√

p),
where the second order term tends to0 asn2p grows.
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3 Random MAX 3-SAT

While our refutation heuristic for 4-SAT is based on certifying that certain (bipartite) graphs are of low dis-
crepancy, the heuristic for 3-SAT needs to certify that a couple of triple systems are of low discrepancy. In
Section 3.1, we describe the procedure for certifying low discrepancy in triple systems. Then, in Section 3.2,
we show how to employ this procedure in order to refute MAX 3-SAT strongly.

3.1 Discrepancy in Triple Systems

Let V = {x1, . . . , xn} be a fixed set of cardinalityn. In this section, we considertriple systemsoverV , i.e.
subsetsS ⊂ V × V × V . If V1, V2, V3 ⊂ V , then we let(V1, V2, V3) = (V1, V2, V3)S signify the set of triples
(v1, v2, v3) ∈ S with vi ∈ Vi for i = 1, 2, 3. Let ε > 0 be a constant. We say thatS has low discrepancy
with respect toε if the following holds for allX ⊆ V with εn ≤ |X| ≤ (1 − ε)n: letting Y = V \ X and
α = |X|/n, we have

|(X, X, X)| = (1 + o(1)) · α3 · |S|,
|(X, X, Y )| , |(X, Y,X)|, |(Y, X,X)| = (1 + o(1)) · α2(1− α) · |S|,
|(X, Y, Y )|, |(Y, X, Y )|, |(Y, Y,X)| = (1 + o(1)) · α(1− α)2 · |S|,

|(Y, Y, Y )| = (1 + o(1)) · (1− α)3 · |S|.

For 0 < p < 1, we obtain the random triple systemSn,p by including each triple inV 3 with probabilityp
independently. The aim of this section is to prove the following propostion.

Proposition 13. For eachε > 0 there is a polynomial time algorithmTripleDisc ε that satisfies the follow-
ing conditions.

– For each triple systemS ⊂ V 3 the output ofTripleDisc ε(S) is either “low discrepancy” or “fail”. If
the output is “low discrepancy”, thenS has low discrepancy w.r.t.ε.

– If p ≥ ln(n)6n−3/2, then the output ofTripleDisc ε(Sn,p) is “low discrepancy” almost surely.

To certify that the triple systemS ⊂ V 3 is of low discrepancy, the algorithmTripleDisc constructs
threeprojection graphsGij , 1 ≤ i < j ≤ 3. The vertex set ofGij is V , and the edge{x, y} is present inGij iff
there is a triple(z1, z2, z3) ∈ S with x = zi andy = zj , orx = zj andy = zi. Thus, ifS = Sn,p, then the edge
{x, y} is present inGij with probabilityp′ ∼ 2np independently of all other edges, so thatGij is distributed as
a binomial random graphGn,p′ .

We say that a graphG = (V,E) haslow discrepancy w.r.t.ε if for all X ⊂ V of cardinalityεn ≤ |X| ≤
(1− ε)n we have

||EG(X)| − |X|2n−2|E|| ≤ ε|E| and||EG(X, V \X)| − 2|X|(n− |X|)n−2|E|| ≤ ε|E|,

whereEG(X) is the set of edges inG with both endpoints inX, andEG(X, Y ) is the set of edges inG with
one endpoint inX and the other inY . One ingredient to the algorithmTripleDisc for Proposition 13 is to
certify that the graphsGij are of low discrepancy. The following lemma provides us with a polynomial time
algorithm for this problem.

Lemma 14. Let ε > 0. Suppose thatp′ ≥ 1/n1/2. There is a polynomial time algorithmA that satisfies the
following conditions.
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– Correctness:For any graphG = (V,E), the output ofA(G) is either “low discrepancy” or “fail”. If the
output is “low discrepancy”, thenG has low discrepancy w.r.t.ε.

– Completeness:If G = Gn,p′ , then the output ofA(G) is “low discrepancy” almost surely.

The proof of Lemma 14 is based on the relationship between graph discrepancy and eigenvalues (cf. [5]) and
results on the eigenvalues of random symmetric matrices [13].

