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Abstract. Ordering constraints are analogous to instances of thefigaility problem in conjunc-
tive normalform, but instead of a boolean assignment weidens linear ordering of the variables
in question. A clause becomes true given a linear orderirtpéfrelative ordering of its variables
obeys the constraint considered.

The naturally arising satisfiability problems a¥#-complete for many types of constraints. The
present paper seems to be one of the first looking at randosringdconstraints. Experimental
evidence suggests threshold phenomena as in the case ofir&r8AT instances and thus natural
problems to be proved. We state some basic observationsravel fwo results:

First, random instances of the cyclic ordering and betwessnonstraint (definition see Subsection
1.1) have a sharp threshold for unsatisfiability. The pre@iri application of the threshold criterion
due to Friedgut.

Second, random instances of the cyclic ordering consteamatisfiable with high probability if
the number of randomly picked clausesdsl - n, wheren is the number of variables considered.

Topics: Algorithms, logic, random structures, probabilistic arsa

1 Introduction

1.1 Results

Let V' always be a set of variables. A3-clause ovel is anordered 3-tuple(z, y, 2)
consisting of three different variables. A formula, alstlezhordering constraint is a
set of clauses.

In analogy with randon3-SAT formulas, a selection of the literature is [1] [3] [8]
[20] we consider random ordering constraints. The randastairce/'(V, p) or the
corresponding probability space is obtained by pickindheafcthen(n — 1)(n — 2)
clauses independently with probabilityThus F'(V, p) is analogous to the well known
random grapldz(n, p). As common in the theory of random structures this paper deals
with properties holding with high probability, that is— o(1) whenn becomes large
andp = p(n) is a given function.

Given a linear ordering of alt variables a clause evaluates to true if its variables
satisfy a given constraint with respect to the ordering. Arfola becomes true when
all its clauses are true. This is the satisfiability problée present paper deals with.

The clausdz, y, z) interpreted asyclic ordering constrainis true iffx <y < z
orz <x <yory < z < x with respect to the ordering considered. This means
there is a cyclic permutation dfc, y, z) which is monotonously increasing with re-
spect to the ordering. Note that clauses which are cyclimptations of each other are
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equivalent, syntactically we distinguish them nevertbgl€Our results do not depend
on this.) The associated satisfiability problenNB- complete as known for long [13].
In case of théetweennegsroblem the clauser, y, z) is true iff y is between: and
z, thatis we have < y < z or z < y < x with respect to the the ordering considered.
The corresponding satisfiability problemNd#?-complete, too [21]. Chor and Sudan
[7] consider the optimization version of the betweennesstraint with methods of
semidefinite programming.
Basic observations which follow readily from the literagwas shown in Section 2
collects

Proposition 1. For random instances’(V, p) with p = a/n? the following events have
high probability:

(a) For a < 0.8 the random cyclic ordering and betweenness instance isfeile.

(b) Fora > 9 -1n 3 =~ 9.88 the the cyclic ordering instance is unsatisfiable.

(c) Fora > 4 -1In2 ~ 2.77 the betweenness instance is unsatisfiable.

The expected number of clausesiofV, p) with p = a/n? is an. Moreover, the
number of clauses is asymptotically equaktowith high probability. Techniques as
detailed on pages 34/35 of [4] enable us to show that anatoggmults holds for the
random instance obtained by picking a random set of exaetlglauses. This applies
to all of our results.

The initial inspiration for this paper came from some exments (performed only
for n < 40 for running time reasons.) these experiments show thatorangyclic
ordering instances with up tb5n clauses tend to be satisfiable. For more thamn
many clauses we usually get unsatisfiability.

For the random betweennness constraint we experimentadlgree the same phe-
nomenon foran random clauses whenis betweenl and1.2. The experimental ob-
servations seem to reflect the fact that a clause interpastacdbetweenness constraint
is true for2 orderings of its variables , whereas for the cyclic ordexngstraint we
get3 (out of6.)

As far as the author knows no theoretical results concethiegreceding observa-
tions or even random ordering constraints in general élistprove that the transition
from satisfiability to unsatisfiability is swift, that is theis a sharp threshold.

Theorem 2. There exists = C'(n), 0.8 < C < 9.88(2.77) such that for each con-
stante > 0 the cyclic ordering constraint (betweenness constraiffity, p) is unsatis-
fiable with high probability ifp = (C' + ¢) /n? and satisfiable ip = (C' — &) /n?.

Note that we have only bounds an within which the threshold valué¢’ may
vary depending om. The situation is analogous to rand@SAT or colourability of
random graphs, see [11]. As in these cases the proof of Timedis an application of
the threshold criterion of Friedgut [10] which gives no infation of the value.

Given Proposition 1, to show tha@t(V, a/n?) is satisfiable with high probability
for any a substantially larger thaf.8 seems to be non-trivial. Analyzing a heuristic
algorithm which tries to find a satisfying ordering we makesqrogress.
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Theorem 3. For p = a/n? with a < 1 the random cyclic ordering instande(V, p) is
satisfiable with probability> ¢ for a constant > 0.

Theorem 3 together with Theorem 2 implies a high probahigsult.

Corollary 4. The random cyclic ordering constraint with = a/n? anda < 1 is
satisfiable with high probability.

1.2 On the literature

Ordering constraints differ from traditional constraitite k£-SAT or more general
kinds of constraints in that the underlying assignment rbasanorderingof all vari-
ables. This means on the one hand that each variable caneeres out of» values,
its position in the ordering. On the other hand each ofith@lues can only be used
once. Altogether we have! many assignments as opposed to dilyin the case of
satisfiability.

Beyond randonk-SAT there is a considerable body of work on random condsain
with finite domain from which the values for each variable taken. Only a small
selection of the literature, in part due to Michael Molloy18], [19], [16] . The paper
[18] points out that the investigation of thresholds is nolyoof structural interest,
but has also algorithmic relevence: Random instances eshbids often have some
algorithmic hardness which makes them attractive as testsdar algorithms.

