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Abstract. A simple first moment argument shows that in a randomly chés8AT formula withm clauses oven
boolean variables, the fraction of satisfiable clauses is at me8t * +o0(1) asm/n — oo almost surely. In this paper,
we deal with the corresponding algorithnsittong refutation problemgiven a randonk-SAT formula, can we find a
certificatethat the fraction of satisfiable clauses is at most 27* + o(1) in polynomial time? We present heuristics
based on spectral techniques that in the dase 3, m > In(n)°n®/? and in the cas& = 4, m > Cn? find such
certificates almost surely. Our methods also apply to a variety of further problems such as hypergraph coloring.

1 Introduction and Results

The k-SAT problem- given a set ofk-clauses, i.e. disjunctions éf literals over a set of boolean variables,
decide whether there exists an assignment of the variables that satisfies all claubegerisric NP-complete
problem. In addition to the decision version, the optimization version MASAT — given a set ok-clauses,
find an assignment that satisfies the maximum number of clauses — is of fundamental interest as well. Howeve
Hastad [17] has shown that there is no polynomial time algorithm that approximates AMBXT within a
factor better than — 2%, unlessP = N P. Hence, it is NP-hard to distinguish between instancéds 8AT in
which a(1 — ¢)-fraction of the clauses can be satisfied, and instances in which every truth assignment satisfies
atmosta1— 2~k +¢)-share of the clauses for aay> 0. Indeed, Histad’s NP-hardness result is best possible,
as by picking a random assignment, we can satigfly-a 2=*)-fraction of the clauses in polynomial time.

These hardness results motivate the studhieafristicsfor k-SAT or MAX k-SAT that are successful at
least on a large class of instances. From this point of view, the satisfiability problem is interesting in two
respects. First, one could ask for heuristics fiading a satisfying assignment (in the casekeEAT) or a
“good” assignment (in the case of MAK-SAT). This problem has been studied e.g. by Flaxman [10], who
has shown that in a rather general model of random satisfiable formulas a satisfying assignment can be foun
in polynomial time almost surely (cf. also [21] for an extension to semirandom formulas). Secondly, one can
ask for heuristics that camfutea k-SAT instance, i.e. find a certificate that no satisfying assignment exists;
of course, in the worst-case this problem is coNP-complete. In this paper, we deal with the second problem
More precisely, we presestrong refutation heuristi¢s.e. heuristics that certify that no assignment satisfying
considerably more than the trivial — 2~*)-fraction of the clauses exists. One motivation for studying this
problem is the relationship between the existence of strong refutation heuristics and approximation complexity
pointed out by Feige [7].

In order to analyze a heuristic rigorously, we need to specify on which type of instances the heuristic is
supposed to work properly. In this paper, we consider a standard modeiddminstances of MAXk-SAT.
Let V = {x1,...,2,} be a set ofn boolean variables. Then, there dB)* possiblek-clauses over the
variablesV. If 0 < p < 1, then we letform,, ;, , be a random set df-clauses obtained by including each of the
(2n)* possible clauses with probabilipindependently. Hence, the expected number of clausésrin,, j ,, is
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m = (2n)*p. (Thus, in this paper, clauses are orélduples, and we allow for multiple occurrences of literals
in a clause. Several slightly different models exist, but the differences are only of technical relevance.)

The combinatorial structure of randdtrSAT formulas has attracted considerable attention. Friedgut [11]
has shown thaform,, 1, exhibits asharp threshold behavioithere exist numbers, = c;(n) such that
Form, j , is satisfiable almost surely if, < (1 — €)c;n, whereadiorm,, ;. ,, is unsatisfiable almost surely if
m > (1 4 €)cxn. The asymptotic behavior @f, ask — oo has been determined by Achlioptas and Peres [2].
Moreover, a simple first moment argument shows that the maximum number of claugesmgf;, ,, that can
be satisfied by any assignment is at mgst- 2% 4 o(1))m asm/n — oco. More precise results have been
obtained by Achlioptas, Naor, and Peres [1].

With respect to proof complexity, various types of resolution proofs for the non-existence of satisfying
assignments irorm,, j , have been investigated. Ben-Sasson [4] has shown that tree-like resolution proofs to
refute Form,, ;. , almost surely have sizexp(£2(n/AY(=2+2)) whereA = n*~!p and0 < ¢ < 1/2is an
arbitrary constant. Hence, tree-like resolution proofs are of exponential length even if the expected number o
clauses is*~17¢ (i.e. p = n—="%/2). Furthermore, [4, Theorem 2.24] shows that general resolution proofs
for the nonexistence of satisfying assignment$afm,, ;. ,, almost surely have super polynomial size i
n~*/2=% (§ > 0 constant).

Goerdt and Krivelevich [16] have suggested a heuristic that uses spectral techniques for Fefting ,,
with p = In(n)"n2 (i.e. the expected number of clausesiis= In(n)"n?). No efficient resolution-based
refutation heuristic is known for this range pf in fact, tree-like resolution proofs are of exponential length
by the aforementioned results. Removing the polylogarithmic factor, Feige and Ofek [8] and (independently)
Coja-Oghlan, Goerdt, Lanka, and Sclich [6] have shown that spectral techniques can be used to refute
Form,, 4, if p > Cn~2 for a sufficiently large constard > 0. Moreover, Feige and Ofek [9] have shown
that a heuristic that combines spectral techniques with extracting and refuting a XOR formulBofnoim; ,,
can refuteForm,, 3, for p > Cn=%/2 (i.e.m = Cn3/?). This result improves on previous work by Friedman
and Goerdt [12], and Goerdt and Lanka [15]. We emphasize that in all of the above cases, the values of
to which the refutation heuristics apply exceed the threshold wen,, ;. , actually becomes unsatisfiable
almost surely by at least a factoref—2)/2,

The new aspect in the present paper is that we deal stiting refutation heuristics. That is, our aim
are heuristics that on inpiorm,, ;. , almost surely certify that not more than(a — 27k 4+ ¢)-fraction of
the clauses can be satisfied, for any- 0. This aspect has not (at least not explicitly) been studied in the
aforementioned references. For instance, resolution proofs cannot provide strong refutation. Moreover, the
spectral heuristics studied so far [8, 9, 6, 15, 12, 16] only certify that every assignment leg@vggraction of
the clauses unsatisfied. With respect to MAX 3-SAT, we have the following result.

