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Abstract. It is a well established fact, that – in the case of classical
random graphs like variants of Gn,p or random regular graphs – spectral
methods yield efficient algorithms for clustering (e. g. colouring or bisec-
tion) problems. The theory of large networks emerging recently provides
convincing evidence that such networks, albeit looking random in some
sense, cannot sensibly be described by classical random graphs. A vari-
ety of new types of random graphs have been introduced. One of these
types is characterized by the fact that we have a fixed expected degree
sequence, that is for each vertex its expected degree is given.
Recent theoretical work confirms that spectral methods can be success-
fully applied to clustering problems for such random graphs, too – pro-
vided that the expected degrees are not too small, in fact ≥ log6 n. In
this case however the degree of each vertex is concentrated about its
expectation. We show how to remove this restriction and apply spectral
methods when the expected degrees are bounded below just by a suitable
constant.
Our results rely on the observation that techniques developed for the
classical sparse Gn,p random graph (that is p = c/n) can be transferred
to the present situation, provided we consider a suitably normalized ad-
jacency matrix: We divide each entry of the adjacency matrix by the
product of the expected degrees of the incident vertices. Given the host
of spectral techniques developed for Gn,p this observation should be of
independent interest.

1 Introduction

For definiteness we specify the model of random graphs to be considered first.
This model is very similar to the one considered in [11]. For further motivation
see Subsection 1.2.

1.1 The model

We consider random graphs with planted partition and given expected degree
sequence which are generated as follows. Let V = {1, . . . , n} be the set of nodes.
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We fix some symmetric k × k-matrix D = (dij) with non-negative constants as
entries. Then we assign some weight wu > 0 to each node u ∈ V . We let w =
∑

u∈V wu/n be the arithmetic mean of the wu’s and often use w ·n =
∑

u∈V wu.
To construct the random graph G = (V,E), we partition V into k disjoint

subsets V1, . . . , Vk each of size ≥ δn for some arbitrarily small but constant δ > 0.
The way V is split into V1, . . . , Vk is arbitrary. We call V1, . . . , Vk the planted
partition. For u ∈ V we let ψ(u) denote the number of the subset u belongs to,
that is u ∈ Vψ(u). We insert each edge {u, v} independently with probability

dψ(u),ψ(v) ·
wu · wv
w · n .

Of course the parameters should be chosen such that each probability is bounded
above by 1. (It has some mild technical advantages to allow for loops as we do.
A loop-edge counts as 1 to the vertex-degree.) Note, the model from [11] allows
for directed edges, whereas we restrict attention to undirected graphs.

Depending on the matrix D, we can model a variety of random instances
of clustering problems. For example we can generate 3-colourable graphs, then
k = 3, the Vi are the colour classes, dii = 0 and dij > 0 for i 6= j. Further
possibilities are graphs having a small bisection, in which case the Vi are the two
sides of the bisection, or graphs with subsets of vertices which are very dense
or sparse... The algorithmic problem is to efficiently reconstruct the Vi (or large
parts thereof) given such a random G. Note, when all wu are the same, we get
the standard random graph Gn,p with planted partition, where p = wu/n.

We denote the degree of vertex u by du. The expected degree of vertex u is
denoted by w′

u = E [du]. Then

w′
u =

wu
w · n ·

∑

v∈V
wv · dψ(u),ψ(v).

We let w′ =
∑

u∈V w
′
u/n be the arithmetic mean of the expected degrees w′

u. In
order for our algorithm to work properly we impose the following restrictions on
the model’s parameters:

1. The matrix D has full rank.
2. We have wu ≥ ε · w for all u, where ε is some arbitrarily small constant.
3. We have w ≥ d , where d = d(ε,D, δ) is a sufficiently large constant.

Our asymptotics is such that n gets large, while D, ε, δ (and therefore k and
d) are fixed. Constants behind O and Ω are positive, whereas o(1) even can be
negative. On the other hand the weights wu can be picked arbitrarily subject to
our restrictions (in particular depending on n) and the subsets Vi with |Vi| ≥ δn
are arbitrary, too.

Note, that the expected degree w′
u depends on all wv’s, all sets Vi and the

matrix D. However we observe that for all u from a fixed subset Vi the quotient
wu/w

′
u is constant. The following lemma collects basic properties of the expected

degree. Its proof is based on simple calculations we present in Subsection 2.2.
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Lemma 1.

1. Let u1, u2 be two vertices belonging to the same set of the planted partition.
Then wu1

/w′
u1

= wu2
/w′

u2
.

2. There exists some (large) constant C = C(D, ε, δ) such that for all u ∈ V
1/C ≤ w′

u/wu ≤ C.
3. The expected average degree of G w′ =

∑

u∈V w
′
u/n = Θ(w).

Since wu/w
′
u is the same for all u ∈ Vi, we abbreviate

Wi = wu/w
′
u = Θ(1), moreover W = w/w′ = Θ(1). (1)

This, in particular w′
u = Θ(wu), shows the extent to which we consider graphs

with given expected degree sequence. Note that depending on the weights wu the
restrictions 2. and 3. above allow w′

u among others to be constant, independent
of n.

Note, that our model allows weights following a heavy-tailed degree distri-
bution with constant average degree such as power laws. That is the number of
weights wu is proportional to n ·wu−β for some constant β. The degree sequence
of various social and biological networks follow a power-law with 2 < β < 3. For
more information we refer to the papers cited in [6]. For β > 2 we have that the
average weight w is constant and a lot of weights ≫ w, as we allow in our model.

1.2 Motivation and related literature

The analysis of large real life networks, like the internet graph, social or bibli-
ographical networks is one of the current topics not only of Computer Science.
Clearly it is important to obtain efficient algorithms adapted to the character-
istics of these networks. One particular problem of interest is the problem of
detecting some kind of clusters, that is subsets of vertices having extraordinarily
many or few edges. Such clusters are supposed to mirror some kind of relation-
ship among its members (= vertices of the network). Heuristics based on the
eigenvalues and eigenvectors of the adjacency matrix of the network provide one
of the most flexible approaches to clustering problems applied in practice. See
for example [17] or the review [23] or [21]. Note that the eigenvalues and eigen-
vectors of symmetric real valued matrices, first are real valued and second can
be approximated efficiently to arbitrary precision.

The relationship between spectral properties of the adjacency matrix of a
graph on the one hand and clustering properties of the graph itself on the other
hand is well established. Usually this relationship is based on some separation
between the (absolute) values of the largest eigenvalues and the remaining eigen-
values. It has a long tradition of being exploited in practice, among others for
numerical calculations. However, it is in general not easy to obtain convincing
proofs certifying the quality of spectral methods in these cases, see [26] for a
notable exception.

Theoretically convincing analyses of this phenomenon have been conducted
in the area of random graphs. This leads to provably efficient algorithms for



4

clustering problems in situations where purely combinatorial algorithms do not
seem to work, just to cite some examples [2], [3], or [4], or the recent [22] and
subsequent work such as [16]. In particular [3] has lead to further results [12],
[13]. The reason for this may be that [3] is based on a rather flexible approach
to obtain spectral information about random graphs [14]: Spectral information
directly follows from clustering properties known to be typically present in a
random graph by (inefficient) counting arguments. We apply this technique here,
too.

In a recent paper [11] Dasgupta et al. extend the techniques originally de-
veloped for Gn,p with planted partition to random graphs with given expected
degrees. Such random graphs may have many vertices whose degree deviates con-
siderably from the average degree rendering them essentially different from Gn,p.
In [24] it is shown that the largest eigenvalues of a random graph with power
law degree distribution are proportional to the square root of the largest degrees.
Therefore the eigenvalues and the corresponding eigenvectors can hardly reveal
any non-local information about the graph. Dasgupta, Hopcroft and McSherry
resolve this problem by considering a suitably normalized adjacency matrix sim-
ilar to the Laplacian [5]. They can retrieve the planted partition in a model
similar to ours as long as the expected in-degree and out-degree of each ver-
tex is ≥ log6 n. We show that our different normalization works even when the
expected degree is bounded below by a constant. This solves an open question
mentioned in Section 3 of [11]. See Subsection 2.3 for an explanation of our
normalization.

1.3 Techniques and result

We consider the following algorithm to reconstruct the Vi for random graphs as
generated by our model. Only for technical simplicity we restrict our attention
to k = 2, that is our partition consists only of V1, V2. It poses no substantial
difficulties to extend the algorithm to arbitrary, yet constant k: Instead of the
two eigenvectors s1, s2 we use k eigenvectors s1, . . . , sk. We discuss the values
possible for the C1 used in the algorithm further below.

Algorithm 2.

Input: The adjacency matrix A = (auv) of some graph G = (V,E)
generated in our model and the expected degree sequence w′

1, . . . , w
′
n.

Output: A partition V ′
1 , V

′
2 of V .