In order to certify that the triple systemS has low discrepancy, it is, however,not sufficient to check that
the projection graphsGij are of low discrepancy. Therefore, in addition to the projection graphs, one could
consider theproduct graphGπ = (V × V,Eπ), which is defined as follows: an edge{(a1, b1), (a2, b2)} is
in Eπ iff there exists az ∈ V such that there are two different triples(a1, a2, z), (b1, b2, z) ∈ S. Note that
in contrast to the projection graphsGij , the product graphGπ is not distributed as a binomial random graph
(the edges do not occur independently). If the projection graphsGij and the product graphGπ all have low
discrepancy, thenS is of low discrepancy as well.

However, for the values ofp in Proposition 13, we do not know a direct way to derive bounds on the
eigenvalues of the adjacency matrix of the product graph (e.g. it seems difficult to apply the methods in [3,
8, 14]). Therefore, instead of dealing with the product graph and its adjacency matrix, we consider the matrix
A = A(S, p) defined as follows. For0 < p < 1 andb1, b2, z ∈ V we let Bb1b2z = Bb1b2z(S, p) = −1 if
(b1, b2, z) ∈ S, andBb1b2z = Bb1b2z(S, p) = p/(1− p), otherwise. Then, then2 × n2-matrixA = A(S, p) =
(ab1c1,b2c2)(b1,c1),(b2,c2)∈V 2 is given by

ab1c1,b2c2 =
∑
z∈V

(Bb1b2z ·Bc1c2z + Bb2b1z ·Bc2c1z) if (b1, b2) 6= (c1, c2),

andab1c1,b2c2 = 0 if (b1, b2) = (c1, c2). SinceA is symmetric and real-valued, the matrix hasn2 real eigenval-
uesλ1 ≥ · · · ≥ λn2 . We let‖A‖ = max{λ1,−λn2} signify the norm ofA.

If S ⊂ V 3, x ∈ V , andi ∈ {1, 2, 3}, then thedegree ofx in slot i is dx,i = |{(z1, z2, z3) ∈ S : zi = x}|.
We say thatS is asymptotically regularif dx,i = (1 + o(1))n−1|S| for all x, i. Equipped with these definitions,
we can state the following sufficient condition forS being of low discrepancy.

Lemma 15. Let f = pn3/2, and suppose thatln6 n ≤ f = o(n1/2). If S is a triple system that satisfies the
following four conditions, thenS is of low discrepancy w.r.t.ε > 0.

1. s = |S| = f · n3/2 · (1 + o(1)).
2. S is asymptotically regular.
3. The three projection graphs ofS are of low discrepancy with respect toε > 0.
4. We have‖A(S, p)‖ ≤ ln5 n · f .

The proof can be found in Appendix B. As by Lemma 14 we can check in polynomial time whether the
conditions in Lemma 15 hold, we obtain the following algorithm.

Algorithm 16. TripDisc ε(S)
Input: A setS ⊂ V 3. Output:Either “low discrepancy” or “fail”.

1. Check whether Conditions 1–4 in Lemma 15 hold.
2. If so, output “low discrepancy”. If not, return “fail”.

In order to prove Proposition 13, it remains to establish that the algorithm is complete. A standard ap-
plication of Chernoff bounds (cf. [18, p. 26]) shows that the random triple systemS = Sn,p with p as in
Proposition 13 satisfies Conditions 1–2 in Lemma 15 almost surely. Moreover, the third condition holds almost
surely by Lemma 14. Thus, it suffices to show that Condition 4 holds almost surely. The rather technical proof
of the following lemma is based on the trace method from [13] (cf. Appendix C).
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Lemma 17. Let f ≥ ln(n)6, and letp = fn−3/2. If S = Sn,p, then‖A‖ = ‖A(S, p)‖ ≤ ln5 n · f almost
surely.