Theorem 1. Suppose that > In(n)%2~3/2. Lete > 0 be an arbitrarily small constant. There is a polynomial
time algorithm3-Refute that satisfies the following conditions.

— Correctnesgtor any MAX3-SAT instance, the output oB-Refute () is an upper bound on the number
of satisfiable clauses.
— Completenessf ¢ = Form,, 3 ,, then almost surelg-Refute (o) < (7 + &)n’p.

Since the number of clauses Bfrm,, 5 ,, is (8 + o(1))n3p almost surely3-Refute  does indeed certify
almost surely that not more thar%a{r e fraction of the clauses can be satisfied by any assignment. Note that the
value ofp required for Theorem 1 is by a factor f{(n)® larger than that required by the heuristic of Feige and
Ofek [9] (which does not provide strong refutation). Moreover, the following result addresses MAX 4-SAT.

Theorem 2. Suppose thap > con 2 for a sufficiently large constanty > 0. There is a polynomial time
algorithm4-Refute that satisfies the following conditions.
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— Correctnesgtor any MAX4-SAT instance, the output ofi-Refute () is an upper bound on the number
of satisfiable clauses.

— Completenesdf ¢ = Form, 4, then almost surely-Refute () < 15n*p + ¢1n®,/p, wherec; > 0 is
a constant.

4-Refute  almost surely provides a certificate that not more thé%’haO(L) fraction of the clauses can

ny/p

be satisfied. The second order t%) gets arbitrarily small asp grows. Theorem 2 applies to the same
range ofp as the best previously known refutation heuristics [6, 8] for 4-SAT, but provides strong refutation.

The algorithms for Theorems 1 and 2 build on and extend the techniques proposed in [6, 14]. For in-
stanced-Refute  constructs several graphs from the input formgla: Form,, 4,,. To each of these graphs,
4-Refute applies a subroutine that tries to certify that the graph has “low discrepancy”; i.e. every set of
vertices spans approximately the expected number of edges. This subroutine in turn relies on computing th
eigenvalues of a certain auxiliary matrix. Finally, if all graphs have passed the discrepancy check, then we
conclude that the input formula does not admit an assignment that satisfies more tbafp + cln?’\/f)
clauses. The MAX 3-SAT algorithm for Theorem 1 proceeds similarly, but is a bit more involved. Though in
contrast to [6, 14] we obtain strong refutation heuristics, the algorithms and the proofs in the present paper ar:
considerably simpler.

The techniques that the algorithrasRefute and4-Refute rely on yield heuristics for a variety of
further hard computational problems, e.g. for hypergraph problems. Recall #hahiéorm hypergraphH
consists of a st (H) of vertices and a sdf(H) of edges. The edges are subset¥ 0f ) of cardinalityk. An
independent seh H is a setS C V(H) such that there is no edgec E(H) with e C S. Theindependence
numbera(H) is the number of vertices in a maximum independent set. Mored¥és,calledx-colorable, if
there exists: independent setS;, . .., S, in H such thatS; U---U S,, = V(H). Thechromatic numbef (H )
is the least integet > 1 such thatH is k-colorable.

In analogy with theform,, ;. ,, model of randonk-SAT instances, there is thé,, ;. ,-model of randomnk-
uniform hypergraphs: the vertex setHf, ;. , isV = {1,...,n}, and each of théZ) possible edges is present
with probability0 < p < 1 independently. Krivelevich and Sudakov [20] have solved the combinatorial prob-
lem of determining the probable value of the independence number and of the chromatic number of randorr
hypergraphs. The following two theorems deal with #hgorithmic problem of refuting that 8-uniform hy-
pergraph has a large independent set, or tHatiaiform hypergraph ig-colorable.

Theorem 3. Lete > 0 be arbitrarily small but fixed. Suppose that= f/n%/2, whereln® n < f = o(n!/?).
There is a polynomial time algorithBiRefutelnd  that satisfies the following conditions.

— Correctnesslf H is a 3-uniform hypergraph, theB-Refuteind (H) either outputs & is small” or
“fail”. If 3-Refutelnd (H) answers ‘@« is small”, thena(H) < en.
— CompletenesOn inputd = H, 3,, 3-Refutelnd  (H) outputs “a is small” almost surely.

Theorem 4. Letx > 2 be an integer. Suppose that> coxn =2 for some sufficiently large constanf > 0.
There is a polynomial time algorithtiRefuteCol  that satisfies the following conditions.

— Correctnesslf H is a4-uniform hypergraph, thed-RefuteCol (H) either outputs “notx-colorable”
or “fail”. If 4-RefuteCol (H) answers “notx-colorable”, theny(H) > .
— CompletenesOn inputd = H, 4,, 4-RefuteCol (H) outputs “notx-colorable” almost surely.

Organization of the paper. We start with the algorithm-Refute for Theorem 2 in Section 2-Refute is
a bit simpler than the algorithB+Refute for Theorem 1, which comes in Section 3. We sketch the heuristics
for Theorems 3 and 4 in Section 4.
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2 Random MAX 4-SAT

In Section 2.2 we peresent the heuristic for Theorems 2. The main tool is a procedure for certifying that a
random bipartite graph is of low discrepancy. This procedure is the content of Section 2.1.

2.1 Discrepancy in Random Bipartite Graphs

Throughout, we let; = {vy,...,v,} andVe = {wy,...,w,} be two disjoint sets consisting of labeled
vertices each. We consider bipartite graghwith bipartition (7, V3), i.e. the vertex set off is V; U V5, and
all edges of7 have one endpoint ii, and one ifls. If S; C V4 andSy C V;, then we letE;(S1, S2) denote
the set of edges id- that connect a vertex il§; with a vertex inS,. Furthermore B, ,, denotes a random
bipartite graph obtained by including each possible edgew; } with probability p independently. The aim in
this section is to prove the following proposition.

Proposition 5. Suppose thatp > ¢y for some sufficiently large constasf > 0. There is a polynomial time
algorithmBipDisc and a constant; > 0 such that the following two conditions hold.