1. Calculate the expected average degree, w′ =
∑n
u=1 w

′
u/n.

2. Construct M = (muv) with muv = w′2 · auv/(w′
u · w′

v).

3. Let U = {u ∈ V :
∑n
v=1muv ≤ C1 · w′}.

4. Construct M∗ from M by deleting all entries muv with u /∈ U or v /∈ U .

5. Let s1, s2 be the eigenvectors of M∗ belonging to the two largest eigenvalues
with respect to the absolute value. Scale si such that ‖si‖ =

√
n.

6. If neither s1 nor s2 has the property
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There are c1, c2 ∈ R with |c1 − c2| > 1/4 such that more than n ·
√

C1/w
′ vertices v ∈ U have |si(v) − c1| ≤ 1/32 and more than

n ·
√

C1/w
′ vertices have |si(v) − c2| ≤ 1/32.

set V1 = V and V2 = ∅. Otherwise, let s be such an eigenvector. Let V ′
1 be

the vertices whose corresponding entries in s are closer to c1 than to c2 and
set V ′

2 = V \ V ′
1 .

Some remarks are in order. First observe that the algorithm besides the
graph needs the expected degree sequence as additional information. Note that
the algorithm of [11] even gets the weights wu themselves. In case of dense graphs
as in [11] w.h.p. for all u ∈ V the actual degree du is asymptotically equal to its
expectation w′

u, that is du = w′
u ·(1+o(1)). This can be shown with Chernoff-like

bounds as Theorem 2.8 in [18]. So, the expected degree w′
u can be approximated

by the actual degree du for each u ∈ V . The algorithm in [11] gets the wu and
implicitly the w′

u. In contrast our algorithm only needs the w′
u. We point out,

our algorithm can also use the weights wu instead of w′
u. The analysis has to be

adapted, but becomes somewhat simpler.
Of course, a natural idea is to divide the entries by the actual degrees rather

than the expected degrees, in order to remove the requirement that the w′
u are

given as additional input. It turns out that this approach can be carried out
successfully, i.e., the resulting matrix is suitable to recover the planted partition
as well. The analysis is technically significantly more involved, and will be given
in a subsequent paper.

The novel idea is our normalization of the adjacency matrix performed in
Step 2. In Subsection 2.3 we show that this normalization yields a situation
formally similar to the situation of Gn,p-random graphs with planted partition
and the adjacency matrix as already considered in [3] and [22]. Step 4. has the
analogous effect on the spectrum of M as has the deletion of high degree vertices
in the case of sparse Gn,p–graphs on the spectrum of the adjacency matrix [12].
An analogous step is also present in [3].

The value of C1 in the algorithm can be choosen almost arbitrarily as long
as it is not too large and not too small. The lower bound

C1 ≥ 5

W
· max
i,j

{dij ·Wi ·Wj} = Θ(1). (2)

ensures that almost surely only a small number of vertices is deleted in Step 4.,
namely |V \ U | ≤ exp(−Ω(w′)) · n. We will prove this fact as inequality (17) in
Subsection 4.1. Due to the lack of information Algorithm 2 is unable to calculate
the bound in (2). In order to fulfill (2) one can choose C1 = lnw′ (or some other
slow-growing function of w′), as we can assume that w′ = w/W ≥ d/W is
large enough, see restriction 3. of our model. On the other hand, C1 has to be
substantially smaller than w′, e.g. C1 = w′/ lnw′. Otherwise, the spectral gap
of M∗ would be too small. Lemma 6 shows this connection.

Note, the concrete values for c1, c2 in Step 6. depend on the model parameters
and are unknown to the algorithm. So it has to find c1 and c2 by analyzing si.
We point out, it suffices to have n ·

√

C1/w
′ coordinates near to c1 resp. c2.
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Having significantly more than n ·
√

C1/w
′ coordinates near ci yields that w.h.p.

(up to O(n · C1/w
′) ) all coordinates have |s(v) − ci| ≤ 1/32.

Theorem 3. Let D, ε, δ as specified above. and G be some graph generated
by the model. With probability 1 − o(1) with respect to G Algorithm 2 produces
a partition which differs from the planted partition V1, V2 only in O(C1 · n/w′)
vertices.

Note that the number of vertices not classified correctly is O(C1 · n/w′) and
thus decreases in w′ as long as C1 ≪ w′. We present the proof of Theorem 3 in
Section 3. The following section contains basic considerations.

2 Basic facts

2.1 Notation

We often use the following notation.

1. ‖ · ‖ denotes the l2-norm of a vector or matrix.
2. The transpose of a matrix or vector M is written as M t.
3. We abbreviate (1, . . . , 1)t by 1.
4. The x-th component of some vector v is denoted by v(x).
5. For X ⊆ N and a vector v the vector v|X is obtained from v by setting
v(x) := 0 if x 6∈ X.

6. For some matrix M and X,Y ⊆ N, the submatrix induced by X and Y is
referred as MX×Y . MX×Y is obtained from M by deleting all rows x with
x /∈ X and all columns y with y /∈ Y . For some vector v vX is defined
analogously. Note the difference to v|X .

7. For a matrix M = (muv) we define

sM (X,Y ) =
∑

x∈X
y∈Y

mxy.

We omit the parenthesis in cases like sM ({u}, Y ) and simply write sM (u, Y ).

2.2 Proof of Lemma 1

Without loss of generality we show the first and the second item for u1, u2 ∈ V1,
the first set of our partition. Let u ∈ V1 be arbitrary. We have that

E [du] = w′
u =

k
∑

i=1

∑

v∈Vi

d1i ·
wu · wv
w · n .

Dividing this by wu > 0 we get

w′
u

wu
=

k
∑

i=1

∑

v∈Vi

d1i ·
wv
w · n , (3)
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which does not depend on u ∈ V1. This shows the first item.
We come to the second item. As wv ≥ ε · w for all v ∈ V and (3) we have

w′
u

wu
≥

k
∑

i=1

∑

v∈Vi

d1i ·
ε · w
w · n ≥

k
∑

i=1

d1i · |Vi| ·
ε

n
≥ δ · ε ·

k
∑

i=1

d1i .

Since all dij are non-negative, we have
∑k
i=1 d1i ≥ 0. Equality can be ruled

out. Otherwise, D would contain a 0-row and had a rank < k. So,
∑k
i=1 d1i is

bounded away from 0 by some constant and

w′
u/wu ≥ 1/C

for some large positive constant C depending on D, ε and δ but neither on
w1, . . . , wn nor n. Using (3) again, we get

w′
u

wu
≤ max

j
{d1j} ·

k
∑

i=1

∑

v∈Vi

wv
w · n = max

j
{d1j} ≤ C

for C = C(D) large enough. The third item is an immediate consequence of the
second one. ⊓⊔

2.3 The idea of our normalization

In case of random graphs with planted partition based on the Gn,p-model the
adjacency matrix A can be used to detect (at least) large parts of the partition.
The partition can be reconstructed using A’s eigenvectors. The techniques are
introduced in [3] for the special case of a planted 3-colouring. In the most inter-
esting sparse case, that is p ·n = O(1) the adjacency matrix needs to be modified
in so far that vertices with large degrees are deleted. This is necessary as oth-
erwise the largest eigenvalues of A are simply the square roots of the highest
degrees [19]. W.h.p. more than

√
n vertices have a degree of at least log log n,

leading to more than
√
n eigenvalues ≥ √

log log n. If u1, . . . , ul are these ver-
tices, the eigenvectors to the largest eigenvalues essentially belong to the space
spanned by 1|{u1}, . . . ,1|{ul}. That makes them useless for detecting a planted
partition.

This aforementioned deletion trick cannot be used for our model, because in
the case of a degree distribution with a heavy tail significant parts of the graph
may just be ignored in this way.

So it seems to be necessary to transform the adjacency matrix to another
matrix, whose spectral properties reflect global structures as the planted parti-
tion. An approach used often is the normalized Laplacian matrix L = I−L with
L = (luv) with

luv =

{

1/
√
du · dv {u, v} ∈ E

0 otherwise
,

where du, dv is the degree of u resp. v. For more information see Chung’s book [5].
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A normalization of the adjacency matrix similar to the Laplacian is used in
[11]. The authors divide each entry of the adjacency matrix by

√
wu · wv, where

wu and wv are the weights of the incident vertices u and v. Note, Dasgupta
et al. use the weights for the normalization, neither the actual degrees nor the
expected degrees. Their normalization implies that the variances of the entries
inside the submatrices induced by Vi × Vj are asymptotically equal.