3.2 The Refutation Heuristic for 3-SAT

i type Ui ⊂ V × V × V

1 x1 ∨ x2 ∨ x3 F × F × F
2 x1 ∨ x2 ∨ x̄3 F × F × T
3 x1 ∨ x̄2 ∨ x3 F × T × F
4 x1 ∨ x̄2 ∨ x̄3 F × T × T

i type Ui ⊂ V × V × V

5 x̄1 ∨ x2 ∨ x3 T × F × F
6 x̄1 ∨ x2 ∨ x̄3 T × F × T
7 x̄1 ∨ x̄2 ∨ x3 T × T × F
8 x̄1 ∨ x̄2 ∨ x̄3 T × T × T

Table 2.Clause types and unsatisfied clauses in the case of 3-SAT.

Let ϕ be a set of3-clauses over the variable setV = {x1, . . . , xn}. To apply the procedureTripDisc
from Section 3.1, we construct 8 triple systemsS(1), . . . , S(8) ⊂ V 3 from ϕ, each corresponding to one of the
8 possible ways to set the negation signs in a 3-clause. In the triple systemS(i), the triple(xi1 , xi2 , xi3) ∈ V 3 is
present iff the clauseli1∨li2∨li3 occurs inϕ, where eitherlij = xij or lij = x̄ij , according to the negation signs
for the clause types in Table 2. For instance, inS(3) the triple(xi1 , xi2 , xi3) is present iffxi1 ∨ x̄i2 ∨ xi3 ∈ ϕ.
Thus, the clauses inϕ and the triples inS(1), . . . , S(8) are in one-to-one correspondence.

Algorithm 18. 3-Refute (ϕ, ε)
Input: A setϕ of 3-clauses overV . Output:An upper bound on the number of satisfiable clauses.

1. Compute the triple systemsS(i) and runTripDisc ε/8(S(i)) for i = 1, . . . , 8. If the output is “fail” for at
least onei, then return the total number of clauses inϕ as an upper bound and halt.

2. Return(7 + ε)n3p.

Finally, considering Table 2 instead of Table 1, we can prove Theorem 1 using a similar argument as in the
proof of Lemma 11.

Remark 19.Though it is not stated explicitly in that paper, the approach in [14] can be used to obtain a strong
refutation heuristic that certifies that at most a(7

8 + ε)-fraction of the clauses can be satisfied almost surely.
However, the methods in [14] only apply to somewhat bigger values of the clause probabilityp (namely,p ≥
n−3/2+δ, δ > 0 fixed) than those addressed in Theorem 1. Furthermore, the algorithm and the analysis that we
have presented in the present paper are considerably simpler.

4 Hypergraph Problems

Let H = (V,E) = Hn,4,p be a random4-uniform hypergraph with vertex setV = {1, . . . , n}. Let κ be an
integer, and suppose thatp ≥ c0κ

4n−2 for a sufficiently large constantc0. The algorithm4-RefuteCol for
Theorem 4 is randomized. On inputH, the algorithm obtains a setS ⊂ V 4 of ordered4-tuples as follows (recall
that the edgesE are not ordered). Ife = {x1, x2, x3, x4} ∈ E, then there are4! = 24 possibilities to order the
verticesx1, x2, x3, x4. Let T (e) be the set of the24 possible ordered tuples. Lettingp0 = 1− (1− p)1/24, we
choose the set∅ 6= Xe ⊂ T (e) of tuples that we include intoS to represente according to the distribution

P(Xe) = p
|Xe|
0 (1− p0)24−|Xe|p−1.
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Thus, each edgee ∈ E gives rise to at least one tuple inS. The choice of the setsXe is independent for all
e ∈ E. Furthermore, we include each tuple(x1, x2, x3, x4) ∈ V 4 such that|{x1, x2, x3, x4}| < 4 into S with
probabilityp0 independently. A trite computation shows that ifH = Hn,4,p, then the resulting setS = S(H)
of 4-tuples is distributed so that every possible4-tuple inV 4 is present with probabilityp0 independently.

Let V1 = V × V × {1}, V2 = V × V × {2} be two disjoint copies ofV . Having computedS = S(H),
4-RefuteCol constructs a graphG with bipartition (V1, V2) in which the edge{(x1, x2, 1), (x3, x4, 2)} is
present iff(x1, x2, x3, x4) ∈ S. If H = Hn,4,p, thenG is a random bipartite graphBn2,p0

. To this graphG, 4-
RefuteCol applies the procedureBipDisc . If BipDisc answers “low discrepancy”, then4-RefuteCol
answers “H is notκ-colorable”. Otherwise, the output is “fail”.