1. LetG be a bipartite graph with bipartitior{V;, 5). On inputG, BipDisc either outputs “low discrep-
ancy” or “fail”. If BipDisc (G) outputs “low discrepancy”, then for any two sefs C V;, i = 1,2, we
have

151]1S2lp — [EB(S1, S2)|| < e1v/[51[S2np + nexp(—np/c1). 1)

2. BipDisc (B, ;) outputs “low discrepancy” almost surely.

If |S1],]S2| = £2(n), then Eq. (1) entails that the numbés; (S, S2)| of edges fromS; to Sz in G deviates
from its expectationS: ||.S2|p “not too much”. The crucial point is th&ipDisc certifies that Eq. (1) holds
for all setsSy, Ss.

BipDisc is based on computing the eigenvalues of a certain auxiliary matrix. Given a gtapith
bipartition (V1, V2), we letA = A(B) = (aij)i j=1,...» be the matrix with entries;; = 1 if {v;, w;} € E(B),
anda;; = 0if {v;,w;} ¢ E(B). Let J denote am x n matrix with all entries equal td. Then, we let
M = M(B) = pJ — A(B). Furthermore, lef| M| = sup{||M¢|| : £ € R™, ||£]| = 1} denote the norm
of M. On inputB, ||M || can be computed in polynomial time up to an arbitrarily small additive error (e.g. by
computing the largest eigenvalue of the positive semidefinite m&frix/). The next lemma shows whid/ ||
has to do with discrepancy certification.

Lemma 6. Let B be a graph with bipartitionV;, V2). Then, for any two setS; C V;, i = 1, 2, the inequality
|[EB(S1,82)| — |S1]|S2lp | < v/[51]|S2] - [[M(B)]| holds.

Sketch of proofLet &; be the characteristic vector &f, i.e. thej'th entry of & (resp.&) is 1 if v; € S;
(resp.w; € Sp), and0 otherwise. Ther&;|| = /|Si|. Hence,|(M&, 1) < /]S1]|Sz2||| M ||.Moreover, a
direct computation shows that/&s, 1) = [S1]]S2|p — |EB(S1, S2)]. 0

In the casenp > In(n)"/n, one can show thdtM|| < O(/np) almost surely (via the “trace method”
from [13]). Hence, in this case, by Lemma 6 we could certify that (1) holds almost surely just by comput-
ing || M(By.p)|. In the casewp = O(1), however, we almost surely have that/(B,,,,)|| = ©(Inn), i.e.
|M(By,)|| is much too large to give the bound (1). The reason is that in this case, there will be vertices of
degree up t@®(lnn) in B = B,,, (cf. [19] for a more detailed discussion). Following an idea of Alon and
Kahale [3], we avoid this problem by removing all edges that are incident with vertices whose degree is too
high (at leastiOnp, say). This leads to the following algorithm.



Algorithm 7. BipDisc (G)
Input: A bipartite graphG = (V1, Va2, E). Output: Either “low discrepancy” or “fail”.

1. If the number of vertices ir that have degree 10np is > nexp(—canp), then output “fail” and halt.
Herecy, > 0 is a sufficiently small constant (cf. Lemma 8 below).

2. Ifthe number of edges ifi that are incident with vertices of degreel Onp is larger tharesn?p exp(—canp),
wherecs > 0 is a sufficiently large constant, then halt with output “fail”.

3. LetG’ be the graph obtained frofi by deleting all edges that are incident with vertices of degré@np.
Let M = M(G"). If || M|| > c4,/np for a certain constanty, then output “fail” and halt.

4. Output ‘G has low discrepancy”.

The analysis oBipDisc is based on two lemmas.

Lemma 8. There are constants,, c3 > 0 such that whpB = B,, ,, has the following properties.

1. LetS be the set of all vertices that have degredOnp in B. Then|S| < nexp(—canp).
2. The number of edges i that are incident with at least one vertex$his < c3n?p exp(—canp).

Lemma 9. There is a constant; > 0 such that whp. the random bipartite gragh = B,,, enjoys the
following property. LetB’ be the graph obtained from® by deleting all edges that are incident with vertices of
degree> 10np in B. Then,|M(B')|| < c4\/mp.

Lemma 8 follows from a standard computation. The proof of Lemma 9 is based on estimates on the eigen-
values of random matrices from [3] (cf. Appendix A).

Proof of Proposition 5Let G = B,, ,,, and letS; C V; for ¢ = 1,2. Moreover, letS be the set of vertices of
degree> 10np in G. Suppose thaBipDisc (G) answers “low discrepancy”. Then, by Lemma 6,

| Eg(S1\ 5,92\ 9)[ = [S1\ S[S2\ Slp[ < cav/[S1][Sa|np.

Moreover, because of Step 2BipDisc , we haveg Eg (S, S2)| — |Ec(S1\S, 52\ S)| < c3n?pexp(—conp).
Finally, |S1||S2|p — [S1 \ S|S2 \ S|p < 3np|S| < nexp(—canp/2),as otherwise Step 1 would have failed.
Thus, (1) holds forS;, S,. Finally, Lemmas 8 and 9 imply th&ipDisc (B, ) outputs “low discrepancy”
almost surely. O

2.2 The Refutation Heuristic for 4-SAT

Throughout this section, we 1& = {z;,...,x,} be a set ok propositional variables. Moreover, we assume
thatn?p > ¢ for a sufficiently large constant,.

Let ¢ be a set ofi-clauses ovel’. To employ the proceduBipDisc from Section 2.1, we construt®
bipartite graph&’(V, . .., G(*6) from . EachG") is a graph with bipartitioriVy, V»), whereV; = V x V x {i}
(i.e. V1, V; are disjoint copies of x V). Each grapt@(?) corresponds to one of the 16 possible ways to place the
negation signs in é-clause: inG", the edgd (z;,, z:,, 1), (2i,, z:,, 2)} is present iff the clausk, Vi;, Vi, Vi,
is contained inp, wherel;, is eitherz;; or z;,, according to the negation signs in Table 1. For instance, the
edge{(zi,, Ti,, 1), (z4;, 74, 2)} is in GU7) iff the clausex;, V Z;, V Z;, V x;, occurs ing. Thus, each clause
of  induces an edge in one of the gragghié), and each edge results from a unique clause. The algorithm for
Theorem 2 is as follows.