As far as we know systematic experimental studies of randal@rimg constraints
have not been made by now. Our preliminary experimentsateithat instances closer
to the threshold become harder.

Many real world notions like time and space involve some kifidrdering. There-
fore it is not surprising that knowledge representationmfaisms may contain or-
dering constraints. In [15] for example the cyclic orderz@nstraint occurs. In [6]
a weighted version of an extended betweenness constraiuses to describe some
biological situation. These applications provide addiibmotivation to investigate
ordering constraints systematically. From the point ofwad worst case complexity
ordering constraints are investigated in [14]. As we haveydifferent kinds of or-
dering constraints, it is natural to try to classify thema@ding to their complexity.
For some cases the authors can show a dichotomy either poightme solvable or
NP-hard. Moreover, [14] has additional pointers concegrapplications of ordering
constraints.

More theoretically , besides the papers [7] and [14] metibabove, we find [5]
which deals with non-approximability results for the opiation version of the be-
tweenness constraint.

2 Observations

We collect basic results which follow directly from the lié¢ure or are otherwise easy.
The 2-core of a constraint’ is the (unique) largest subformula 6fin which each
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variable which occurs at all has degree , that is occurs at least twice. TRBecore is
non-trivial iff it is not empty.

Proposition 5. Let I be a constraint which has only the triviaicore. F' interpreted
as a cyclic ordering (betweenness) constraint is satiséiabl

Proof. The proof is based on the fact that the clauseg¢’'afan be satisfied one by
one. An induction on the number of clausesfoformalizes this:F' has a claus€’
which contains a variable which occurs only oncel” without C' can be satisfied by
induction hypothesis. The@' can be satisfied by putting the varialtan the right
position. Note that we can always find a suitable position:f@s we have a cyclic
ordering ( betweenness) constraint.

Satisfiable constraints with non-em@core are easy to find:

Example 6.We consider the ordering < y < z < u and the constraint
(z,y,2), (z,z,u), (y, z,u). Each variable occurs twice. The constraint (interpreted as
betweenness or cyclic ordering constraint) is satisfiechbyotdering.

Molloy’s Theorem 1.2, on page 666 of [20], for graphs and mgpphs can be
read as threshold theorem for the appearance of a nontttigiare inF'(V, a/n?) :

Proposition 7. Let

t = min —In(1— £)/(3- f?).

0<f<1
(@) If a < t the2-core of F(V, a/n?) is empty with high probability.
(b) If @ > t the random constraint' (V' , a/n?) has a2-core of linear size with
high probability.

First insight into the curve-In(1 — f)/(3 - f?) can be obtained by looking at the
logarithm series- In(1— f) = f+ f?/2+ f3/3+--- which holds for0 < f < 1. The
t in the preceding proposition is slightly larger th&&. Therefore the cyclic ordering
(resp. betweenness ) constralf(tl’, a/n?) is satisfiable with high probability far <
0.8 proving Proposition 1 (a) .

Concerning unsatisfiability we can use a standard first moargament (as know
from randomk-SAT for example): We consider the cylic ordering constraiiven a
fixed linear ordering with the three variablesy, = ordered as: < y < z. The clause
(z,y, z) and its cyclic permutations become true under the ordefihg.remaining
clauses over,y, ~ are false. Altogether we have asymptoticalfy/2 clauses which
are false under the ordering. As clauses are picked indepégdhe probability that a
randomF(V, a/n?) is true under the ordering therefore is

(1—a/n?)"""? < exp(—an/2).

The expected number of linear orderings satisfying a randii a/n?) then is
bounded above by! x exp(—an/2). This approache@only whena > Inn. Markov’s
inequality shows that the random formula is unsatisfiabté Wigh probability in this
case. Concerning betweenness constraints wergés instead of the:? /2 before and
thus essentially the same result. We can get unsatisfiahligady for constant.
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Lemma 8. (a) LetF’ be a satisfiable cyclic ordering constraint. There existagdifion
of the variables int® setsK, L, M each withn/3 variables such that we have no
clause fromik x M x L or its cyclic permutations it

(b) Let F' be a satisfiable betweenness constraint. There exists #ipardf the
variables into two set&’, L each withn /2 variables such that we have no clause from
K x L x K and no clause fronk, x K x Lin F.

Proof. (a) Let K be the first third of the variables of the satisfying orderingthe
second third , and/ the last third of the variables. A clause frashx M x L and its
cyclic permutations is false under the ordering and thust meisbelong tof.

(b) As (a) using the first and second half of the variable et

We come to the proof of Proposition 1 . Given a partitionZ, M as in the proof of
Lemma 8. There ar&(n/3)? clauses belonging t& x M x L or its cyclic permutations.
The probability that a random formula does not contain on@é@de clauses is

(1 —a/n?)P° < exp(—an/9).

The expected number of partitiods, L, M such that we have no clause frofn x

M x L or its cyclic permutations is bounded above33y exp(—an/9) = exp((In3 —
a/9)n). This goes td whena/9 > In 3 and the first moment argument implies (b) of
Proposition 1. Concerning (c) we proceed analogously.

3 The threshold

We refer to [11] which we apply to our setting of random forasilRandom formu-
las can be seen as rand@runiform directed hypergraphs. Unsatisfiability of a cgcli
ordering (betweenness) constraint is a monotone pro@ty,is preserved under the
additon of clauses. Morever, unsatisfiability is a properitych is invariant under per-
mutation of the variables. Therefore it satisfies the symyn@bperties necessary for
the application of the criterion from [11].

We need some abbreviations. For a formAlave abbreviate the property that
is unsatisfiable by UNSATF'), in case of the random formule = F(V, p) we also
write UNSAT(V, p). SAT(F') meansF' is satisfiable.