To prove the correctness of the algorithm, consider an independent setI of H, and letIi = I×I×{i} ⊂ Vi

for i = 1, 2. Then,EG(I1, I2) = ∅. Hence, ifBipDisc (G) outputs “low discrepancy”, then (1) implies that
#I < n/κ (provided thatc0 is large enough), so thatχ(H) > κ. The completeness follows from Prop. 5.

The heuristic3-RefuteInd (H) for Theorem 3 transforms the hypergraphH into a triple system us-
ing in a similar manner as4-RefuteCol (cf. Section 4). Then,3-RefuteInd (H) applies the procedure
TripleDisc .

Acknowledgment. We are grateful to Uri Feige for helpful discussions.
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17. Håstad, J.: Some optimal inapproximability results. Journal of the ACM48 (2001) 798–859
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A Proof of Lemma 9

Given a graphG with bipartition (V1, V2), we letG′ be the graph obtained fromG by deleting all edges that
are incident with vertices of degree> 10np in G. Furthermore, we letA′ = A(G′) be then× n-matrix whose
ij’th entry is1 if vi, wj are adjacent inG′, and0 otherwise. We need the following lemma from [3] (Lemma 3.3
in that paper).

Lemma 20. If G = Bn,p, then almost surely|〈A′ξ, η〉| = O(
√

np) for all unit vectorsξ, η ⊥ 1.

The next lemma shows thate = ‖1‖−11 is “almost” an eigenvector ofA′ almost surely.

Lemma 21. LetG = Bn,p. Then,‖A′e− npe‖ = O(
√

np) almost surely.

Proof. Lettingd′v denote be the degree ofv ∈ V1 in the graphG′ anddv the degree ofv in G, we have

‖A′1− np1‖2 =
∑
v∈V1

(d′v − np)2 ≤
∑
v∈V1

(dv − np)2.

SetX =
∑

v∈V1
(dv − np)2. Sincedv is binomially distributed with parametersn andp, we conclude that

E
(
‖A′1− np1‖2

)
≤ E(X) = nVar(dv) ≤ n2p.

Furthermore, as the random variablesdv are mutually independent, the variance ofX is
∑

v∈V1
Var((dv −

np)2). A trite computation shows thatVar((dv − np)2) = O(np)2, whenceVar(X) = O(n3p2). Therefore,
Chebyshev’s inequality entails that

P(‖A′1− np1‖2 > 2n2p) ≤ P(X − E(X) > n2p) ≤ O

(
n3p2

n4p2

)
= O(n−1) = o(1),

thereby proving the lemma. ut

Proof of Lemma 9.Let G = Bn,p. By Lemma 20 and Lemma 21 we may assume that|〈A′ξ, η〉| = O(
√

np) for
all unit vectorsξ, η ⊥ 1, that‖A′e−npe‖ = O(

√
np), and that‖A′T e−npe‖ = O(

√
np). LetM = M(G′) =

pJ −A′. To bound
α = max{M ′ξ : ξ ⊥ 1, ‖ξ‖ = 1},

let ξ, η ⊥ 1 be unit vectors. Then,

|〈M ′ξ, η〉| = |〈A′ξ, η〉| = O(
√

np), (2)

becauseJξ = 0. Further,

|〈Mξ, e〉| = |〈A′ξ, e〉| ≤ |〈A′T e, ξ〉| ≤ ‖A′T e− npe‖ = O(
√

np). (3)

Combining (2) and (3), we obtainα = O(
√

np). Finally,

‖Me‖ = ‖npe−A′e‖ = O(
√

np),

whence‖M‖ ≤ α + ‖Me‖ = O(
√

np). ut
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B Proof of Lemma 15

Let S = Sn,p be a random triple system withp = f/n3/2 andf ≥ ln6 n as well asf = o(n1/2). Let X be an
arbitrary subset ofV with |X| = αn andε ≤ α ≤ 1− ε andY = V \X. Forz ∈ V let

Mz = (X, X, {z}) andM = {(B,C) |B,C ∈ Mz for az ∈ V , andB 6= C},

thus a typical pair inM is ((b1, b2, z), (c1, c2, z)) where(b1, b2) 6= (c1, c2) andb1, b2, c1, c2 ∈ X. Furthermore
let

m = |M | and mz = |Mz|.