Algorithm 10. 4-Refute ()
Input: A setp of 4-clauses ovel’. Output: An upper bound on the number of satisfiable clauses.



i type A CVi|B;i C V2 i type A, CVi|B; C Vs
llz1VaaVasVasu| FXF | F X F 9 Z1VaaVasVay| TXF | FXF
20L1Vaa Vs Vay| FxF | FxT 100z Voo VasVZu| T X F | FxT
3.1:1\/.’1}2Vf3VI4 FxF|TxF llii‘1\/.’1}2\/f3Vl’4 TxF |TxF
A1 VaasVIsVIul FXF | TxT 12|21 V2oV Z3VZ4| T X F | T xT
S5lxc1VZaVasVay| FXxT | FxXF 1321 VZa Va3 Vay| TXT | F X F
6$1V.’f}2\/$3Vf4 FxT|FxT l4f1\/.’f}2\/l’3v‘i’4 TxT | FxT
Tax1VZaVIsVay FXT | TxF 15121 VZoVZ3Vas| TXT | T X F
8lz1VZaoVIZ3VIyl FXT | TxT 16|21 VZaoVZ3VTa| TxXT | T xT

Table 1.Clause types and unsatisfied clauses in the case of 4-SAT.

1. If the number of clauses ipis larger tharl6n’p + n3,/p, then return the total number of clauseszims
an upper bound and halt.

2. Compute the graphs(® fori = 1,...,16 and runBipDisc (G®)fori =1,...,16. If BipDisc (G®)
answers “fail” for at least ong then return the total number of clausesdiand halt.

3. Returnl5n’p + cin®,/p, wherec, is a sufficiently large consant.

Let us first prove that-Refute  outputs an upper bound on the number of clauses that can be satisfied.

Lemma 11. There is a constants > 0 such that the following holds. Let be a set o#fi-clauses such that
BipDisc (G) answers “low discrepancy” for all. Then there is no assignment that satisfies more than
lo| — np + can?,/p clauses ofp.

Proof. Consider an assignment that sets the variables V' to true, andF’ = V' \ T to false. We shall bound

the number of edges in the grapi§) that correspond to unsatisfied clauses. flet™ Vi andB; C V5 be the

sets defined in Table 1 for= 1, ..., 16. Then, in the grapl#(?), the edges corresponding to unsatisfied clauses
are precisely thed;-B;-edges. Thus, invoking Proposition 5, we have the following bound on the number of
unsatisfied clauses:

. )
=0

16 4
4 . » ) ) )
> 1B, (A Bi)l = ) ( ) (IFFIT[*'p — esn®B) = (IF| + T])'p — exn®/p = np — can®
i=1
wherecs, c3 are suitable constants. O

Proof of Theorem 2The correctness claimed in the theorem follows from Lemma 11. Since by Chernoff
bounds (cf. [18, p. 26]) the total number of clauseBadnm,, 4, is at mostl6ntp + 0(n3\/]3) almost surely, the
completeness follows from Proposition 5. O

Remark 12.Though this issue is not addressed explicitly in that paper, a strong refutation heuristic could also be
obtained from the techniques presented in [6]. However, the approach in the present paper has some advantag

First of all, the algorithm is much simpler both to execute and to analyze. Secondly, the bound on the numbel
of satisfiable clauses that could be obtained using the techniques in [6] is not as precise as those obtained
Theorem 2. Indeed, the approach in [6] can only be used to show that the fraction of satisfiable clauses is

< {g + ¢ for an arbitrarily small but fixed > 0. By contrast, the Theorem 2 gives a the bogfid- O(; %),
where the second order term tend® tasn’p grows.



3 Random MAX 3-SAT

While our refutation heuristic for 4-SAT is based on certifying that certain (bipartite) graphs are of low dis-
crepancy, the heuristic for 3-SAT needs to certify that a couple of triple systems are of low discrepancy. In
Section 3.1, we describe the procedure for certifying low discrepancy in triple systems. Then, in Section 3.2,
we show how to employ this procedure in order to refute MAX 3-SAT strongly.

3.1 Discrepancy in Triple Systems

LetV = {z1,...,2,} be a fixed set of cardinality. In this section, we consideriple system®verV, i.e.
subsetsS C V x V x V. If V1, Vs, V3 C V, then we let(Vy, Vo, V3) = (V1, Va, V3) g signify the set of triples
(v1,v2,v3) € Swithwv; € V; fori = 1,2,3. Lete > 0 be a constant. We say th&thas low discrepancy
with respect tce if the following holds for allX C V with en < |X| < (1 —¢)n: lettingy = V' \ X and
a = |X|/n, we have

(X, X, X)| = (1+0(1)) - o - |S],
(X, X)L (XY, XOLIY, X, X)| = (1+0(1)) - 0*(1— ) - |S],
(XY, Y)LIY, X, Y)LI(Y, Y, X)| = (1+0(1) - a(l - a)? - |S],
(VY. Y)| = (1+0(1)- (1-a)’-|9]

For0 < p < 1, we obtain the random triple systesy , by including each triple i3 with probability p
independently. The aim of this section is to prove the following propostion.

Proposition 13. For eache > 0 there is a polynomial time algorithffripleDisc . that satisfies the follow-
ing conditions.

— For each triple systens' C V3 the output ofTripleDisc  .(S) is either “low discrepancy” or “fail”. If
the output is “low discrepancy”, thel§ has low discrepancy w.r.t.
— If p > In(n)5n73/2, then the output ofripleDisc  .(S,.,) is “low discrepancy” almost surely.

To certify that the triple systens ¢ V3 is of low discrepancy, the algorithiripleDisc constructs
threeprojection graphs;;, 1 <i < j < 3. The vertex set of7;; is V, and the edgéz, y } is present irG;; iff
there is a triplgz1, 22, 23) € S with z = z; andy = z;, orz = z; andy = z;. Thus, ifS = S, ,, then the edge
{z,y} is presentinG;; with probabilityp’ ~ 2np independently of all other edges, so thg} is distributed as
a binomial random grap&’,, ,, .

We say that a grapty = (V, E) haslow discrepancy w.r.ts if for all X C V of cardinalityen < |X| <
(1 —e)n we have

1B (X)| — [X[*n72|E|| < e E| and||Eq (X, V \ X)| - 2|X|(n — |X|)n | E|| < ¢|E],

whereEq(X) is the set of edges i& with both endpoints inX, andEq(X,Y") is the set of edges i& with

one endpoint inX and the other irY". One ingredient to the algorithifripleDisc ~ for Proposition 13 is to
certify that the graphs;; are of low discrepancy. The following lemma provides us with a polynomial time
algorithm for this problem.