A variety of types of random formulas are needed: The randwtancer'(V, p) U
F(V,q) is constructed by first picking’(V, p) and second and independently adding
F(V,q) to the formula picked . For a given formuld the random formula/* is a
random copy of\/ (formula isomorphic ta\/) on variables from/. A formula M is
balanced iff its average degree () degree ofr in M / fvariablesz of M) is not
smaller that that of any subformula &f. The formulaZ'(V, p) U M* is obtained by
picking F'(V, p) and M* independently and forming their union.

We say that UNSATV, p) has a coarse threshold iff we have a critical probability
pe = pe(n) and (small) constants ¢ and§ such thate: < Prf UNSAT(V,p.)] <
1 —eande’ < P UNSAT(V, (1 + d)p.) < 1 — €. In the case at hang. = a/n?.
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And a threshold is coarse iff adding an arbitrarily smalk, lonear number of clauses
to F'(V,p.) doesnot yield unsatisfiability with high probability (cf. the reniaafter
Proposition 1.)

There exist several formulations of Friedgut’s thresheitkdon. In our case most
convenient to apply is

Fact 9 (cf. Corollary 2.3 of [12]). If UNSATV, p) has a coarse threshold then there
exist

- a (critical) probabilityp. = p.(n),
- a balanced formuld/ and a constant > 0, and
- aconstant > 0

such that for infinitely many we have

- e < Pr[UNSATV,p.)] <1-—c¢,
- the expected number of copiesidgfin F'(V, p.) is > b, and
- Pr{UNSATF(V,p.) UM™)] — PriUNSATIF(V,p.) U F(V.ep))] = e

Fact 9 says that in case of a coarse threshold there existsnaléo)/ such that
adding M* to F'(V,p.) is more likely to makeF'(V, p.) unsatisfiable than adding a
(small) but linear number of random clauses. We will show #mgy M/ with the prop-
erties of Fact 9 such that Prigi(V, p. U M*) unsatisfiablé > ProF(V, p.) unsat-
isfiable] + ¢ necessary for the last inequality cannot satisfy the lasjuality.

In the subsection to come we prove a crucial Lemma (from wttielexperienced
reader already sees that we must have a sharp thresholddeTdiks for the contradic-
tion are presented Subsection 3.2.

3.1 The Lemma

We split the of variable$” into two disjoint subsets’ andV. U is a set ofk variables
wherek is a fixed constant independent of and W contains the remaining — k
variables. The random instané&U, IV, p) is obtained by picking each clause with at
least one variable frort independently with probability.

For arbitrary fixed formulag” over W and F* over U ( think of F* as a fixed
instance of the random formule™* above) we consider the random formula oVer
W U U givenbyF U F* U F(U, W, p). We assume that = ¢/n? wherec; < ¢ < ¢,
for constantg, c; > 0 independent of.. Note thatc = ¢(n) itself may depend on.

For the rest of this subsectiadr and F* are given formulas and both satisfiable
as a betweenness (cyclic ordering) constraint. tet< =, < --- < x,_; be an
ordering satisfyingF' andy; < y, < --- < y; for F* (where{zy,...,z, 1} =
W, {vy1,...,yx} = U) We assume that the underlyingis sufficiently large and
e > (0 is a constant independentiofLet UNSAT be the event that the random instance
FUF*UF (U, W, p)is unsatisfiable as a betweenness (cyclic orering ) constRecall
that £/ (W, p) is the usual random instance with variables frdm

We have
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Lemma 10. Lete > 0 be a constant. If PrfUNSAT}> ¢ then for any constant > 0
the random instancé U F'(W, ¢ - p) interpreted as a betweennness (cyclic ordering)
constraint is unsatisfiable with high probability.

Proof idea.Prof UNSAT | > ¢ means that PrabF" U F* U F(U, W, p) is un-
satisfiabld > ¢. Unsatisfiability is only caused by (U, W, p). If F' = F(U, W, p)
causes unsatisfiability theli U F* U F” is in particular false under all orderings with
Wi, < U < Wy for Wy U W, = W. That is, we consider the orderings in which the
variables ofU are adjacent. When we substitute the variables ftomm F” with an
arbitrary variabler from W we get an unsatisfiable formula oviéf. As F'(U, W, p)
causes unsatisfiabilty with probability ¢ we get that a linear number of random
clauses overl” makest unsatisfiable even with high probability. This holds, ashis t
caseeach variable ofl¥ can serve as.

Proof. As F' U F™* is satisfiable, unsatisfiability is due to the clauses filo(, IV, p).

The expected number of clausesiofU, W, p) is E[tF(U, W, p)] = 3kc(1 + o(1)).

Let M be a sufficiently large constant such tha{U, W, p) < M with probability >

1—(1/10)e. Such anV/ = 10 E[¢F (U, W, p)] /e can be found with Markov's inequality.
We have

PrlUNSAT | tF(U,W,p) < M]
> PrlUNSAT and ¢ F(U, W, p) < M ]
> PrlUNSAT] — PrtF (U, W,p) > M]
>e-(1—-1/10) = (9/10)e.
Let F(U, W, M) be the random instance which is a uniform random set of exactl
M clauses with at least one variable frémThe random instancBUF*UF (U, W, M)
is unsatisfiable with probability> 9/10e by monotonicity, which is shown by the
following (not unknown, cf. [4], page 34 for related argurtgrgeneral consideration:
We consider a general monotonously increasing edenter{0, 1}" endowed with
the binomial distribution wittp. Let M < n anda,, be the number of elements df

with exactlym 1's, letb,, be the binomial coefficient” ).
We need to show that

anvzlzo Amp™ (1 —p)" " < O
Sy bmp™(1—p)rm T by

Note that the left-hand side is the conditional probabiitd the right-hand side the
probability for exactlyM 1's under the uniform distribution.