We proceed in two steps. Step 1: We show that asymptoticallym = α4f2n2 = α4s2/n. Step 2: We show that
asymptotically|(X, X, X)| = α3s.

From Step 2 the claim follows: By low discrepancy of the projections ofS we have asymptotically that

|(X, X, V )| = |(X, V,X)| = |(V,X,X)| = α2s (4)

and we get
|(X, X, Y )| = |(X, X, V )| − |(X, X, X)| = (1− α)α2s,

which applies in the same way to|(X, Y,X)|, |(Y, X,X)|. Asymptotic regularity ofS implies that|(X, V, V )| =
αns/n = αs. From this we get

|(X, Y, Y )| = |(X, V, V )| − |(X, X, Y )| − |(X, Y,X)| − |(X, X, X)| = α(1− α)2s.

We can argue in the same way for|(Y, Y,X)| and|(Y, X, Y )|. As 1s− 3(1− α)α2s− 3(1− α)2αs− α3s =
(1−α)3s we must have that(Y, Y, Y ) = (1−α)3s. As the setX is arbitrary we have thatS has low discrepancy
and the theorem is proved.

We first derive Step 2 from the equation proved in Step 1. Observing with (4) that∑
z∈X

mz +
∑
z∈Y

mz =
∑
z∈V

mz = |(X, X, V )| = α2s(1 + o(1)), (5)

we have that

m =
∑
z∈V

mz(mz − 1) =
∑

z

m2
z −

∑
z

mz =
∑
z∈X

m2
z +

∑
z∈Y

m2
z − α2s(1 + o(1)). (6)

Now we have that ∑
z∈X

m2
z ≥ αn

(
|(X, X, X)|

αn

)2

=
|(X, X, X)|2

αn
. (7)

Estimate (7) holds because the sum
∑
z∈X

m2
z subject to the condition

∑
z∈X

mz = |(X, X, X)| is minimized when

each term is the arithmetic mean of allαn terms|(X, X, X)|/αn. With
|(X, X, Y )| = |(X, X, V )| − |(X, X, X)| we get in the same way that

∑
z∈Y

m2
z ≥ (1− α)n

(
(|X, X, Y |
(1− α)n

)2

=
(|(X, X, V )| − |(X, X, X|)2

(1− α)n
.
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Now let the realδ be such that|(X, X, X)| = (α3 + δ)s. We show thatδ = o(1). Using Step 1 we have
asymptotically, that is up to(1 + o(1))-factors, that

α4f2n2 = m

=
∑
z∈X

m2
z +

∑
z∈Y

m2
z − α2s Using (6).

≥ |(X, X, X)|2

αn
+

(|(X, X, V )| − |(X, X, X)|)2

(1− α)n
− α2s Using (7).

=
((α3 + δ)s)2

αn
+

(α2s− (α3 + δ)s)2

(1− α)n
− α2s Using (4).

Dividing both sides of the preceding estimate bys2/n = f2n2 we get by simple algebra

α4 ≥ (α3 + δ)2

α
+

(α2(1− α)− δ)2

1− α
− o(1)

= α5 + 2δα2 +
δ2

α
+ α4(1− α)− 2α2δ +

δ2

1− α
− o(1)

=
δ2

α
+ α4 +

δ2

1− α
− o(1),

and asε ≤ α ≤ 1− ε we must have thatδ = o(1) and thus|(X, X, X)| = α3s(1 + o(1)). This shows Step 2.
We are left to show Step 1. The Courant-Fischer characterization of Eigenvalues implies that

λ1 = max
v 6=0

vTAv

vT v
and λn2 = min

v 6=0

vTAv

vT v
,

wherev stands for a real vector withn2 coordinates, andvT is the transpose ofv.
Now letχ be the characteristic column vector ofX ×X, that isχ is 1 in each coordinate corresponding to

an element ofX ×X and0 otherwise. We get that

λn2 ≤
χTAχ

χT χ
≤ λ1 and therefore

∣∣∣∣χTAχ

χT χ

∣∣∣∣ ≤ max{λ1,−λn2} = ‖A‖.