In contrast, we use another normalization whose analysis is somewhat easier,
especially in the sparse case: Each entry of the adjacency matrix A is divided by
the product of the expected degrees w′

u ·w′
v of the incident vertices u and v (and

multiplied with w′2). Let M = (muv) be the normalized matrix, in our case the
expectation of muv with u ∈ Vi and v ∈ Vj is

E [muv] =
w′2

w′
u · w′

v

· Pr [{u, v} ∈ E] + 0 · Pr [{u, v} /∈ E]

=
w′2

w′
u · w′

v

· dij ·
wu · wv
w · n

(1)
= dij ·

Wi ·Wj

W
· w

′

n
= Θ(w′/n) . (4)

Note that this depends only on i = ψ(u) and j = ψ(v) and is independent of u
and v themselves. This property does not hold for the Laplacian normalization
above. It holds for the unnormalized adjacency matrix of the planted partition
model based on Gn,p. In this case we have an expected value of dij ·p = dij ·w/n =
Θ(w′/n). This is the first important analogy to the Gn,p–based model. The factor
of w′2 in our normalization is only to see the analogies more clearly.

As for the adjacency matrix in the Gn,p-based model the spectrum of our
matrix is soiled by rows, whose sum is considerably larger than their expectation.
We remove all vertices from the graph (and of course the corresponding entries
in M), whose row-sum in our normalized matrix M exceeds C1 · w′ (Step 4 of
Algorithm 1). After deleting these vertices the constructed matrix M∗ allows to
find the planted partition:

Theorem 4. With high probability we have for all 1 ≤ i, j ≤ 2 simultaneously:

1.
1t

‖1‖ ·M∗
Vi×Vj

· 1

‖1‖ = dij ·
Wi ·Wj

W
·
√

|Vi|·|Vj | ·
w′

n
·
(

1 ±O

(

1√
w′

))

.

2. For any u, v with ‖u‖ = ‖v‖ = 1 and u ⊥ 1 or v ⊥ 1 we have

∣

∣ut ·M∗
Vi×Vj

· v
∣

∣ = O
(

√

C1 · w′
)

.

For the intuition of 1., we refer to (4). Note,

E

[

1t

‖1‖ ·MVi×Vj
· 1

‖1‖

]

=
E [sM (Vi, Vj)]
√

|Vi| · |Vj |
= dij ·

Wi ·Wj

W
· w

′

n
·
√

|Vi| · |Vj |

and so, the first item in Theorem 4 should be read as a concentration result.
Theorem 4 shows another analogy to the Gn,p-based model, see [3]. For unit-

vectors u′ and v′ maximizing the term u′t ·M∗
Vi×Vj

·v′ we have that both u′ and
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v′ are almost parallel to 1 and u′tM∗v′ = Θ(w′). Whereas if u ⊥ u′ or v ⊥ v′

then ut ·M∗
Vi×Vj

· v is substantially smaller, namely O(
√

C1 · w′).
The theorem above is the heart of our analysis. We will prove it in Section 4.

In the next section we prove Theorem 3 by using Theorem 4.

3 Proof of Theorem 3

We start with a lemma about the eigenvalues of M∗. Its correctness is based
mainly on Theorem 4 and the Courant-Fischer characterization of eigenvalues:

Fact 5. Let A ∈ R
n×n be some symmetric matrix with eigenvalues λ1 ≥ . . . ≥

λn. Then for all 0 ≤ j < n

λj+1 = min
S

dimS=j

max
x∈S⊥

‖x‖=1

xtAx

λn−j = max
S

dimS=j

min
x∈S⊥

‖x‖=1

xtAx

where S⊥ denotes the orthogonal complement to the subspace S.

Lemma 6. With high probability M∗ has exactly two eigenvalues, whose ab-

solute value is Θ(w′), whereas all the other eigenvalues are O
(

√

C1 · w′
)

in

absolute value.

Proof. Let U be the set constructed in Step 2. of our algorithm. Let χ1 resp. χ2 be
|U |-dimensional characteristic vectors of V1∩U resp. V2∩U (the u-th component
χi(u) = 1 if u ∈ Vi ∩U and 0 otherwise). We consider two vectors g and h from
the space spanned by χ1 and χ2. Namely, g = a1 · χ1/‖χ1‖ + a2 · χ2/‖χ2‖
with a2

1 + a2
2 = 1 and h = b1 · χ1/‖χ1‖ + b2 · χ2/‖χ2‖ with b21 + b22 = 1. Note,

‖g‖ = ‖h‖ = 1. By Theorem 4 we have with probability 1 − o(1) that

htM∗g =
2
∑

i,j=1

bi ·
χi

‖χi‖
·M∗ · aj ·

χj
‖χj‖

=
2
∑

i,j=1

bi · aj ·
1t ·M∗

Vi×Vj
· 1

√

|Vi ∩ U | · |Vj ∩ U |

=
2
∑

i,j=1

bi · aj · dij ·
Wi ·Wj

W
· w′ ·

√

|Vi| · |Vj |
n

·
(

1 ±O

(

1√
w′

))

=
2
∑

i,j=1

(

bi · aj · dij ·
Wi ·Wj

W
· w′ ·

√

|Vi| · |Vj |
n

)

±O
(√

w′
)

=
w′

W
·
(

b1 b2
)

· P ·
(

a1

a2

)

±O
(√

w′
)

with

P =





W1 ·
√

|V1|
n 0

0 W2 ·
√

|V2|
n



 ·
(

d11 d12

d12 d22

)

·





W1 ·
√

|V1|
n 0

0 W2 ·
√

|V2|
n



 .
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Remember, D has full rank as well as both remaining factors of P . We conclude
that the matrix P has full rank. The Wi are Θ(1) as |Vi| /n, too. This shows
that the spectral properties of P are determined only by D, ε and δ and do
not rely on w1, . . . , wn or n. So P has two eigenvectors with constant nonzero

eigenvalues. Let
(

e1 e2
)t

and
(

f1 f2
)t

be two orthonormal eigenvectors of P to
the eigenvalues λ1 and λ2. Set

g1 = e1 ·
χ1

‖χ1‖
+ e2 ·

χ2

‖χ2‖
and g2 = f1 ·

χ1

‖χ1‖
+ f2 ·

χ2

‖χ2‖
.

By the calculation above get

∣

∣gt1 ·M∗ · g1
∣

∣ =

∣

∣

∣

∣

w′

W
·
(

e1 e2
)

· P ·
(

e1
e2

)

±O
(√

w′
)

∣

∣

∣

∣

=

∣

∣

∣

∣

w′

W
· λ1 ±O

(√
w′
)

∣

∣

∣

∣

= Θ(w′)

whereas

∣

∣gt1 ·M∗ · g2
∣

∣ =

∣

∣

∣

∣

w′

W
·
(

e1 e2
)

· P ·
(

f1
f2

)

±O
(√

w′
)

∣

∣

∣

∣

=

∣

∣

∣

∣

w′

W
· 0 ±O

(√
w′
)

∣

∣

∣

∣

= O
(√

w′
)

.

Thus for 1 ≤ i, j ≤ 2 we have

∣

∣gti ·M∗ · gj
∣

∣ =

{

Θ(w′) for i = j

O
(√

w′
)

for i 6= j
. (5)

By Fact 5 we obtain, that at least two eigenvalues ofM∗ are Ω(w′) in absolute
value: We subdivide g1, g2 by the sign of gtiM

∗gi. Let g1, . . . , gl, 0 ≤ l ≤ 2,
be the vectors for which the product is positive, and gl+1, . . . , g2 be those with
gtiM

∗gi < 0. Let v be some unit-vector inside the subspace spanned by g1, . . . , gl.

We can rewrite v =
∑l
i=1 αi · gi with

∑l
i=1 α

2
i = 1. Thus, by (5) there are two

constants c and C such that

vt ·M∗ · v =

l
∑

i,j=1

αiαj · gtiM∗gj =

l
∑

i=1

α2
i · gtiM∗gi +

l
∑

i,j=1
i6=j

αiαj · gtiM∗gj

≥
l
∑

i=1

α2
i · c · w′ − C ·

√
w′ ·

l
∑

i,j=1
i6=j

αiαj

≥ c · w′ − C ·
√
w′ · l = Ω(w′)

The second equation of Fact 5 gives

λl = max
S

dimS=|U |−l

min
x∈S⊥

‖x‖=1

xtM∗x.
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We choose S to be the orthogonal complement of 〈g1, . . . , gl〉 which has dimension
|U | − l. Together with the calculation above we get

λl ≥ min
x∈〈g1,...,gl〉

‖x‖=1

xtM∗x ≥ c · w′ − C ·
√
w′ · l = Ω(w′).

To prove that 2− l eigenvalues are smaller than −Ω(w′), we use gl+1, . . . , g2 and
the first equation of Fact 5. So, we have at least 2 eigenvalues of M∗ that are
Ω(w′) in absolute value.