Lemma 14. Lete > 0. Suppose that’ > 1/n'/2. There is a polynomial time algorithid that satisfies the
following conditions.



— Correctnesskor any graphG = (V, E), the output ofd(G) is either “low discrepancy” or “fail”. If the
output is “low discrepancy”, therds has low discrepancy w.r.t.
— Completenesdf G = G, ;, then the output ofl(G) is “low discrepancy” almost surely.

The proof of Lemma 14 is based on the relationship between graph discrepancy and eigenvalues (cf. [5]) ant
results on the eigenvalues of random symmetric matrices [13].

In order to certify that the triple syste has low discrepancy, it is, howevemt sufficient to check that
the projection graphér;; are of low discrepancy. Therefore, in addition to the projection graphs, one could
consider theproduct graphG, = (V x V, E;), which is defined as follows: an eddéa;, 1), (az,b2)} is
in E, iff there exists az € V such that there are two different tripl€s;, a2, z), (b1, b2, 2) € S. Note that
in contrast to the projection graplis;, the product grapli-- is not distributed as a binomial random graph
(the edges do not occur independently). If the projection graghsand the product grap&', all have low
discrepancy, thef is of low discrepancy as well.

However, for the values gf in Proposition 13, we do not know a direct way to derive bounds on the
eigenvalues of the adjacency matrix of the product graph (e.g. it seems difficult to apply the methods in [3,
8, 14]). Therefore, instead of dealing with the product graph and its adjacency matrix, we consider the matrix
A = A(S,p) defined as follows. Fob < p < 1 andby, by, z € V we let By,p,. = Bpp,-(S,p) = —1if
(b1,b2,2) € S,andBy,p,. = Bp,p,-(S,p) = p/(1 — p), otherwise. Then, the? x n?-matrix A = A(S,p) =
(ab10176202)(bl,cl),(bg,cg)eVQ is given by

ab101,b202 = Z(Bblbzz . Bclczz + Bbgblz . BCQC1Z) If (b17 b2) 7£ (Cl, 62)7
zeV

anday, ¢, pye, = 0if (b1,b2) = (c1, c2). SinceA is symmetric and real-valued, the matrix hetsreal eigenval-
uesi; > --- > \,2. We let||A|| = max{\;, —\,2} signify the norm ofA.

If S c V3, ze€V,andi € {1,2,3}, then thedegree ofz in sloti is d,.; = |[{(21,22,23) € S : zi = x}|.
We say thatS is asymptotically regulaif d,. ; = (1 +o(1))nt|S] for all z, i. Equipped with these definitions,
we can state the following sufficient condition f§rbeing of low discrepancy.

Lemma 15. Let f = pn3/2, and suppose thah®n < f = o(n!/?). If S is a triple system that satisfies the
following four conditions, thei' is of low discrepancy w.r.t > 0.

1. s=1S|=f-n%?-(1+0(1)).

2. Sis asymptotically regular.

3. The three projection graphs 6fare of low discrepancy with respect4a> 0.

4. We have|A(S,p)|| <In’n - f.

The proof can be found in Appendix B. As by Lemma 14 we can check in polynomial time whether the
conditions in Lemma 15 hold, we obtain the following algorithm.

Algorithm 16. TripDisc .(5)
Input: A setS C V3. Output:Either “low discrepancy” or “fail”.

1. Check whether Conditions 1-4 in Lemma 15 hold.
2. If so, output “low discrepancy”. If not, return “fail”.

In order to prove Proposition 13, it remains to establish that the algorithm is complete. A standard ap-
plication of Chernoff bounds (cf. [18, p. 26]) shows that the random triple system S,,,, with p as in
Proposition 13 satisfies Conditions 1-2 in Lemma 15 almost surely. Moreover, the third condition holds almost
surely by Lemma 14. Thus, it suffices to show that Condition 4 holds almost surely. The rather technical proof
of the following lemma is based on the trace method from [13] (cf. Appendix C).
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Lemma 17. Let f > In(n)5, and letp = fn=3/2.If S = S,,,, then||A| = ||A(S,p)|| < In®n - f almost
surely.

3.2 The Refutation Heuristic for 3-SAT

i| type |UicVXxVxV| i| type |UiCcVxVxV|
1z Vz2 V 23 FxFxF 5|z1 Vx2 V x3 TxFxF
2lx1 Va2V T3 FxFxT 6|71V 22 V T3 TxFxT
3lz1 VT2 V x3 FxTxF TZ1 VT2 Va3 TxTxF
4lx1VToV T3 FxTxT 8|71 VT2V T3 TxTxT

Table 2. Clause types and unsatisfied clauses in the case of 3-SAT.

Let ¢ be a set oB-clauses over the variable sét= {x1,...,z,}. To apply the procedur&ripDisc
from Section 3.1, we construct 8 triple systefd), ..., S® ¢ V3 from ¢, each corresponding to one of the
8 possible ways to set the negation signs in a 3-clause. In the triple sgétetine triple(z;, , z;,, z:,) € V3 is
presentiff the clausk, V1, Vi;, occurs inp, where eithet;, = x;;, orl;, = z;;, according to the negation signs
for the clause types in Table 2. For instanceSIR the triple (z;,, ;,, z;,) is present iffz;, V T, V x4, € .
Thus, the clauses ip and the triples irs(), ..., S® are in one-to-one correspondence.

Algorithm 18. 3-Refute (¢, ¢)
Input: A setp of 3-clauses ovel’. Output: An upper bound on the number of satisfiable clauses.

1. Compute the triple systen$?) and runTripDisc . /5(S®) fori = 1,...,8. If the output is “fail” for at
least one, then return the total number of clausesdmas an upper bound and halt.
2. Return(7 + )n’p.

Finally, considering Table 2 instead of Table 1, we can prove Theorem 1 using a similar argument as in the
proof of Lemma 11.

Remark 19.Though it is not stated explicitly in that paper, the approach in [14] can be used to obtain a strong
refutation heuristic that certifies that at mos([~ga+ e)-fraction of the clauses can be satisfied almost surely.
However, the methods in [14] only apply to somewhat bigger values of the clause probalilaymely,p >
n—3/2+9 5 > 0 fixed) than those addressed in Theorem 1. Furthermore, the algorithm and the analysis that we
have presented in the present paper are considerably simpler.