We observe that
a n—m < 4 M
m\M=-m) = M \m)

This because the number of ordered pairs of elementg with a,b € A such that
has exactlyn 1's andb hasM 1's and extends is equal to the left hand side of the

(1)
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preceding inequality. Starting witheacha can be obtained by deleting a set\df—m
1's out of M. This gives the upper bound.
Next we observe that
() ()
T and-——2o<by = by,
(J\/[—m) (M—m)

A < app

This implies the required result by substitution into inalify (1).

Let F(W,z, M) be the random set af/ clauses each of them containing the
variablez. Next we show that” U F(W, z, M) is unsatisfiable with probability>
(9/10)e .

Let{L;,... Ly} beaninstance of (W, z, M).If FU{ L,,..., Ly } issatisfiable
then we have that’ U F* U { K1, ..., Ky, } is satisfiable wherdy; is obtained by
replacing the variable in L; with an arbitrary variable frond/. For if
<---<uz ,wherez, =z

/ / /
JI1<JI2"'<I‘Z

makesF U { Ly,..., Ly } truethenf U F*U{ Ky, ..., Ky } is true for
o< ah T <y <yp < ... <Y< <Xy <<

This holds becausg, < 1y, < ... < y; IS a satisfying ordering of™* and theK’s
contain exactly one variable frobi and do not contain the variable= z, any more.

Each satisfiable instance &f U F(W,z, M) inducesk? distinct satisfiable in-
stances of'U F'* U F'(U, W, M). Moreover, for different instances &éf(1V, z, M) the
corresponding sets df instances ofF'(U, W, M) are disjoint. Therefore the num-
ber of instances of (U, W, M) inducing satisfiabilty is at least as large % x the
number instances df (W, z, M) inducing satisfiability.

We come to the number of all instances. With high probab#ity instance of
F(U, W, M) doesnot contain:

- A clause with two or three variables froh
- Two or more clauses with the same two variables fidn
- A clause withz.

This follows ask and M are both constant by elementary expectation calculations
together with Markov’s inequality. Therefore&(U, W, M) has (asymptotically because
of the three preceeding items)

(G Vi TEL T UL T
many instances. Far (W, z, M) we have
(3(n—k‘—3/[)(n—k‘—2)> R )
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instances. The quotient Y. As F(U, W, M) and F'(W, z,p) are uniformly dis-
tributed we finally get

PrlFuU F(W,z,M) sat] < Pr[F U F*U F(U,W,M) sat.] < (1/10)e.

Lete’ > (9/10)e be the probability that” U F'(W, x, M) is unsatisfiable. An instance
{Ly,..., Ly} of F(W,z, M) is calledbadiff F'U{Ly,..., Ly} is unsatisfiable.

We come toF' (W, p’) with p’ = op. Let BAD, be the the event: There aggactly
— only to simplifiy the subsequent calculatiod4clauses containing and this set of
clauses is bad. The probability of BADs (recallp = ¢/n?)

_ (3(n —k—1)(n—k— 2))po (1 = pf )Pk Dn—k=2) =M

M
., (3o
=< -exp(—3dc)(1 4+ o(1)).
We abbreviate the probability of BADas
M
SHES (Bj?' -exp(—3dc) , still a constant> 0.

The expectation of the number of variablesuch that BAD is = ¢"n. The subse-
quent second moment argument shows that we have at leasaoaklez with BAD,
with high probability, and the lemma holds.

The second moment argument rests on the observation thavéimes BAD. and
BAD, are essentially independent foe£ y: The number of clauses ovBr containing
bothz andy is3 -2 - (n — k — 2) and we have asymptotically

PROB [ BAD, and BAD, |

_ (g, (3(n —k—1)(n— k]\; 2) — 6(n — k — 2))p/M - p/)3<n_k_1><n_k_2)_M)2

= ”(1+o0(1)),

as the probability of clauses with bothandy is O(1/n). The remaining calculation
only applies Tchebyscheff’s inequality, see [2] for theuangnt.

3.2 The contradiction

Proof of Theorem 2We show that the items as necessary for a coarse threshold as
stated in Fact 9 together cannot exist. Thus the threshaluatdoe coarse, but must be
sharp and Theorem 2 holds.

We have from Proposition 1 that = a/n? and0.8 < a < 9.88.

We show that the formula/ must be satisfiable as cyclic ordering (betweenness)
constraint. This follows because (as detailed né{thas no non-triviaR-core, cf.
Section 2.



10

Let & be the number of variables i andt be the number of clauses. Then the
expectation of the number of copiesiafis O (nk : (%)t) .We must have < k/2in

order for the expectation to e b. An analogous argument applies to any subformula
of M as M is balanced. As:/2 clauses hav8k/2 < 2k slots fork variables there
must always be a variable of degree.

To visualize the calculation of some (conditional) prolieibs we generaté'(V, p)u
M* with a different process from the standard one (first, gereray, p) and second
and independently ad&/*.) The distribution however remains the same. Additional
visualization (if necessary) can be gained by thinking imte of a probability tree.
Random steps occurring sequentially are independent.

1. Pick a random sdt C V of k variables £ is the number of variables af/. )
Generate the random formuld* isomorphic toM onU. We letiW = V' \ U.

2. Add F(W, p,.) to M*.

3. Add F(U, W, p,.) (cf. the beginning of Subsection 3.1 for notation.)

We come toF'(V,p.) U F(V,ep.). Given an arbitrary set/ of £ variables, W =
V '\ U, it can be generated as follows.

1. Generate” (W, p..).

2. Generatd' (W, ep,.)

3. Generate the rest necessary to get an instané&vfp.) U F'(V, ep.). (Note
VAW #0.)

Lete > 0 be fixed and assume that the last item of Fact 9 holds, that is
Pr[UNSAT(F(V,p.) UM*)] — Pr{UNSAT(F(V,p.)UF(V,ep.))] > e.