It is important that all the other eigenvalues of M∗ are substantially smaller
than w′. Otherwise, it is hard to read the partition from the eigenvectors. Let
u, v be any unit-vectors with u perpendicular to g1 and g2. Because both gi are
linear combinations of χ1 and χ2, u is also perpendicular to χ1 and χ2. Using
Theorem 4 again, we obtain

∣

∣utM∗v
∣

∣ =

∣

∣

∣

∣

∣

∣

2
∑

i,j=1

uVi∩U ·M∗
Vi×Vj

· vVj∩U

∣

∣

∣

∣

∣

∣

≤ 4 ·O
(

√

C1 · w′
)

(6)

and in the same way |vtM∗u| = O
(

√

C1 · w′
)

. The first equation of Fact 5 gives

λl+1 ≤ max
x∈〈g1,...,gl〉⊥

‖x‖=1

xtM∗x

Let x be the vector maximizing the right-handed side. We rewrite the x =
α ·u+β · v with u ⊥ g1, g2 and v ∈ 〈gl+1, . . . , g2〉 and α2 +β2 = 1. By the choice
of l we have vtM∗v < 0. With (6) we get

λl+1 = xtM∗x = α2 · utM∗u+ 2 · αβ · utM∗v + β2 · vtM∗v = O(
√

C1 · w′) .

Using equation 2 of Fact 5 we obtain similarly

λ|U |−(2−l) ≥ min
x∈〈gl+1,...,g2〉⊥

‖x‖=1

xtM∗x ≥ −C ·
√

C1 · w′

for some constant C > 0. So, the remaining |U | − 2 eigenvalues of M∗ are

O
(

√

C1 · w′
)

in absolute value. ⊓⊔

With Lemma 6 we can prove Theorem 3. Let e with ‖e‖ =
√
n be an eigenvector

of M∗ with eigenvalue of size Θ(w′) (in absolute value). We can rewrite e as

e = α · χ1 + β · χ2 + γ · u (7)

with ‖e‖ = ‖u‖ =
√
n. Again χ1, χ2 are the |U |-dimensional characteristic vec-

tors of V1 ∩ U , V2 ∩ U and u ⊥ χ1, χ2. As χ1, χ2 and u are pairwise orthogonal
α, β and γ are unique. Note, that α and β can exceed 1. Theorem 4 yields
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|et ·M∗ · u| = O
(

n ·
√

C1 · w′
)

since u ⊥ χ1, χ2 and ‖e‖ = ‖u‖ =
√
n. As

et ·M∗ = Θ(w′) · et we get

O
(

n ·
√

C1 · w′
)

= |et ·M∗ · u| = Θ(w′) · |et · u| = Θ(w′) · |n · γ|

leading to

|γ| = O

(

√

C1/w
′
)

. (8)

So, by the small value of γ u’s impact on e is small.
In the remaining considerations of this section we will often use phrases like

“almost all vertices in V1 fulfill X”. This means that the number of vertices in
V1 not satisfying X is bounded by O(C1 · n/w′).

Let e be as above and |α− β| ≥ 1/16 then almost all vertices v ∈ U have

|e(v) − α| ≤ 1

128
for v ∈ V1 and |e(v) − β| ≤ 1

128
for v ∈ V2. (9)

For any v ∈ U that does not satisfy (9) we have |γ · u(v)| ≥ 1/128 and by (8)
|u(v)| = Ω(

√

w′/C1). Each of these entries contribute Ω(w′/C1) to n = ut · u.
By this, the number of such entries is bounded above by O(C1 · n/w′).

Let s = α · χ1 + β · χ2 + γ · u be the vector determined by the algorithm.
Then there are c1, c2 with |c1 − c2| > 1/4 and more than n ·

√

C1/w
′ entries v

in s fulfill

|s(v) − c1| ≤
1

32
resp. |s(v) − c2| ≤

1

32
. (10)

We distinguish two cases. We start with |α− β| ≥ 1/16. As more than n·
√

C1/w
′

vertices fulfill (10) and almost all vertices fulfill (9) at least one v ∈ V1 agrees
both (9) and (10), provided w′ is large enough. Assume, that v fulfills the first
inequality in (10). By the triangle inequality we get

|α− c1| ≤ |α− s(v)| + |s(v) − c1| ≤
1

128
+

1

32
=

5

128

and by the same argument |β − c2| ≤ 5/128. Clearly, it is also possible that
|α− c2| ≤ 5/128 and |β − c1| ≤ 5/128. However, this situation can be handled
analogously. Because of (9) we have that almost all v ∈ V1 have

|s(v) − c1| ≤ |s(v) − α| + |α− c1| ≤
1

128
+

5

128
=

3

64

and almost all entries v ∈ V2 have |s(v) − c2| ≤ 3/64. Since |c1 − c2| ≥ 16/64
Algorithm 2 classifies almost all vertices correctly.

Now we come to the case |α− β| < 1/16. Assume c1 is farther away from
(α+ β)/2 as c2 is. As |c1 − c2| > 1/4 the distance of c1 to (α+ β)/2 is at least
1/8. Since |α− β| ≤ 1/16 we have

|α− c1| ≥
1

8
− 1

32
=

3

32
and |β − c1| ≥

3

32
.
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As more than n ·
√

C1/w
′ components v of s have |s(v) − c1| ≤ 1/32 the same

components in u fulfill |γ · u(v)| ≥ 2/32. By (8) we have that u(v) ≥ Ω(
√

w′/C1),
so

n = ut · u ≥ n ·
√

C1

w′ ·Ω
(

w′

C1

)

= Ω

(

n ·
√

w′/C1

)

,

which is a contradiction for large enough w′. So, the vector s chosen in the
algorithm has |α− β| ≥ 1/16.

We have shown above that the vector s yields a good approximation of the
planted partition, provided Lemma 6 holds. We are left to show that a vector
s agreeing the requirements stated in Step 6. exists w.h.p. Let s1, s2 as in the
algorithm and si = αi · χ1 + βi · χ2 + γi · ui its decomposition as in (7).

Assume for a contradiction |αi − βi| ≤ 1/4 for both i = 1, 2. As

n = sti · si = α2
i · |V1 ∩ U | + β2

i · |V2 ∩ U | + γ2
i · n

we obtain by dividing through n

α2
i + β2

i ≥ α2
i ·

|V1 ∩ U |
n

+ β2
i ·

|V2 ∩ U |
n

= 1 − γ2
i

(8)

≥ 1 −O (C1/w
′) . (11)

Now it is clear that |αi| > 1/2 or |βi| > 1/2 holds. Using the assumption
|αi − βi| ≤ 1/4 we see that αi and βi have the same sign. So

|α1 · α2 + β1 · β2| = |α1 · α2| + |β1 · β2| ≥
1

2
· 1

4
+

1

4
· 1

2
= 1/4

leading to

0 = st1 · s2 =
∣

∣α1 · α2 · |V1 ∩ U | + β1 · β2 · |V2 ∩ U | + γ1 · γ2 · ut1 · u2

∣

∣

≥ (δn− |V \ U |) · |α1 · α2 + β1 · β2| − |γ1 · γ2| · n
(8),(17)

≥ n · (δ · |α1 · α2 + β1 · β2| −O(C1/w
′)) ≥ n · (δ/4 −O (C1/w

′)).

As δ is some positive constant and w′ is large, we obtain a contradiction. So, at
least one si has |αi − βi| > 1/4. Inequality (9) shows that this si complies the
requirements of Step 6 with c1 := αi and c2 := βi. As si is |U |-dimensional at
least

|U | −O(C1 · n/w′)
(17)

≥ n−O(C1 · n/w′)

vertices are classified correctly. ⊓⊔

4 Proof of Theorem 4: The spectrum of M
∗

Vi×Vj

As stated in (3) each entry of the submatrixMVi×Vj
has the same expected value.

Besides we know that each entry has two possible values: 0 and some positive
real number. However the non-zero values of the entries typically differ from each
other, because we multiply with w′2/(w′

u · w′
v). Nonetheless we know that the

maximum entry in M is bounded above by w′2/(minu∈V w′
u)

2. We summarize
all these facts in
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Definition 7. We call a real n×m-matrix X = (xuv) a same-mean-matrix with
mean µ and bound b if the following conditions hold

1. The xuv are independent random variables (the trivial dependence induced
by symmetry is allowed).

2. Each xuv has exactly two possible values, one of both is 0.

3. There is a bound b such that definitely xuv ≤ b for all u, v.

4. E [xuv] = µ > 0 for all u, v.

Note, item 3. needs xuv ≤ b independently of the concrete outcome X.

It is not hard to check that MVi×Vj
is a same-mean-matrix with mean

µ
(4)
= dij ·

Wi ·Wj

W
· w

′

n
and bound b =

w′2

(minu w′
u)

2
= Θ(1). (12)

Unfortunately, M∗
Vi×Vj

does not have property 1 stated in Definition 7 as we
deleted some vertices. So, we concentrate on MVi×Vj

and transfer the necessary
results to M∗

Vi×Vj
.