4 Hypergraph Problems

Let H = (V,E) = H, 4, be a randomt-uniform hypergraph with vertex sét = {1,...,n}. Letx be an
integer, and suppose that> cyx*n =2 for a sufficiently large constamt. The algorithmd-RefuteCol  for
Theorem 4 is randomized. On inpkt, the algorithm obtains a sétc V* of ordered4-tuples as follows (recall
that the edge#& are not ordered). lIf = {x1,x2,z3, 24} € E, then there ard! = 24 possibilities to order the
verticesz1, x5, x3, z4. Let T'(e) be the set of the4 possible ordered tuples. Lettipg = 1 — (1 — p)'/?4, we
choose the sdt # X, C T'(e) of tuples that we include int§' to represent according to the distribution

Xe ZIX,| —
P(Xe):p‘o |(1—p0)24 | X \p 1.
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Thus, each edge € E gives rise to at least one tuple # The choice of the setX, is independent for all
e € E. Furthermore, we include each tugle;, xo, 3, 24) € V* such that{z, z2, x3,74}| < 4 into S with
probability py independently. A trite computation shows thatif= H,, 4 ,, then the resulting sef = S(H)
of 4-tuples is distributed so that every possilttauple inV4 is present with probability, independently.

LetVi, =V x V x {1}, Vo =V x V x {2} be two disjoint copies o¥. Having computeds = S(H),
4-RefuteCol  constructs a grapty with bipartition (7, V2) in which the edg€{(x1, z2,1), (z3,24,2)} is
present iff(x1, z2, 23, 74) € S. If H = H, 4, thenG is a random bipartite graph, - ,, . To this graph, 4-
RefuteCol applies the procedugipDisc . If BipDisc answers “low discrepancy”, thelaRefuteCol
answers H is notx-colorable”. Otherwise, the output is “fail”.

To prove the correctness of the algorithm, consider an independdnoBét, and letl; = I x I x {i} C V;
fori = 1,2. Then,Eg(I1,I5) = 0. Hence, ifBipDisc (G) outputs “low discrepancy”, then (1) implies that
#1 < n/k (provided thaty is large enough), so that /) > . The completeness follows from Prop. 5.

The heuristic3-Refutelnd  (H) for Theorem 3 transforms the hypergraphinto a triple system us-
ing in a similar manner a$-RefuteCol  (cf. Section 4). Then3-Refutelnd (H) applies the procedure
TripleDisc

Acknowledgment. We are grateful to Uri Feige for helpful discussions.
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A Proof of Lemma 9

Given a graphG with bipartition (V1,V5), we letG’ be the graph obtained frod by deleting all edges that
are incident with vertices of degree 10np in G. Furthermore, we letl’ = A(G’) be then x n-matrix whose
ij'th entry is1if v;, w; are adjacent id’, and0 otherwise. We need the following lemma from [3] (Lemma 3.3
in that paper).

Lemma 20. If G = B,,,, then almost sureli{ A’¢, n)| = O(,/np) for all unit vectorsg,n L 1.
The next lemma shows that= ||1||~!1 is “almost” an eigenvector o’ almost surely.
Lemma 21. LetG = B, ,. Then,||A’e — npe|| = O(,/np) almost surely.

Proof. Letting d,, denote be the degree ofc V; in the graph’ andd, the degree of in G, we have

JAL = npl|* = ) " (d, = np)®> < > (dy — np)*.

veW veVy

SetX =37 ¢y, (dy — np)?. Sinced, is binomially distributed with parametersandp, we conclude that
E (]|4A'1 — npl|?) < E(X) = nVar(d,) < n’p.

Furthermore, as the random variabtésare mutually independent, the varianceXfis » . Var((d, —
np)?). A trite computation shows thatar((d, — np)?) = O(np)?, whenceVar(X) = O(n3p?). Therefore,
Chebyshev’s inequality entails that

n3 2 a
P(||A'1 — np1||? > 2n%*p) <P(X —E(X) > n?p) <O <n4§2> =O0(n™Y) = o(1),

thereby proving the lemma. O

Proof of Lemma 9.et G = B,, ,. By Lemma 20 and Lemma 21 we may assume th&t, n)| = O(,/np) for
all unit vectors¢, n L 1, that|| A’e — npe|| = O(,/np), and that| A'"'e —npe|| = O(/np). LetM = M(G') =
pJ — A’. To bound

a=max{M'¢: £ L1, €]l =1},

let&,n L 1 be unit vectors. Then,

[(M'E )| = [(A'E,m)| = O(v/np), )
because/¢ = 0. Further,
[(ME,e)| = [(A',e)] < [(ATe,€)| < ||ATe — npe| = O(y/np). 3)

Combining (2) and (3), we obtaim = O(,/np). Finally,

[Me|| = [Inpe — A'e|| = O(y/np),

whence|M|| < o+ ||Me|| = O(\/np). 0
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B Proof of Lemma 15

Let S = S, , be arandom triple system with= f/n*? andf > In®n as well asf = o(n'/?). Let X be an
arbitrary subset of with | X| =anande <a <1—candY =V \ X.Forz € V let

M, = (X,X,{z})andM = {(B,C)|B,C € M,foraz eV, andB # C},

thus a typical pair inV/ is ((b1, b2, 2), (c1, c2, z)) Where(by, ba) # (c1,c2) andby, ba, c1, c2 € X. Furthermore
let
m = |M| and m, = |M,|.

We proceed in two steps. Step 1: We show that asymptotioally o f2n? = a*s%/n. Step 2: We show that
asymptotically|(X, X, X)| = o®s.
From Step 2 the claim follows: By low discrepancy of the projectionS afe have asymptotically that

(X, X, V)| = [(X,V.X)| = [(V.X,X)| = o’ (4)
and we get
(X, X,Y)| = (X, X, V)| = [(X, X, X)| = (1-a)a’s,
which applies in the same way ftoX, Y, X )|, |(Y, X, X)|. Asymptotic regularity o5 implies that (X, V, V)| =
ans/n = as. From this we get

’(X7Y7Y)‘ = ’(X7V7 V)‘ - ’(X,X,Y)| - |(X7Y7X)‘ - ‘(X,X,X)‘ = a(l _a)QS'

We can argue in the same way fo¥, Y, X)| and|(Y, X,Y)|. As1s — 3(1 — a)a?s — 3(1 — a)?as — a3s =
(1—a)3s we must have tha, Y, Y) = (1—a)3s. As the setX is arbitrary we have thaf has low discrepancy
and the theorem is proved.