This assumption is shown to contradict Lemma 10.

Concerning the process to generatg’, p) U M*, we observe that the probability
spaces generated by the second and third step are isomarpbrefore we condition
what comes on a fixed choice for the first step that is wé/fiand M/* and start the
proecess with the second step. Concerning the proceds(farp,.) U F(V, ep.), we
can use the sanié

We have

Pr[ UNSAT(F(V,p.) UM*)] =

= Y Pr[F=F(W,p)]- PrlUNSAT(M* UF UF(U,W,p.))]
F, SAT(F)

+ Y Pr[F=FWp)]
F, UNSAT(F)
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And

Pr[UNSAT(F(V,p.) U F(V,ep.)) ]

= Z Pr[F = F(W,p.) ] Pr[UNSAT(FUF (W, ep.)U'the rest, i. e. from Step 4"
F, SAT(F)

+ Y Pr[F=FWyp)]
F, UNSAT(F)
Then

Pr[UNSAT(F(V,p.) UM*)] — PrlUNSAT(F(V,p.)UF(V,ep.))] =

= ) Pr[F=FW,p)l

F, SAT(F)
( Pr[UNSAT(M*UFUF(U,W,p.))] — Pr [UNSAT(FUF(W, ep.)U" Step 4" ] )

Our assumption above implies that we must have a satisfiabieuta F' over W
such that

Pr [ UNSAT(M*UFUF(U, W, p.)) ] — Pr [ UNSAT(FUF(W, ep.)U* Step 4) | > ¢.

However, such aF’ cannot exist because by Lemma 10 any sétmust already
satisfy
Pr[UNSAT(F U F(W,ep.))] =1—o(1).

4 The cyclic ordering constraint

We come to the proof of Theorem 3.

4.1 The reduction

In addition to3-clauses as above we nekdlauses which are ordered pafts y) con-
sisting of two different variables. Their interpretati@wi < y throughout3-clauses
are interpreted as cyclic ordering constraints from nowldre graph associated to the
set of2-clausesF is calledG. It is obtained by viewing eact-clause(z, y) as the
directed edge: — y. The random instancE(V p, q) is the union of two independent
instances of’(V, 3, p) andF(V, 2, q) whereF'(V, 3, p) = F(V, p) picks eaclB-clause
with p independently and’(V, 2, q) each2-clause withg. For subsetsA, B,C C V
we use the notatiof4, B,C) = A x Bx Cand(A,B) = Ax B.

The following definition is the basis of our reductions.
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Definition 11. Let ¥ = D U E be a constraint witl2-clausesF and 3-clausesD
over the set of variable®. Let A, B be any partition ofl” into two disjoint sets with
AU B = V. If E contains clauses from both4, B) and (B, A) the constraints
and F'z are not defined. Otherwise the constraifit over A is defined as:
The2-clauses of2 which belong tq A, A) are in F4.
Let(z,y,z) € D with at least two variables belonging tb. It induces clauses as
follows inFy :

- (z,y,2) € (A A A) implies (x,y, 2) € Fa
- (z,y,2) € (A, A, B) implies (x,y) € Fa
- (x,y,2) € (A, B, A) implies (z,x) € Fy4
- (z,y,2) € (B, A, A) implies (y, z) € Fa.

ConstraintF'z is defined in totally the same way exchanging the roled ahd B
above.

Note that the2-clauses fromF' belonging to(A, B) (resp.(B, A)) get lost when
constructingFy, and Fz. WhenG g has a cycle the whole cycle must either belong to
A orto B in order thatt'y, and F'z are defined.

The next Lemma states the satisfiability properties whietpaeserved when com-
paring F" with F'y and F’z.

Lemma 12. F without2-clauses from( B, A) is satisfiable by a linear ordering with
A < B iff F, and Fz are satisfiable.

Proof. Let I’ be without2-clauses from{ B, A). ThenF 4, and F;z are defined.

For “=", let F' be satisfiable by an ordering with < B. ThenF, and Fiz are
satisfied by the same ordering, or better its restriction$ émd 5.

Look at 4. The 3-clauses fromt, are 3-clauses fromF and therefore are true
under the ordering. Let' = (z,y) be a2-clause fromF4. ThenC' is true by a case
distinction as to which clause froi inducesC.

C'is a2-clause fromF. thenC' is true.

C'is induced by th&-clause(x, y, z). As z € B in this case we have < y in the
ordering makingF’ true andC' is true.

- C'isinduced by(y, z, ). Againz < y asz € B.

- C'isinduced by(z, z, y). Thenz < y as before.

By Definition 11 these are all possibilities which inducen F4 and we are finished.

In the same way we check tha&g; is true under the ordering @. For completeness
the details: The-clauses are true. Again lét = (z, y) be a2-clause fromF. We
look at the cases which induce

- C'is a2-clause fromF. ThenC'is true.
- C'is induced by th&-clause(z, y, z). As z € AandA < B we haver < y in the
ordering makingF’ true andC' is true.
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- C'isinduced by(y, z, ). Againz < y asz € A.
- C'isinduced by(z, z,y). Thenx < y as before.

These are all possibilities to induc¢eand Fz becomes true.

Now “<". Assume thatF', is true under an ordering of and F'’z under one of53.
We show thatt” becomes true under the ordering in which the on& ¢¢ appended to
that A so that in particulad < B.

The 2-clauses from# belong to(A, A), (B, B), or (A, B) and they are all true
under the ordering becaugg andF'z are true.

Concerning th&-clauses off' we have some casesclauses fron{A, A, A) and
(B, B, B) are true ag'4, andF'g are true.

We look at3-clauses fron¥' with exactly two variables fronB. Let C' = (x, y, 2)
be such a clause.