The following lemma is important to the analysis of same-mean-matrices. It
is a generalization of Lemma 3.4 in [3] and can be proven in a similar way as
Alon and Kahale did it.

Lemma 8. Let X be some same-mean-matrix with mean µ and bound b and
y1, . . . , yl be a set of mutually independent entries of it. Let a1, . . . , al be arbitrary
real numbers from the interval [−a, a]. If S, D and some constant c > 0 fulfill

l
∑

i=1

a2
i ≤ D and S ≤ c · ec ·D · µ/a,

then the new random variable Z =
∑l
i=1 ai · yi fulfills

Pr [|Z − E [Z]| ≥ S] ≤ 2 · exp
(

−S2/(2µ · ec ·D · b)
)

.

Proof. In case of b = 1, the lemma can be proven in the same way as Lemma 3.4
in [3] for random 0-1-variables. The details can be found in Subsection 5.1.

We come to the case b 6= 1. Let X = (xuv) be the matrix in Lemma 8. We
construct the matrix X ′ = (x′uv) by setting x′uv := xuv/b. Clearly, all x′uv are
independent and bounded above by 1. Their expectation E [x′uv] is E [xuv] /b =
µ/b. So, X ′ is a same-mean-matrix with mean µ/b and bound 1.

Let y1, . . . , yl be as in the assertion and y′1, . . . , y
′
l be the corresponding entries

in X ′. Then Z ′ =
∑l
i=1 ai · y′i = Z/b and as S ≤ c · ec ·D · µ/a,

S′ =
S

b
≤ c · ec ·D · µ/a

b
= c · ec ·D · µ′/a .
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We finish the proof with an application of the case b = 1 on X ′

Pr [|Z − E [Z]| ≥ S] = Pr

[∣

∣

∣

∣

Z

b
− E [Z]

b

∣

∣

∣

∣

≥ S

b

]

= Pr [|Z ′ − E [Z ′]| ≥ S′]

≤ 2 · exp
(

−S′2/(2µ′ · ec ·D)
)

= 2 · exp
(

− (S/b)
2
/ (2 · (µ/b) · ec ·D)

)

= 2 · exp
(

−S2/(2 · µ · ec ·D · b)
)

.

⊓⊔

4.1 The first item of Theorem 4

To determine 1t ·M∗
Vi×Vj

· 1 = sM (Vi ∩ U, Vj ∩ U) it suffices to subtract the
sum of the entries we delete in Step 4 of our algorithm from sM (Vi, Vj), the sum
of all entries in MVi×Vj

.
The latter one can be determined by Lemma 8, as MVi×Vj

is a same-mean-
matrix with µ = dij ·Wi ·Wj/W · w′/n and bound Θ(1), see (12). In case i 6= j
all entries of MVi×Vj

are independent. If we choose all the a’s in Lemma 8 to 1,
D = |Vi| · |Vj | and c = ln 4, we see

Pr
[

|sM (Vi, Vj) − µ · |Vi| · |Vj || ≥ µ · |Vi| · |Vj | /
√
w′
]

≤ 2exp(−µ ·D/(8 · w′ · b))
= exp(−Ω(n))

A similar equation can be obtained for i = j. The trivial symmetry in the
entries does no harm. We simply use only the upper triangle of the matrix to
get: With high probability

sM (Vi, Vj) = µ · |Vi| · |Vj | · (1 ±O(1/
√
w′)). (13)

Now we bound the sum of the entries we delete in Step 4. As a first step we
bound the number of vertices we delete. The row-sum sM (u, V ) of such an entry
u ∈ Vi has to be larger than C1 ·w′ with C1 ≥ 5/W ·maxi,j{dij ·Wi ·Wj} = Θ(1)
by (2). In contrast the expected row-sum is

E [sM (u, V )] = Wi ·
w′

W · n ·
(

∑

v∈V1

di1 ·W1 +
∑

v∈V2

di2 ·W2

)

≤ C1

5
· w′ . (14)

So we have a deviation from the expectation by a factor of at least 4 which is very
unlikely as Lemma 8 shows. Note, we have to bound sM (u, V1) and sM (u, V2)
seperately as the expectation of the entries differs. If sM (u, V ) ≥ 5 ·E [sM (u, V )]
then sM (u, V1) ≥ 5 · E [sM (u, V1)] or sM (u, V2) ≥ 5 · E [sM (u, V2)]. Let the ai’s
in Lemma 8 be 1, D = |Vi| and c = ln 4. We obtain for fixed u

Pr [ |sM (u, Vi) − E [sM (u, Vi)]| ≥ 4 · E [sM (u, Vi)] ] ≤ 2·exp(−cm · w′/b) , (15)
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where
cm = δ/W · min

i,j
dij>0

(dij ·Wi ·Wj) = Θ(1) . (16)

Note that cm ·w′ represents a lower bound on the minimal expected row-sum in
any (non-zero) MVi×Vj

. As b = Θ(1) by (12) we replace cm/b with c = Θ(1).
By (15), the expected number of vertices not belonging to U is bounded

by 4 · exp(−c · w′) · n. We can use Chebycheff’s inequality to show that with
probability 1 − o(1)

|V \ U | ≤ 8 · exp(−c · w′) · n . (17)

Now we bound the sum of the entries we delete from MVi×Vj
, namely

sM (Vi \ U, Vj \ U) + sM (Vi ∩ U, Vj \ U) + sM (Vi \ U, Vj ∩ U).

The entries of M are non-negative so any upper bound on sM (Vi \ U, Vj) +
sM (Vi, Vj \ U) is an upper bound on the sum above.

We show the first summand in detail. As we do not know U ’s size exactly,
we consider all sets X ⊂ Vi with |X| = 8 · exp(−c · w′) · n. Clearly, Vi \ U is a
subset of at least one such X, because |Vi \ U | ≤ |V \ U | ≤ 8 · exp(−c · w′) · n
and it suffices to show an upper bound on sM (X,Vj). We have

E [sM (X,Vj)] = dij ·
Wi ·Wj

W
· w

′

n
· |X| · |Vj | = µ · |X| · |Vj | .

In case i = j we have some small dependencies because of symmetry of the
entries. This concerns only few entries, because of the relatively small size of X.
Using only the independent entries for Lemma 8 we get

Pr [ sM (X,Vj) ≥ 10 · E [sM (X,Vj)] ] ≤ 2 · exp(−2 · µ · |X| · |Vj |)
≤ 2 · exp(−2 · µ · |X| · δn)

≤ 2 · exp(−2 · cm · w′ · |X|) .

We have only

(|Vi|
|X|

)

≤
(

n

|X|

)

≤
(

e · n
|X|

)|X|
≤ exp(c · w′ · |X|)

different sets X of size 8 · exp(−c · w′) · n. As b ≥ 1, c = cm/b ≤ cm a simple
union bound yields that with probability at least

1 − 2 · exp(−cm · w′ · |X|) = 1 − 2 · exp
(

−8 · cm · w′ · e−c·w′ · n
)

= 1 − o(1)

all sets X as above fulfill sM (X,Vj) ≤ 80 · exp(−c · w′) · n. As the same bound
holds w.h.p. for sM (Vi, Y ) for all Y ⊂ Vj with |Y | = 8 · exp(−c · w′) · n, the sum
of the entries inside MVi×Vj

we deleted is bounded above by

sM (Vi \ U, Vj) + sM (Vi, Vj \ U) ≤ 160 · e−c·w′ · n (18)
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with probability 1−o(1). We conclude by (13) and (18), the term 1t·M∗
Vi×Vj

·1 =
sM (Vi ∩ U, Vj ∩ U) is bounded below by

µ · |Vi| · |Vj | · (1 ±O(1/
√
w′)) − 160e−c·w

′ · n = µ · |Vi| · |Vj | · (1 ±O(1/
√
w′))

for w′ large enough as µ = Θ(w′/n) and |Vi| , |Vj | ≥ δn = Ω(n). Finally we get

1t

‖1‖ ·M∗
Vi×Vj

· 1

‖1‖ =
1t ·M∗

Vi×Vj
· 1

√

|Vi ∩ U | · |Vj ∩ U |

=
µ · |Vi| · |Vj | · (1 ±O(1/

√
w′))

√

|Vi| · |Vj | · (1 − 8 · exp(−c · w′))2

= µ ·
√

|Vi| · |Vj | · (1 ±O(1/
√
w′)) .

The claim follows immediately as µ = dij ·Wi ·Wj/W · w′/n. ⊓⊔

4.2 The second item of Theorem 4

Using the techniques of [14] and [3] together with Lemma 8 we can prove

Lemma 9. Let X be an n×m–same-mean-matrix with mean µ and bound b and
N = n+m. Let R = {u :

∑

v xuv ≤ d · µ ·N} and C = {v :
∑

u xuv ≤ d · µ ·N}
for d > 1 arbitrary.