We first derive Step 2 from the equation proved in Step 1. Observing with (4) that

Yo+ Y me =Y me = (X, X, V)] = a?s(1+o(1)), 5)
zeX zeY zeV
we have that
m:Zmz(mz—l):Zm ZmZ—Zm +Zm —a?s(140(1)). (6)
zeV z zeX z€Y
Now we have that

2
5 2 > o (15X X>|) (XX, X) P -

an an
zeX

Estimate (7) holds because the sdm m? subject to the conditio) ~ m. = |(X, X, X)| is minimized when

zeX zeX
each term is the arithmetic mean of alt terms|(X, X, X)|/an. With

(X, X,Y)|=|(X,X,V)| - (X, X, X)| we getin the same way that

o (X XYY (V)] (XX X
2 m: 2 <<1—a>n) B (1 —an '
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Now let the reals be such that(X, X, X)| = (a® + §)s. We show thaty = o(1). Using Step 1 we have
asymptotically, that is up t6l + o(1))-factors, that

a2t =m

= Z m? + Z m? — o’s Using (6).

zeX z€Y
XX | (16, V<)1|_of>)§ XD o2 Using (7).
_ ((a3 4 5)8)2 n (a28 — (a3 + 5)5)2 —o?s Using (4).
an (1—-a)n

Dividing both sides of the preceding estimates8yn = f?n? we get by simple algebra
(0 +6)* | (a(1—a) - 0)’

4> —o(1
@ = « 1—a o(1)
52 52
=a’ +25a® + — +a*(1 —a) — 2225 + —o(1)
o 1—a
52 4 52
_— —o(1
a+a +1—a o(1),

and as < a < 1 — ¢ we must have that = o(1) and thug (X, X, X)| = a®s(1 + o(1)). This shows Step 2.
We are left to show Step 1. The Courant-Fischer characterization of Eigenvalues implies that
v Av vl Aw

Al = max and A,2 = min
v20 vlw " v20 vlv

wherev stands for a real vector with? coordinates, and”’ is the transpose af.
Now let y be the characteristic column vector ¥fx X, thatisy is 1 in each coordinate corresponding to

an element ofX x X and0 otherwise. We get that
x"Ax
xTx
AsxTx = |X x X| = o?n? we have that
X" Ax| < o®n” - || Al.

A2z <

TA
<\  and therefore 'XXTXX' < max{\i, — A2} = [|A].

Direct linear algebra calculation and the definitiondo&hows that

XTAX = Z Z abl,cl,bQ,CQ - Z Z(Bblbgz : BClCQZ + Bb2b12 : Bczclz)

(b1,b2)EX XX (c1,02)EX XX (b1,b2,c1,c2)EX? 2EV
(b1,b2)#(c1,c2)

and we get that

2. Z Z Bblbgz : Bclcgz - Z Z(Bblbgz . chgz + Bb2b1Z . Bcgclz)

(b1,b2,c1,c2)EX* 2€EV (b1,b2,c1,c2)EX? 2€EV
(b1,b2)#(c1,c2) (b1,b2)#(c1,c2)

< a”n?|Al|
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We show below by lengthy algebra that asymptotically

Z Z Bblbgz . chgz =m — a4n2f2 (8)

(b1,b2,c1,c2)EX* 2€EV
(b1,b2)#(c1,c2)

Equation (8) implies Step 1 as we now know that
2-[m — a'n?f? < a®n?| Al

and ag|A| = o( f?) it must be the case that = a*n?f2(1 + o(1)).
To prove (8) we observe that Z Z Bi,b, - Be,e, has the following terms:
(bl,bg,cl,cz)ex4 zeV
(b1,b2)#(c1,c2)
(@ Y m.(m. — 1) = m-times the ternt.

z€V
This is for those cases Whéby, bo, 2), (c1, co, 2z) € S and hence bottB-factors above are 1.

(b) 2- ) m.(a’n® — m.)-times the term-p/(1 — p).

zeV
This is for those cases whéhy, b2, z) € S and(cy, c2, 2 ) ¢ S or vice versa. In this case ore-factor is

—1 and the other one jg/(1 — p). Note thatX x X = o?n? and we have>n? —m,, triple (b1, ba, 2) ¢ S
with by, b0 € X
© ) _(e’n® —m.) - (a®n® — m. — 1)-times the tern{p/(1 — p))>.
zeV
This is for those cases whéty , by, 2), (c1,¢2,2) ¢ S.

Observing that by assumptien= fn*/2 - (1 + o(1)) and by (5)
> me = (X, X, V)| = a*fn¥/3(1 + o(1))

zeV
we get for the terms in (b) using/ (1 — p) = 1 + o(1) andm, = O(fn3/2) = o(n?)
2. m.(a®n® —m,) -7_2 > m. (1+0(1) - —p- (1 +0(1))
z€V B zeV

=2« np-(l+0(1))-2mz

zeV
=222 f . (14 0(1)) - a?fn®? - (14 0(1))
—20 f2n2(1 + o(1)).

For the terms in (c) we get

3 (@*n? —my) - (a®n? —m, — 1) (p) =S (a*n - (1 +0(1)) p* - (1+0(1))

]_ _
zeV p zeV

=> o't f2/n? - (1+0(1)))

zeV
=atn?f?. (1+0(1))
Summing all three types yields
m — a*f?n? . (1+0(1))
which implies (8). O
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C Proof of Lemma 17
RememberA has the following definition. Fab < p < 1 andbq, bo, z € V we let

-1 if (bl,bz,z) es

B z = B z Sa = 1
b1b2 bibs2 (S, P) {p/(l —p) otherwise.

Then, then? x n?-matrix A = A(S,p) = (Qb;c; baes) (b1.c1),(bs,co)e V2 IS GiVEN by

Z(Bblbzz . Bclcgz + Bbgblz : BCQClZ) If (bla b?) 7& (Cla CQ)
Apcybacy — zeV
Olf (bl,bQ) = (01,62)
Each possible triple occurs $iwith probability p. Therefore we have that for ali, b5, z € V that

E[Bb;p,-] zp'(—1)+(1—p)-1p%p =-p+p=0. (9)

We need this later on.