- z,y € B. Thenz < y as we have the-clause(z, y) in Fz andC becomes true as
A< B.

- x,z € B.Thenz < x andC'is true asd < B.

- y,z € B. Theny < z and we are done.

We omit the analogous argument fbclauses with two variables from.

We consider a set @-clauses¥ over the set of variablds. The following notions
are the natural graph theoretic ones as induce@ pyhe graph associated 0. The
outdegree of a variable denoted as Odedz) , is the number of clausés, —) € E.
The set of neighbors af is Ng(x) = {y|(z,y) € E}. A neighbor ofz is reached by
oneedge fromz in G.

Definition 13. (a) The boundary3, = B, g is defined by
By = {x| Odedz) = 0}.
(b) B, = B1gis

By = {z| Ng(x) C By and Ng(zx) is not empty.

(¢) B = Bg = By U B; is the boundary.
(d) The interior is
Int = Intg = V'\ B.

(e) WhenF' consists oB-clausesD and2-clausesk we letBr = Bpg .... for all
notions introduced.

The proof of Theorem 3 is an analysis of the reduction as lidhin Figure 1.
Fis a formula ovelV/ consisting only oB-clausesA is a fixed set of one half of the
variables froml” and B (not to be confused with a boundary ) is the other half.

Note that all formulas of the tree comply with Definition 11dathus are defined,
as any formulal’ has no2-clauses from By, Intr) by Definiton 13. With Lemma
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/F\
F' ' =Fy F" =Fp
! 1
FlmF’ FIBF FmIFN FIBIF,,
Fig. 1.

12 the rootF is satisfiable if all formulas at the leaves are satisfiable.pMove that
for F = F(V,1/n?) the probability of the event thall formulas at the leaves

F  Fp F{l. | F} aresimultaneously satisfiable does not go.to
IntF/ F! IntF// F

Theorem 14 concerns the first step of the reduction and shaw$'t and F” can
be treated independently. Note that to us only the case 1 of the Theorem is of
interest.

Theorem 14. Leta be a constantF'(V, 3, a/n?) is satisfiable with probability> ¢’ >
0if F(V,b/n? c/n) withb = (1/4)a andc = (3/4)a is satisfiable with probability
>e>0.

Proof. We consider an arbitrary but fixed partitioh B of the n variables inV into
two halves, for examplel = {z1,...,z,,2}. WhenF = F(V,3,a/n?) the 3-clauses
of F4 according to Definition 11 are distributed B$A, 3, a/n?).

A given 2-clause(z, y) is induced by3n /2 many3-clauses as can easily checked
in Definition 11. It is present iFy with probability 1 — (1 — a/n?)*/2 = 3a/(2n),
asymptotically, independently. Therefore fhelauses of 4 are distributed ag'( A, 2, 3a/(2n)
and independent from ti3eclauses. Substituting = n/2 we get thatr', is distributed
asF'(A, (1/4)a/m?, (3/4)a/m).

The same applies tb and the claim follows with Lemma 12 with = ¢ - €. Note
that F4 and F'z are independent a$, B are sets fixed beforehand.

4.2 The second step of the reduction

We analyze the probability that the formulas at the leavdsguire 1 are satisfiable by
investigating (the absence of) cycles in graphs associatéekse formulas.

Definition 15. Let F' be a constraint o2- and 3-clauses.

(a) A trivial ordering of F' is an ordering which has < y for each2-clause(z, y)
andz < y andy < z for each3-clause(z, y, 2).

(b) The directed graph associated fois denoted by . It has as vertices the
variables ofF". Its edges are the-clauses of" and for eaclB-clause(z, y, z) of F' the
three edges$z,v), (y, z) and(zx, z2).
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(c) By acycle oflength > 2in G resp.F' we mean a set of edgés,, z), (z2,3),. ..
in Gg withzq, ...z, all different.

Obvious consequences of the previous definition collects

Lemma 16. Let F' be a formula.

(a) F is satisfiable iff there exists a formuld which contains th@-clauses ofF’
and for eacltB-clause ofF’ a cyclic permutation of this clause such that the gréph
has no cycle.

(b) F'is satisfiable by a (or any) trivial ordering ifii - is cycle free.

(c) A trivial ordering of F' can be found efficiently by sortirg topologically.

The proof of Theorem 3 proceeds by showing the random greggdueted to the
formulas at the leaves of Figure 1 are cycle free with prdiglniot going to0.

We take a look at cycles in standard random graphs. Folloj@hwho treat the
undirected case, [22] seems to be the first work on the ditexdise. The classical
directed random grap&i(n, p) is obtained by picking each of the directed edges
(including loops) with probability independently. The basic result concerning cycles
is from [22] and [17], the giant component threshold.

Fact17. LetG = G(n,c/n).

(a) For constant < ¢ < 1 Prob|G has a directed cycle= ¢(1 + o(1)).

(b) If ¢ > 1 theG has a strongly connected component of linear size with highgs
bility. For ¢ < 1 we have no strongly connected component of linear size.

Note that the our graphs neither are standard random grappaysticular edges
may be dependent, nor are they independent of each @qrﬁ?r, andF,gF, are depen-

dent as are thé"'’s.

To provide some perspective, we sketch the proof in [22] pbfi{sshould be well
known to the random graph expert). et ¢/n with ¢ < 1.

Fork > 1 we have(Z) - (k — 1)! possible cycles of length overn vertices. The
probability of a fixed cycle i®* and the expected number of cycles of lengtis
asymptotically

Ck
> Prob[C] = -
C

whereC ranges over all possible cycles of lengttDisregarding any asymptotic detail
we have that the expectation of the number of all cycles is

> Probip] = 32 3 ProbiC] - Ek:% = —In(1—¢)

by the logarithm series. Hetie ranges over all possible cycles and giverd' over all
cycles of lengthk.