If µ · n ·m > b ·N , then we have with probability 1 −O(1/
√
N) for all pairs

of vectors u and v, with ‖u|R‖ = ‖v|C‖ = 1 and u|R ⊥ 1 or v|C ⊥ 1

∣

∣u|R
t ·X · v|C

∣

∣ = O(
√

b · d · µ ·N).

Proof. In conjunction with Lemma 8 the proof for the case b = 1 is strongly
related to the proof of Lemma 3.3 in [3] respectively Theorem 2.2 in [14]. We
postpone the proof for b = 1 to Subsection 5.2.

We are left to show the case b 6= 1. We rewrite X as X = b ·X ′. Then, X ′

is a same-mean-matrix with mean µ/b and bound 1. Note, the sets R and C are
the same for X and X ′ and all conditions are fulfilled. We apply Lemma 9 for
b = 1 to X ′.
∣

∣u|R
t ·X · v|C

∣

∣ =
∣

∣u|R
t · b ·X ′ · v|C

∣

∣ = b ·
∣

∣u|R
t ·X ′ · v|C

∣

∣ = b ·O(
√

d · µ/b ·N)

= O(
√

b · d · µ ·N).

⊓⊔

Let u be some |Vi|-dimensional vector and v be some |Vj |-dimensional vector.
Clearly we have

utU ·M∗
Vi×Vj

· vU = ut|U ·MVi×Vj
· v|U ,

as uU is the vector where the entries /∈ U are deleted and u|U is the vector where
these entries are set to 0.
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We want to bound ut|U ·MVi×Vj
· v|U using Lemma 9. For an application

we have to check that MVi×Vj
agrees the conditions of Lemma 9 and we need

U ∩ Vi ⊆ R and U ∩ Vj ⊆ C.

Remember, MVi×Vj
is a same-mean matrix with bound w′2/(minu w

′
u)

2 =
O(1), see (12). U contains only those vertices whose row-sum (and by symmetry
whose column-sum, too) in M is at most C1 · w′. Let d := C1/cm, see (16) for
cm’s value. Then for each u ∈ U ∩ Vi

d · µ ·N =
C1

cm
· µ ·N ≥ C1

cm
· dij ·

Wi ·Wj

W
· w

′

n
· (2δn) ≥ 2 · C1 · w′ >

∑

v∈Vj

xuv

and we see U ∩Vi ⊆ R and analogously U ∩Vj ⊆ C. Since µ · |Vi| · |Vj | = Ω(w′ ·n)
and b ·N = b · (|Vi| + |Vj |) = O(n) all conditions of Lemma 9 are fulfilled.

Proving item 2 of Theorem 4 is now easy. Any vector pair u, v as in the the-
orem can be extended to some |Vi|-dimensional vector u′ (resp. |Vj |-dimensional
vector v′) by filling up with 0’s. Clearly, ‖u‖ = ‖u′‖ = 1 and ‖v‖ = ‖v′‖ = 1. If
u ⊥ 1 (here 1 is |Vi ∩ U |-dimensional) then u′|R ⊥ 1. We can use Lemma 9 to
bound

ut ·M∗
Vi×Vj

· v = u′|U ·MVi×Vj
· v′|U = u′|R ·MVi×Vj

· v′|C

= O

(

√

b · C1/cm · µ · (|Vi| + |Vj |)
)

= O
(

√

C1 · w′
)

.

⊓⊔

5 Technical lemmas

5.1 Proof of Lemma 8 for b = 1

The proof follows the proof of Lemma 3.4 in [3]. We omitted the bounds of any
∏

and any
∑

as in the whole section the index i passes through 1, . . . , l.

Let p1, . . . , pl be the probabilities of y1, . . . , yl being non-zero. Thus pi ·yi = µ
if yi is non-zero. In other words, the second value yi can have (besides 0) is µ/pi.
With Markov’s inequality we get

Pr [Z − E [Z] ≥ S] = Pr
[

eλ(Z−E[Z]) ≥ eλS
]

= Pr
[

eλ(Z−E[Z]−S) ≥ 1
]

≤ E
[

eλ(Z−E[Z]−S)
]

=
E [ exp(λZ) ]

exp(λ(E [Z] + S))
. (19)

By setting λ = S/(ec · µ ·D) ≤ c/a we get λ · ai · yi ≤ λ · ai ≤ c. Remember, no
yi exceeds 1 as X is a same-mean-matrix with bound 1. We take a closer look
at the enumerator of (19):
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E [ exp(λZ) ] = E
[

exp
(

λ
∑

ai · yi
)]

= E
[

∏

exp(λai · yi)
]

=
∏

E [exp(λai · yi)]

=
∏

(

pi · exp(λ · ai · µ/pi) + (1 − pi) · exp(λ · ai · 0)
)

=
∏

(

1 + pi ·
(

exp(λ · ai · µ/pi) − 1
))

.

Now we use that the function f(x) = ec · x2/2 + x− (ex − 1) is convex for x ≤ c
and the minimum in the interval (−∞, c] is f(0) = 0. So f is non-negative for
all x ≤ c and ex − 1 ≤ x + ec · x2/2 for all x ≤ c. For x = λ · ai · µ/pi we have
x ≤ c as yi ≤ µ/pi ≤ 1. Then we get

E [ exp(λZ) ] ≤
∏

(

1 + pi

(

λ · ai · µ/pi +
ec

2
· (λ · ai · µ/pi)2

))

≤
∏

(

1 + λ · ai · µ+ ec · λ2 · a2
i · µ2/(2 · pi)

)

≤
∏

(

1 + λ · ai · µ+ ec · λ2 · a2
i · µ/2

)

.

Since 1 + x ≤ ex for all x ∈ R we have

E [ exp(λZ) ] ≤
∏

exp
(

λ · ai · µ+ ec · λ2 · a2
i · µ/2

)

= exp
(

∑

λ · ai · µ+ ec · λ2 · a2
i · µ/2

)

= exp
(

λ · E [Z] + ec · λ2 · µ/2 ·
∑

a2
i

)

≤ exp
(

λ · E [Z] + ec · λ2 · µ ·D/2
)

= exp(λ · E [Z] + λ · S/2) .

Summing up, we get for (19)

Pr [Z − E [Z] ≥ S] ≤ E [ exp(λZ) ]

exp(λ(E [Z] + S))
≤ exp(λ · E [Z] + λ · S/2)

exp(λ(E [Z] + S))

≤ exp(−λ · S/2) = exp

( −S2

2 · ec · µ ·D

)

.

By negating all ai’s, we can obtain Pr [E [Z] − Z ≥ S] ≤ exp
(

−S2

2·ec·µ·D

)

in

the same way. ⊓⊔

5.2 Proof of Lemma 9 for b = 1

The proof of Lemma 9 follows the ideas of [14] and [3]. In the whole section all
O- and Ω-terms are based on N and hold for all N > N0 =constant.
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Lemma 10. Let X = (xuv) be some same-mean-matrix with mean µ and bound
1. Then with probability 1 − O(1/

√
N) for any pair (A,B) of sets A ⊆ [n],

B ⊆ [m] the following holds: If K = max{|A| , |B|} ≤ N/2 then

1. sX(A,B) ≤ 200 · E [sX(A,B)] or

2. sX(A,B) · ln sX(A,B)
E[sX(A,B)] ≤ 200 ·K · ln N

K .

is fulfilled.

Proof. We will prove the lemma for symmetric matrices because due to the
dependence of the entries by symmetry it is slightly harder to show.

Fix two sets A and B and set η = E [sX(A,B)] = |A| · |B| · µ. There is an
unique number β such that

β · lnβ = 200 ·K · ln(N/K)/η.

Then condition 2 equals sX(A,B) ≤ β ·η. We set β′ = max{200, β} and it suffices
to show that, with high probability, no pair (A,B) with sX(A,B) > β′ ·η exists.
For that we want to use Lemma 8. Due to symmetry not all random variables
are independent. For u 6= v both in A∩B the entries xuv and xvu are equal and
obviously dependent. In that case we use only xuv with u < v and assign the
corresponding ai in Lemma 8 to 2, because xuv is counted twice in sX(A,B).

For the other pairs (u, v) ∈ A × B we assign ai to 1, whereby a can be 2.
The value of D =

∑

a2
i lies between |A| · |B| and 2 · |A| · |B|. Choose c such that

c · ec = β′ − 1. We get for fixed A and B

Pr [sX(A,B) ≥ β′ · η] = Pr [sX(A,B) ≥ (c · ec + 1) · η]
≤ Pr [sX(A,B) − η ≥ c · ec · η]
≤ Pr [|sX(A,B) − η| ≥ c · ec · |A| · |B| · µ]

≤ Pr [|sX(A,B) − η| ≥ c · ec ·D · µ/a]

≤ 2 · exp

(

− (c · ec ·D · µ/a)2
2 · µ · ec ·D

)

≤ 2 · exp

(

−c
2 · ec ·D · µ

2 · a2

)

≤ 2 · exp

(

−c
2 · ec · η

8

)

= 2 · exp(−c · (β′ − 1) · η/8) .