Let \; > ... > A,z be the eigenvalues dk. Let A denote the normfA| = max{A;, —\,2} of A. The
trace of any matrix is the sum of the elements on the main diagorfalarid we have

n2
Trace[A] = Z Ay cobrics = Z A and Trace Ak Z )\k

for any integerk > 1. As the Eigenvalues oA are all real we have for evénthat
< Z AF = Trace[A¥]

and therefore especially thB{\*] < E[Trace[A*]]. We show below that there exists an eves k(n) that
E[Trace[AX]] < (In*n - f)¥ (10)
in this case Markov’s inequality implies that

E[\] < E[Trace[A¥]] < (Intn - f)F
(I’n-f)F = (In’n-f)F = (In°n- f)F

which is the lemma. We proceed to show (10). We have

k
Trace[A"] E E g g Ap;cy,bac2 " Aboca,bzed * -+ - Abpe,bicl

bi=1lc1=1 bp=1cr=1

PrA >0’ n- f] = PrA* > (In°n- /)] <

= o(1)

In case we have ah< i < k such that(b;, b;+1) = (¢, ci+1) Or in case we havéy, b)) = (¢, ¢1) the whole
product of thea’s evaluates to 0. We ignore these cases in the sequel and assuifbg, that ) # (c;, c;41) for
all1 <i < kand(bg,b1) # (ck,c1).
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The definition of thea’s yields

Trace Ak Z Z Z (Bbibozy * Beieazr + Bbgbyzy - Beserz1)

bk €15-0C \21EV

Z (Bbkblzk “Beyerzi + Boibyzy, - BC1Cka-)
zL€V

§ Z § (Bbibgzy * Bereszr + Bbgbizy - Beserz) -

b1,yeeey b C150+45Ck 2154452k

'(Bbkbl«’sk ’ Bckclzk + Bblkak ’ BCleZk) .

Performing the multiplications between the brackets w@@eermsz and

TraceAk Z Z Z ZX

b1,..bi C1yeesCle 2150052k j=1

where eachX; has the appearance

Xj:Bﬁﬁ'B"/1’Bﬁ2'BW2""'Bﬁ 'B%

k
with ﬁz = bibiﬂzi andfyi = CiCj4+-1%2; OF ﬁ, = bi+1bizi andfyi = Ci+1Ci%; for 1 <i<k and analogously with
instead ofi + 1 for i = k. Note that we can always assume that ;.

Let B = (bl,. Lo bg, e, ,Ck) andZ = (2’1, . ,Zk). We Iet\B| = ‘{bl, ey bp,cq, .. ,Ck}| and\Z\ =

I{z1,..., 2 }| be the number of different elementsBfandZ. We need to show
2% k
E[Trace[A"]] ZZ Z Z ZE ] < (In*n- f)F
b=12=1 B
|Bl=b IZ\ z

This sum can be shortened to

k+2 k/2 2k

E[Trace[A"]] ZZ Z Z ZE ] < (In*n- f)F.

=12=1 B Z
|BI=b |Z]==

Fix B with |B| = b, Z with |Z| = z, and letX; = Bg, - By, -...- By, - B,, be aterm corresponding  and
Z. We show ifz > k/2 orb > k + 2 then there exists a factd; inside X; which occurs only once. In this
case we have th&[X ;] = 0 by (9) as thisB; is independent from the remaining factorsXf.
Going alongX; from left to right there are exactly slots where an element froii occurs for the first
time. At each such slot we getB’s which do not occur to the left itX';. Thus we get at leagt: different B's
in X;. In order that each of the€e B’s occurs at least twice iX; we must have thatk > 4z or z < k/2.
Again we go from left to right oveX ;. The first twoB-factors can use maximally elements fromb for
the first time. All the remaining3-factors use at most two elements frasrfor the first time. This is because
two elements are already determined by the predecessor. Thus except for the fisfaators we need at
leastb — 4 different B-factors. Altogether we need at le@st (b — 4) = b — 2 different B-factors. Again we
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must have thak(b — 2) < 2k orb < k + 2 in order that each of these differeBtfactors occurs at least twice
in Xj.
Let B, be a factor which occurs exactiytimes withr > 2 in X;. Then we have that

T T
p p
E[Bl] = p-(-1)" 1—-p)-[— ) < — <2
[Be] =p-(-1)"+ (1—p) <1_p> SPH g s
assuming < 1/2. As we have at leashax{2z, b — 2} different B-factors inX; we bound
E[XJ] < (2p)max{2z,b—2}

which is independent fronX’;, B, andZ. Therefore we only need to show that

k+2 k/2
ZZ Z Z ok . (2p)max{22,b—2} < (1H4Tl . f)lc
b=12=1 B 4

|B|=b |Z|==

Givenb, eachB with |B| = b is obtained at least once by first picking a subsei efements from/, < n®
possibilities to choose, and second by placing the elements picke2kirslots, < b?* possibilities. As we can
assume < 2k we have at most’(2k)?* possibilities. Similarly we can bound the number of sequerites
with | Z| = z by n*z* and forz < k we get a bound of*k*. Therefore we have

k+2 k/2 k+2 k/2
Z Z Z Z 2k . (2p)max{2z,b—2} < Z Z 23k . nb+z . k?3k . (Qp)maX{Qz,b—Q}
b=12=1 B Z b=1 2=1

|B|=b |Z|=2

We calculate next that
nb+z . (2p)max{2z,b72} < (Qf)max{Qz,b72} .n2.

First, let2z > b — 2 then we have that < 2z + 1 and
btz (2p)max{2z,b—2} < n3z+1(2p)2z _ n32+1(2fn1/2/n2)2z _ n(2f)2z‘
Second leb — 2 > 2z thenz < b/2 — 1 and we get
nbtz. (2p)max{22,b72} < nb+b/271<2p)b72 _ nb+b/271(2fn1/2/n2)b72 _ n2(2f)b72.
Asb < k+2andz < k/2, we havemax{2z,b — 2} < k and we need to show

k+2 k/2

SN 2R 2)F < (In'n- HF. (11)

b=1 z=1

There is no restriction ok by now and we pick as the smallest even integerln n. Forn sufficiently large
we now get

k+2 k/2
b=1 2z=1

which yields (11) and the lemma. O