As χT χ = |X ×X| = α2n2 we have that

|χTAχ| ≤ α2n2 · ‖A‖.

Direct linear algebra calculation and the definition ofA shows that

χTAχ =
∑

(b1,b2)∈X×X

∑
(c1,c2)∈X×X

ab1,c1,b2,c2 =
∑

(b1,b2,c1,c2)∈X4

(b1,b2) 6=(c1,c2)

∑
z∈V

(Bb1b2z ·Bc1c2z + Bb2b1z ·Bc2c1z)

and we get that

2 ·

∣∣∣∣∣∣∣∣∣
∑

(b1,b2,c1,c2)∈X4

(b1,b2) 6=(c1,c2)

∑
z∈V

Bb1b2z ·Bc1c2z

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑

(b1,b2,c1,c2)∈X4

(b1,b2) 6=(c1,c2)

∑
z∈V

(Bb1b2z ·Bc1c2z + Bb2b1z ·Bc2c1z)

∣∣∣∣∣∣∣∣∣
≤ α2n2‖A‖.
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We show below by lengthy algebra that asymptotically∑
(b1,b2,c1,c2)∈X4

(b1,b2) 6=(c1,c2)

∑
z∈V

Bb1b2z ·Bc1c2z = m − α4n2f2 (8)

Equation (8) implies Step 1 as we now know that

2 · |m − α4n2f2| ≤ α2n2‖A‖

and as‖A‖ = o(f2) it must be the case thatm = α4n2f2(1 + o(1)).
To prove (8) we observe that

∑
(b1,b2,c1,c2)∈X4

(b1,b2) 6=(c1,c2)

∑
z∈V

Bb1b2z ·Bc1c2z has the following terms:

(a)
∑
z∈V

mz(mz − 1) = m-times the term1.

This is for those cases when(b1, b2, z), (c1, c2, z) ∈ S and hence bothB-factors above are−1.
(b) 2 ·

∑
z∈V

mz(α2n2 −mz)-times the term−p/(1− p).

This is for those cases when(b1, b2, z) ∈ S and(c1, c2, z) /∈ S or vice versa. In this case oneB-factor is
−1 and the other one isp/(1− p). Note thatX ×X = α2n2 and we haveα2n2−mz triple (b1, b2, z) /∈ S
with b1, b2 ∈ X

(c)
∑
z∈V

(α2n2 −mz) · (α2n2 −mz − 1)-times the term(p/(1− p))2.

This is for those cases when(b1, b2, z), (c1, c2, z) /∈ S.

Observing that by assumptions = fn3/2 · (1 + o(1)) and by (5)∑
z∈V

mz = |(X, X, V )| = α2fn3/2(1 + o(1))

we get for the terms in (b) using1/(1− p) = 1 + o(1) andmz = O(fn3/2) = o(n2)

2 ·
∑
z∈V

mz(α2n2 −mz) ·
−p

1− p
= 2 ·

∑
z∈V

mz(α2n2 · (1 + o(1))) · −p · (1 + o(1))

= −2α2n2p · (1 + o(1)) ·
∑
z∈V

mz

= −2α2n1/2f · (1 + o(1)) · α2fn3/2 · (1 + o(1))
= −2α4f2n2(1 + o(1)).

For the terms in (c) we get∑
z∈V

(α2n2 −mz) · (α2n2 −mz − 1)
(

p

1− p

)2

=
∑
z∈V

(α4n4 · (1 + o(1))) · p2 · (1 + o(1))

=
∑
z∈V

α4n4f2/n3 · (1 + o(1)))

= α4n2f2 · (1 + o(1))

Summing all three types yields
m − α4f2n2 · (1 + o(1))

which implies (8). ut
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C Proof of Lemma 17

RememberA has the following definition. For0 < p < 1 andb1, b2, z ∈ V we let

Bb1b2z = Bb1b2z(S, p) =

{
−1 if (b1, b2, z) ∈ S

p/(1− p) otherwise.