Since β′ = c · ec + 1 ≥ 200 we have c > 3. By this we can bound c from below
by lnβ′/2. Then we get further

Pr [sX(A,B) ≥ β′ · η] ≤ 2exp(− lnβ′ · (β′ − 1) · η/16)

≤ 2exp(− lnβ′ · β′ · η/32)

≤ 2exp(−200 ·K · ln(N/K)/32) = 2

(

K

N

)200·K/32

≤ 2

(

K

N

)6K
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since K < N . The number of pairs (A,B) possible is bounded above by

K
∑

i=1

2 ·
(

N

K

)

·
(

N

i

)

≤ 2K ·
(

N

K

)2

≤ 2K ·
(

e ·N
K

)2K

.

So, the probability that any pair (A,B) with max{|A| , |B|} fulfills sX(A,B) ≥
β′ · η is bounded above by

2

(

K

N

)6K

·2K ·
(

e ·N
K

)2K

= 4K ·
(

e2 · K
4

N4

)K

< 4K ·
(

e2

8
· K
N

)K

= O

(

K

N

)K

.

Summing over all possible values for K we get a bound of

N/2
∑

K=1

(

K

N

)K

≤
√
N
∑

K=1

(

K

N

)K

+

N/2
∑

K=
√
N

(

K

N

)K

≤
√
N
∑

K=1

(

1√
N

)K

+

∞
∑

K=
√
N

(

1

2

)K

≤ 1√
N

+
√
N · 1

N
+ 2 ·

(

1

2

)

√
N

≤ 2√
N

+ 2 ·
(

1

2

)

√
N

= O(1/
√
N)

⊓⊔

Now we come to the proof of Lemma 9. We assume that Lemma 10 holds, as
it does w.h.p. The proof of the case u|R ⊥ 1 is given in detail. The case v|C ⊥ 1

can be treated identically.
Note, there is an uncountable number of vectors u and v over R. To tackle

this problem we approximate the vectors over R we consider by the following
ε-nets.

Tn =

{

x ∈
(

Z

2
√
n

)n

: ‖x‖ ≤ 2

}

TR =
{

x|R : x ∈ Tn
}

TC =
{

x|C : x ∈ Tm
}

.

Note, TR ⊆ Tn and TC ⊆ Tm. One can show that |Tn| ≤ kn for some constant k
and: For u, v as in the assumption there are l ∈ TR and r ∈ TC with l ⊥ 1 such
that

∣

∣u|R
t ·X · v|C

∣

∣ ≤ 5 ·
∣

∣lt ·X · r
∣

∣ .

For details, see [14] or [9, Section 5.4.5], for example.
So, in order to prove Lemma 9, it suffices to show that for all l and r as in

the inequality above |lt ·X · r| is bounded by O(
√
d · µ ·N). For the remaining

part of this section we only deal with l and r instead of u and v. All occurrences
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of u (resp. v) refers to indices between 1 and n (resp. m). Let l ∈ TR, r ∈ TC
with l ⊥ 1. In order to bound

∣

∣lt ·X · r
∣

∣ =

∣

∣

∣

∣

∣

u=n,v=m
∑

u,v=1

luxuvrv

∣

∣

∣

∣

∣

we define
B = B(l, r) =

{

(u, v) : |lurv| ≤
√

d · µ/N
}

.

We will show that with probability 1 −O(1/
√
N)

∣

∣

∣

∣

∣

∣

∑

(u,v)∈B
luxuvrv

∣

∣

∣

∣

∣

∣

= O(
√

d · µ ·N) and

∣

∣

∣

∣

∣

∣

∑

(u,v) 6∈B
luxuvrv

∣

∣

∣

∣

∣

∣

= O(
√

d · µ ·N).

We start with the “small” pairs, namely those in B. Fix two vectors l ∈ Tn

and r ∈ Tm with l ⊥ 1. Clearly,
∑n
u=1 lu = 0. So

∑

(u,v)

lu · rv =

m
∑

v=1

rv

n
∑

u=1

lu = 0 and
∑

(u,v)∈B
lurv = −

∑

(u,v) 6∈B
lurv,

and we can bound
∣

∣

∣

∑

(u,v)∈B lurv
∣

∣

∣ by
∣

∣

∣

∑

(u,v) 6∈B lurv
∣

∣

∣. We have

∣

∣

∣

∣

∣

∣

∑

(u,v) 6∈B
lurv

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

√

N

d · µ ·
∑

(u,v)/∈B

√

d · µ/N · lurv

∣

∣

∣

∣

∣

∣

=

√

N

d · µ ·

∣

∣

∣

∣

∣

∣

∑

(u,v)/∈B

√

d · µ/N · lurv

∣

∣

∣

∣

∣

∣

≤
√

N

d · µ ·

∣

∣

∣

∣

∣

∣

∑

(u,v)/∈B
l2ur

2
v

∣

∣

∣

∣

∣

∣

≤
√

N

d · µ ·
n
∑

u=1

l2u ·
m
∑

v=1

r2v ≤ 16 ·
√

N/(d · µ) .

as |lurv| ≥
√

d · µ/N for (u, v) /∈ B. Bounding the expectation of
∑

(u,v)∈B
luxuvrv

is now easy:
∣

∣

∣

∣

∣

∣

E





∑

(u,v)∈B
luxuvrv





∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

(u,v)∈B
lu · E [xuv] rv

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

µ ·
∑

(u,v)∈B
lurv

∣

∣

∣

∣

∣

∣

≤ 16 ·
√

µ ·N
d

.

Next we want to bound the probability of a large deviation of
∑

(u,v)∈B luxuvrv
from its expectation. Obviously, the term is a weighted sum of entries of the
same-mean-matrix X and Lemma 8 may help.

Yet, Lemma 8 requires the chosen entries yi to be independent. This is not
the case if both (u, v) and (v, u) belong to B. In that case we can join luxuvrv
and lvxvuru to xuv(lurv + lvru), because xuv = xvu.
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So, the yi’s for the lemma are the xuv’s with (u, v) ∈ B (resp. xuv with u < v,
if (u, v) ∈ B and (v, u) ∈ B), the ai’s are the lu ·rv (resp. lurv+ lvru). The bound
a for all ai is 2 ·

√

µ/N by the definition of B. To set D = 64 · d > 64 ensures
∑

a2
i ≤ 4 ·∑ l2u · r2v ≤ 64 ≤ D. We get that

Pr





∣

∣

∣

∣

∣

∣

∑

(u,v)∈B
luxuvrv − E





∑

(u,v)∈B
luxuvrv





∣

∣

∣

∣

∣

∣

≥ 32 · c · ec ·
√

d · µ ·N





≤ 2exp
(

−8 · c2 · ec ·N
)

for any constant c > 0. There are at most

|TR| · |TC | ≤ |Tn| · |Tm| ≤ kn+m = kN = exp(N · ln k)

possible vector-pairs (l, r). A simple union bound yields for sufficiently large (but
still constant) c that with probability 1 − O(1/N) for all l ∈ TR, r ∈ TC , with
l ⊥ 1, simultaneously we have

∣

∣

∣

∣

∣

∣

∑

(u,v)∈B
luxuvrv

∣

∣

∣

∣

∣

∣

= O(
√

d · µ ·N) .

We are left to show the bound for the “large” pairs being not in B. For this
we subdivide all entries of l and r (without restricting to B). Namely let for
i > 0

Ai =

{

u :
2i−1

2
√
N

≤ lu <
2i

2
√
N

}

and Ai =

{

u :
2|i|−1

2
√
N

≤ −lu <
2|i|

2
√
N

}

for i < 0. Let ai = |Ai| for all i.
Note, we have O(logN) non-empty sets Ai, otherwise ‖l‖ would exceed 2.

There is no need to define A0. Each entry lu smaller than 20/(2
√
N) and larger

than −20/(2
√
N) must be 0 by the definition of Tn as N > n. Such entries have

no impact to the following calculations. Define Bj and bj analogously for r.
We use the notation i ∼ j if 2|i|+|j|/4 >

√
d · µ ·N . For u ∈ Ai, v ∈ Bj and

(u, v) 6∈ B we have

2|i|

2
√
N

> |lu| ,
2|j|

2
√
N

> |rv| and |lurv| >
√

d · µ/N.

So 2|i|+|j|/(4N) must be larger than
√

d · µ/N , so 2|i|+|j|/4 >
√
d · µ ·N yielding

i ∼ j. By this we can bound

∣

∣

∣

∣

∣

∣

∑

(u,v) 6∈B
luxuvrv

∣

∣

∣

∣

∣

∣

≤
∑

(u,v) 6∈B
|luxuvrv| ≤

∑

i∼j

∑

u∈Ai

v∈Bj

|luxuvrv| .
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We can split the last term into eight sums separating by the signs of i and j
and the fact whether ai ≥ bj or ai < bj . Let

C = {(i, j) : i ∼ j, i, j > 0, ai < bj}.