(xs xl)
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Next an “obvious sieve” (citation from [9]). The probabjlithat a cycle exists is

> Prob[D] — Y Prob[D; andD,] + - -- 2)
D

D1,D>

where D ranges over all cycled),, D, ranges over alsets of two different cycles.
...D1,... D, over all sets of exactly cycles. Some more detailed analysis of the
probability of cycles with common edges shows that suffityemany sets of different
cycles are independent and

>~ Prob[D;and... andD;] = % (Z Prob[D]) — %(—ln(l —c)m

The definiton of the exponential function yields the resylpkhugging this into equa-
tion (2). In our case the detailed analysis of the dependsri@tween different cycles
required here may well be possible, but should be lengthyu$ea different approach
(Lovasz Local Lemma) to bound the probability of the absesfagycles from below.

The subsequent Theorem 18 together with Lemma 12 and Thebfeimplies
Theorem 3.

Theorem 18. For ' = F/(V,b/n? ¢/n) withb = 1/4 andc = 3/4 we have
ProbFiht and I'; are satisfiablg is bounded strictly above:

To prove Theorem 18 we show that bdt},; and Fz are cycle free in the sense of
Definition 15 (c). Note thatj,; and Fz are not any more independent&s and Fz
are in Theorem 14.

The stochastic dependency problem requires some pregargaisually one thinks
of F = F(V,p, q) as being generated first by picking easblause with its probability
p and then each-clause withy. We use a different generation process which in the end
yields the right distribution. In its first step the processsiimines the boundarié g
, B1 g whereE is the set oR-clauses of a random formula This allows to calculate
probabilities conditional on given boundariBg and B; in a transparent way.

The process is motivated by the following formula. Giverjarg setsB, and B,
and we observe that Prol, p = By, andB, p = B] is equal to the following big
product

[T@=o"" x ] ProtiNs(z) € By and|Np(z)| > 1] x

r€By reB;
x [] ProbiNg(z) NV \ By is notempty. (3)
zelnt

This is the case as edges starting at different verticesidependent a&' 5, the graph
associated td is a directed graph.
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For anyz we haver € B, i with probability (1 — ¢)"~! independent of anything
else. LetB, be a fixed seth, = |By|. Condition onB, = B, and assume that the
2-clausesE' of a random formula come. For any¢ B, we get thatr € B; i with
probability
(1 —(1-¢q)™)(1 — q)"'~% independent of anything else. . In the same way we get
for z ¢ By thatx € Intg with probability 1 — (1 — ¢)»~17%.

This suggests the following generation procesg'of= F(V,p,q). The process
has five independent steps, that is the probabilities mwltipecall the notation of
Definition 13 (e).

1. For x € V decide independently € B, r with probability (1 — ¢)"~' and
x ¢ By r With probabilityl — (1 — ¢)"~'. We abbreviaté, = |By r|.

2.Forx ¢ B, decide independently € B; » with

(I1—g)" '™ (1-(1—q)")
1—(1 =g ’

decider ¢ B, g with
1-(1—gm '™

1—(1—g)!

(Note that the sum of these probabilitied iy
3. Now we start to generate tl2eclauses in the bounda®y = B, U B;. For each

x € B; we consider all clauses ifx, By). Forby > k > 1 every set witht such
clauses has probability

¢"(1—q)*

1—(1—q)
Add such a random set. (Note that for each vertex the sum gifrtitzabilites isl.)
4. \We start to generate tleeclauses with at least one variable from the interior Int
=V \ B. Forxz ¢ B we consider all clauses ix,V \ B;). Each setofi — 1 — by >
k > 1 of these clauses has probability

qk(l _ q)n—l—bo—k
1— (1= gt

We add such a random set with its probabilty.

5. We add each clause frofint, B,) with probabilityq independently.

With the big product above it is easy to show that this procgsserates the-
clauses fromF'(V, p, q) The 3-clauses are added and cause no problem as they are
independent of anything done by now.

The next lemma is easily proved based on the process abogeohilitional prob-
abilities are simply calculated by starting the proces$ \8ikep 3.

Lemma 19. Let ' = F(V,p,q) and let By, B; be given disjoint sets of variables.
Conditional on the evenB, » = B, and B, p = B, the constraintsFth and Fz,,
are independent of each other.
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We fix some notation.

Bo = exp(—c) +o(1),
B =exp(—c(l— f)) +o(1)

= exp (—c(1 — exp(—c))) + o(1),
=0 - Bandy = 1-4.

Theo(1)-terms and in particular their quantification depend on thrext. In the as-
sumption of a theorem we have universal quantification, encbnclusion existential
one.

We get some concentration results.

Lemma 20. For F' = F(V,b/n? ¢/n) we have with high probability the following
equalities:

|BO,F| = fon,
|Br| = Bn,
|Bl,F| = Gin
[Int| = yn.

Proof. (a) follows from independence. (b) from independence, itmming on the fact
that B, r is a set of variables satisfying (a). Note that we only neeadard second
moment argument for the concentration (no stronger bouke<hernoff. )

Lemma 21. We consider(V,b/n? c¢/n) with b = 1/4,¢ = 3/4. Let B, be a set
consisting of3yn variables. LetB; be disjoint fromB, with 5,n variables. LetF' be
a random instance conditional on the event tat; = B, and B, p = B;. For the
conditional probabilities holds:

(a) Prob Fjht has no cyclg > ¢ >0

(b) Prob £z has no cycle > ¢ > 0

Given the preceding three lemmas, Theorem 18 follows by @aimdpthem. Just
for orientation (by pocket calculator) some values:

By = exp(—c) = 0.4723, ¢(1 — B) ~ 0.3957,
B = exp(—c(1 —fy)) ~ 0.67319
By~ 0.2, v~ 0.3268

Proof of Lemma 21 (a)/Ve abbreviate

c 3 2-0
d=3b+- = - — = - ——.
v 4y 4 v
In estimates we sometimes and without explicitly mentignrirenlarged by a suffi-
ciently small but constant amount. This in order to bodnd o(1) above by (the en-
larged)d. Not that this is particularly simplifying when boundingnes like (d+o(1))".