Then, then2 × n2-matrixA = A(S, p) = (ab1c1,b2c2)(b1,c1),(b2,c2)∈V 2 is given by

ab1c1,b2c2 =


∑
z∈V

(Bb1b2z ·Bc1c2z + Bb2b1z ·Bc2c1z) if (b1, b2) 6= (c1, c2)

0 if (b1, b2) = (c1, c2)
.

Each possible triple occurs inS with probabilityp. Therefore we have that for allb1, b2, z ∈ V that

E[Bb1b2z] = p · (−1) + (1− p) · p

1− p
= −p + p = 0. (9)

We need this later on.
Let λ1 ≥ . . . ≥ λn2 be the eigenvalues ofA. Let λ denote the norm‖A‖ = max{λ1,−λn2} of A. The

trace of any matrix is the sum of the elements on the main diagonal ofA and we have

Trace[A] =
∑

ab1,c2,b1,c2 =
n2∑
i=1

λi and Trace[Ak] =
n2∑
i=1

λk
i

for any integerk ≥ 1. As the Eigenvalues ofA are all real we have for evenk that

λk ≤
n2∑
i=1

λk
i = Trace[Ak]

and therefore especially thatE[λk] ≤ E[Trace[Ak]]. We show below that there exists an evenk = k(n) that

E[Trace[Ak]] ≤ (ln4 n · f)k (10)

in this case Markov’s inequality implies that

Pr[λ ≥ ln5 n · f ] = Pr[λk ≥ (ln5 n · f)k] ≤ E[λk]
(ln5 n · f)k

≤ E[Trace[Ak]]
(ln5 n · f)k

≤ (ln4 n · f)k

(ln5 n · f)k
= o(1)

which is the lemma. We proceed to show (10). We have

Trace[Ak] =
n∑

b1=1

n∑
c1=1

. . .
n∑

bk=1

n∑
ck=1

ab1c1,b2c2 · ab2c2,b3c3 · . . . · abkck,b1c1

In case we have an1 ≤ i < k such that(bi, bi+1) = (ci, ci+1) or in case we have(bk, b1) = (ck, c1) the whole
product of thea’s evaluates to 0. We ignore these cases in the sequel and assume that(bi, bi+1) 6= (ci, ci+1) for
all 1 ≤ i < k and(bk, b1) 6= (ck, c1).
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The definition of thea’s yields

Trace[Ak] =
∑

b1,...,bk

∑
c1,...,ck

 ∑
z1∈V

(Bb1b2z1 ·Bc1c2z1 + Bb2b1z1 ·Bc2c1z1)

 · . . .

·

 ∑
zk∈V

(Bbkb1zk
·Bckc1zk

+ Bb1bkzk
·Bc1ckzk

)


=

∑
b1,...,bk

∑
c1,...,ck

∑
z1,...,zk

(Bb1b2z1 ·Bc1c2z1 + Bb2b1z1 ·Bc2c1z1) · . . .

·(Bbkb1zk
·Bckc1zk

+ Bb1bkzk
·Bc1ckzk

) .

Performing the multiplications between the brackets we get2k termsXj and

Trace[Ak] =
∑

b1,...,bk

∑
c1,...,ck

∑
z1,...,zk

2k∑
j=1

Xj

where eachXj has the appearance

Xj = Bβ1 ·Bγ1 ·Bβ2 ·Bγ2 · . . . ·Bβk
·Bγk

with βi = bibi+1zi andγi = cici+1zi or βi = bi+1bizi andγi = ci+1cizi for 1 ≤ i < k and analogously with1
instead ofi + 1 for i = k. Note that we can always assume thatβi 6= γi.

Let B = (b1, . . . , bk, c1, . . . , ck) andZ = (z1, . . . , zk). We let|B| = |{b1, . . . , bk, c1, . . . , ck}| and|Z| =
|{z1, . . . , zk}| be the number of different elements ofB andZ. We need to show

E[Trace[Ak]] =
2k∑

b=1

k∑
z=1

∑
B

|B|=b

∑
Z

|Z|=z

2k∑
j=1

E[Xj ] ≤ (ln4 n · f)k.