As the proofs for all eight sums are very similar, we give only the proof for

∑

(i,j)∈C

∑

u∈Ai

v∈Bj

|luxuvrv| = O(
√

d · µ ·N).

To make the following calculations clearer, we need some abbreviations:

sij = sX(Ai, Bj)

µij = E [sij ] = ai · bj · µ

λij =
sij
µij

σij =
λij ·

√
d · µ ·N

2i+j−2

αi =
ai · (2i)2

4N

βj =
bj · (2j)2

4N

Note, that λij denotes the relative deviation of sX(Ai, Bj) from its expec-
tation µij . σij is merely a technical term. Since i ∼ j we have σij < λij and

σij/λij becomes small if we deal with very large pairs (|lurv| ≫
√

d · µ/N). The
term αi bounds

∑

u∈Ai
l2u as

αi/4 ≤
∑

u∈Ai

l2u < αi.

Summing over all i yields
∑

i αi ≤ 4 · ‖l‖2 ≤ 16. Clearly, in the same way we get
∑

j βj ≤ 16, too. For i, j > 0 we can bound

∑

u∈Ai

v∈Bj

|luxuvrv| ≤
∑

u∈Ai

v∈Bj

2i+j

4N
· xuv =

2i+j

4N
· sij =

2i+j

4N
· λij · µij

=
2i+j

4N
· σij · 2

i+j−2

√
d · µ ·N · µij =

22i · 22j

16N
· σij√

d · µ ·N · ai · bj · µ

= αi · βj · σij ·
√

µ ·N/d .

So it suffices to show
∑

(i,j)∈C αi · βj · σij = O(d).
If we transfer Lemma 10 to the notation given above, we obtain that with

high probability for each Ai, Bj

λij ≤ 200 (20)

or

σij · αi · log λij ≤
200 · 2i−j ·

√
d√

µ ·N · (2j − log βj) (21)

hold.
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Note, pairs (Ai, Bj) with bj > N/2 are not covered by the lemma. Yet in that
case we have λij < 2d. This can be seen as follows: lu = 0 if sX(u, V ) > d ·µ ·N
and u occurs in none of the Ai’s. So, sX(u, V ) ≤ d · µ · N for all u ∈ Ai. This
leads to

sij ≤ d · µ ·N · ai. (22)

If bj > N/2 then µij > ai ·N/2 · µ, yielding λij = sij/µij < 2d.

We subdivide the pairs (i, j) ∈ C into six classes C1, . . . , C6 so that (i, j) ∈ Ck
if (i, j) fulfills the following condition k, but none of the conditions < k.

1. λij ≤ 200d
2. σij ≤ 1
3. 2i−j >

√
d · µ ·N

4. log λij ≥ (2j − log βj)/4 and 2j > − log βj
5. log λij < (2j − log βj)/4 and 2j > − log βj
6. 2j ≤ − log βj

If we can prove for each Ck that
∑

(i,j)∈Ck
αiβjσij = O(d), we are done.

1. λij ≤ 200d

Since σij < λij we get easily

∑

(i,j)∈C1

αiβjσij =
∑

(i,j)∈C1

200d · αiβj ≤ 200d ·
∑

(i,j)

αiβj

= 200d ·
∑

i

αi ·
∑

j

βj ≤ 200d · 16 · 16 = O(d).

2. σij ≤ 1

Analogously to 1. we obtain
∑

(i,j)∈C2
αiβjσij ≤ 16 · 16 = O(1).

3. 2i−j >
√
d · µ ·N

We have sij ≤ d · µ ·N · ai by (22) and

sij = λij · µij = σij · 2i+j−2 · ai · bi ·
√

µ/(d ·N).

Both together give

σij · 2i+j−2 · bi ·
√
µ/

√
d ·N ≤ d · µ ·N

σij · 2i+j−2 · bi/N ≤
√

d3 · µ ·N
σij · 22j · bi/(4N) ≤

√

d3 · µ ·N · 2j−i

σijβj ≤
√

d3 · µ ·N · 2j−i.
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So we have
∑

(i,j)∈C3

αiβjσij ≤
∑

(i,j)∈C3

αi ·
√

d3 · µ ·N · 2j−i

≤
∑

(i,j)∈C
j<i−log

√
d·µ·N

αi ·
√

d3 · µ ·N · 2j−i

=
∑

i>log
√
d·µ·N

αi

i−log
√
d·µ·N−1
∑

j=1

√

d3 · µ ·N · 2j−i

≤
∑

i>log
√
d·µ·N

αi ·
√

d3 · µ ·N · (2− log
√
d·µ·N − 1/2i)

<
∑

i>log
√
d·µ·N

αi · d = O(d) .

For the three remaining cases we use inequality (21). In these cases (as also
in 2. and 3.) λij > 200d > 200, so inequality (20) is violated and (21) must
hold.

4. log λij ≥ (2j − log βj)/4 and 2j > − log βj
From inequality (21) and log λij ≥ (2j − log βj)/4 we obtain

σij · αi · (2j − log βj)/4 ≤ 200 · 2i−j ·
√
d√

µ ·N · (2j − log βj)

and as 2j − log βj is positive

σij · αi ≤
800 · 2i−j ·

√
d√

µ ·N .

We know 2i−j ≤ √
d · µ ·N because we left behind C3. So i ≤ j+log

√
d · µ ·N

and
∑

(i,j)∈C4

αiβjσij ≤
∑

j>0

∑

(i,j)∈C
i≤j+log

√
d·µ·N

αiβjσij

≤
∑

j>0

βj ·
j+log

√
d·µ·N

∑

i=1

800 · 2i−j ·
√
d√

µ ·N

<
∑

j>0

βj ·
800 · 2log

√
d·µ·N+1 ·

√
d√

µ ·N =
∑

j>0

βj · 1600d = O(d).

5. log λij < (2j − log βj)/4 and 2j > − log βj
From (21) together with the latter condition we conclude

σij · αi ≤
200 · 2i−j ·

√
d√

µ ·N · 4j. (23)
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Note, we omitted log λij > log(200) > 1 on the left-handed side.
We have log λij < (2j−log βj)/4 ≤ j. By the definition of σij we obtain σij ≤√
d · µ ·N/2i−2. The case σij ≤ 1 is handled above, so 2i−2 <

√
d · µ ·N

holds. Now, we bound

∑

(i,j)∈C5

αiβjσij ≤
∑

(i,j)∈C5

i<log
√
d·µ·N+2

αiβjσij ≤
∑

j>0

βj

log
√
d·µ·N+1
∑

i=1

αiσij

(23)

≤
∑

j>0

βj

log
√
d·µ·N+1
∑

i=1

800 · j · 2i−j ·
√
d/
√

µ ·N

≤
∑

j>0

βj · 800 · j · 2−j ·
log

√
d·µ·N+1
∑

i=1

2i ·
√
d/
√

µ ·N

<
∑

j>0

βj · 800 · j · 2−j · 4d ≤ O(d) ·
∑

j>0

j

2j
= O(d).

6. 2j ≤ − log βj
As j > 0 we have that βj < 1 and − log βj is positive. Again, we use (21)
and omit log λij > 1:

σij · αi ≤ −400 · 2i−j ·
√
d√

µ ·N · log βj .

Remember, since 2i−j ≤ √
d · µ ·N (case 3. is handled above) we get i ≤

j + log
√
d · µ ·N and so

∑

(i,j)∈C6

αiβjσij ≤
∑

(i,j)∈C6

−400 · 2i−j ·
√
d√

µ ·N · βj · log βj

≤
∑

j>0

−βj · log βj ·
j+log

√
d·µ·N

∑

i=1

400 · 2i−j ·
√
d√

µ ·N

<
∑

j>0

−βj · log βj · 800d

As βj can be very small, we need to bound − log βj . As 0 < βj < 1 we have
− log βj < 4/

√

βj . In order to prove this, we show that the function f(x) =
4/
√
x+log x is positive for 0 < x < 1. The first derivative f ′(x) = (−2/

√
x+

1/ ln 2)/x is negative for 0 < x ≤ 1. So, f(x) falls strictly monotonic in our
interval. As f(1) = 4 > 0, our bound hold for all 0 < x ≤ 1.
So, −βj · log βj < βj/

√

βj =
√

βj . At a next step we replace
√
βj by 2−j

since 2j < − log βj gives 2−2j > βj . So
∑

(i,j)∈C6

αiβjσij ≤
∑

j>0

800d ·
√

βj < 800d ·
∑

j>0

2−j = 800d = O(d).

⊓⊔
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