This sum can be shortened to

E[Trace[Ak]] =
k+2∑
b=1

k/2∑
z=1

∑
B

|B|=b

∑
Z

|Z|=z

2k∑
j=1

E[Xj ] ≤ (ln4 n · f)k.

Fix B with |B| = b, Z with |Z| = z, and letXj = Bβ1 ·Bγ1 · . . . ·Bβk
·Bγk

be a term corresponding toB and
Z. We show ifz > k/2 or b > k + 2 then there exists a factorBδ insideXj which occurs only once. In this
case we have thatE[Xj ] = 0 by (9) as thisBδ is independent from the remaining factors ofXj .

Going alongXj from left to right there are exactlyz slots where an element fromZ occurs for the first
time. At each such slot we get2 B’s which do not occur to the left inXj . Thus we get at least2z differentB’s
in Xj . In order that each of these2z B’s occurs at least twice inXj we must have that2k ≥ 4z or z ≤ k/2.

Again we go from left to right overXj . The first twoB-factors can use maximally4 elements fromB for
the first time. All the remainingB-factors use at most two elements fromB for the first time. This is because
two elements are already determined by the predecessor. Thus except for the first twoB-factors we need at
leastb− 4 differentB-factors. Altogether we need at least2 + (b− 4) = b− 2 differentB-factors. Again we
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must have that2(b− 2) ≤ 2k or b ≤ k + 2 in order that each of these differentB-factors occurs at least twice
in Xj .

Let Bα be a factor which occurs exactlyr-times withr ≥ 2 in Xj . Then we have that

E[Br
α] = p · (−1)r + (1− p) ·

(
p

1− p

)r

≤ p +
pr

(1− p)r−1
≤ 2p

assumingp ≤ 1/2. As we have at leastmax{2z, b− 2} differentB-factors inXj we bound

E[Xj ] ≤ (2p)max{2z,b−2}

which is independent fromXj , B, andZ. Therefore we only need to show that

k+2∑
b=1

k/2∑
z=1

∑
B

|B|=b

∑
Z

|Z|=z

2k · (2p)max{2z,b−2} ≤ (ln4 n · f)k.

Given b, eachB with |B| = b is obtained at least once by first picking a subset ofb elements fromV , ≤ nb

possibilities to choose, and second by placing the elements picked into2k slots,≤ b2k possibilities. As we can
assumeb ≤ 2k we have at mostnb(2k)2k possibilities. Similarly we can bound the number of sequencesZ
with |Z| = z by nzzk and forz ≤ k we get a bound ofnzkk. Therefore we have

k+2∑
b=1

k/2∑
z=1

∑
B

|B|=b

∑
Z

|Z|=z

2k · (2p)max{2z,b−2} ≤
k+2∑
b=1

k/2∑
z=1

23k · nb+z · k3k · (2p)max{2z,b−2}

We calculate next that
nb+z · (2p)max{2z,b−2} ≤ (2f)max{2z,b−2} · n2.

First, let2z > b− 2 then we have thatb ≤ 2z + 1 and

nb+z · (2p)max{2z,b−2} ≤ n3z+1(2p)2z = n3z+1(2fn1/2/n2)2z = n(2f)2z.

Second letb− 2 ≥ 2z thenz ≤ b/2− 1 and we get

nb+z · (2p)max{2z,b−2} ≤ nb+b/2−1(2p)b−2 = nb+b/2−1(2fn1/2/n2)b−2 = n2(2f)b−2.

As b ≤ k + 2 andz ≤ k/2, we havemax{2z, b− 2} ≤ k and we need to show

k+2∑
b=1

k/2∑
z=1

23k · k3k · n2 · (2f)k ≤ (ln4 n · f)k. (11)

There is no restriction onk by now and we pickk as the smallest even integer≥ lnn. Forn sufficiently large
we now get

k+2∑
b=1

k/2∑
z=1

23k · k3k · n2 · (2f)k ≤ (k + 2) · (k/2) · 24k · k3k · n2 · fk ≤ (ln4 n)k · fk,

which yields (11) and the lemma. ut