(4)
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Crucial isdy = 3/4-(2 — ) < 1. The valueg above yieldsiy ~ 0.9951.
More exactly:ln(15/7) > 0.76 > 3/4 = ¢ (pocket calculator) theaxp(—c) < 7/15
thenc(l — exp(—c)) < 2/5. As exp(2/5) < 3/2 (pocket calculator) we havg =
exp(—c(1 —exp(—c))) > 2/3and3/4(2 — 3) < 1.

We denotex|nt = (V, Ejpt)- Consider two fixed variables y €Int, thenz — y €
E\nt With probability

(i i 3(n—2) - E 1
n2 n 1—(1—¢/n)r-1-Pon

_ (% <3b+ %)) (1+40(1)) = %(1 +o(1)).

This is so because — y can be induced by one 8fn — 2) many3-clauses or by the
2-clause(x, y). The probability that the-clause(x, y) is present is
c/n-1/(1—(1—c/n)"=1=Pom) = (1/n)- (c/7)(1+ o(1)). Note that twa2-clauses like
(z,y) and(z,y’) are not stochastically independent. Asit | = yn anddy < 1t
turns out that we are in a situation analogous to Lemma 1a(#ast as far as cycles
are concerned.

W.l.0.g. we can restrict attention to cycles which do nottaontwo edges which
are induced by ong-clause inF. If this is the case we would have a piece like —
r — y — z... With z,y, 2z €Int on the cycle and &-clause(zx,y,z) € F. We
substitute -- — x — y — z... with ...z — z... to get a shorter cycle. Then we
proceed inductively.

Given a possible cycle; — zo — z3...x, — x; with z; €Int the edges which
induce this cycle are stochastically independent. Thegiitiby of the cycle< (d/n)*
Here the preceding restriction is used. The expected nupofbmrcles of lengthn >

s>2is
< (78") (s— 1) (g) < (dz)s. (5)

The expected number of cycles is asymptotically a constahi(1 — dvy) — dvy by
the logarithm series. As the present situation seems to (séigatly) more stochastic
dependencies than tlig, ,-case, the argument to come is not based on a direct (and
tedious) analysis of the dependencies between differeriesyWe use the Lovasz
Local Lemma instead. Our formulation is from page 53/54 ¢f [2

Given a constant > 0 we have a constarff such that the expected number of
cycles of length> S is < ¢ (by (5) anddy < 1.) And the probability to have a cycle
of length> S is < . We fix ¢ sufficiently small ands' accordingly. Then

ProNo cycld > ProlgNo cycle of length< S| — ¢.

To apply the Lovasz Local Lemma we need some notational papa. For2 <
s < Slet

o= (1) = 0= s ©)

S
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be the number of all cycles of lengthpossible inG|,¢. Recall the standard notation

(m)s=m-(m—1)-(m—2)---(m—s+1). We number all possible cycles of length

swith 1,...¢c, and consider events; ;, 1 < j < ¢,. Event(; ; says that cyclg of

lengths is present. Th€’, ; correspond to the events in the Lovasz Local Lemma.
We set

= (d/n)° (7)

where the present is larger by an arbitrarily small but constant amount thasdh
introduced in (4). This because we need Rfab | < z,(1 — o(1)).

The event’; ; has stochastic dependencies only with those eveéntavhose cycle
has variables in common with the cycle@f;. There areD((yn)*~!) such events. Note
thats,t < S a constant. We have

S

o [0 =202 = 2,(1 - 0(1)). (8)

t=2

As ProliCs | < z4(1 —o(1)) forall S > s > 2 the assumptions of the Local Lemma
hold. We conclude using, < (yn)®/s and the logarithm series in the subsequent
calculation

S S
Prob[ A\ = C] > J(1 — =) > ] (1 — )0
s=2 5=2

1,8

= H exp (—(dv)®/s) +o(1) = exp <—Z(d7)s/5> + o(1)

s=2

= exp (ln(l —dy) +dy+ Z (d7)3/5> +o(1)

s>S5+1

> (1 —dy) - exp(dy) +o(1) ©)

As the final term is a constant 0 independent of thé picked above the proof is
finished.

Proof of Lemma 21 (b)DenoteGp = (V, Ep). As in the proof of (a) w.l.o.g. we
restrict attention to those cycles @ for which £ does not have any-clause which
induces two edges belonging to the cycle.

Let x, y be two variables fronB. For (z,y) ¢ (B, By) the edger — y can only
be induced by one df(n — 2) 3-clauses and

Prlz —y € Eg] = 3b-(1/n) +O(1/n?) = (3/4)(1/n)(1 + o(1))

For (z,y) € (B, By) the edger — y can be induced by th&clause(z, y) or by one
of the3-clauses. We get
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Prle -y € Ep]

1 ) b\ L C 1
- U e U n 1= —c¢/n)bor

<3b+ - ex;(—cﬁo)) (1+0(1))
3

vl (1 +1 —ex;(—cﬁo)) (1+o0(1)).

SI= 3

We abbreviate

1 2 — exp(—cB)
d=1+ = :
1 —exp(—cfo) 1 — exp(—cfy)
We haveexp(—cfy) ~ 0.7 andd ~ 4.34 and(3/4)d ~ 3.3255 which is relatively large

as we need constants1. But (By, By) has only= 0.1n? many candidate edges. This
is important for our argument.

First, we count the number of possible paths throlybf length s with exactly

k < s/2 edges from( By, By) starting ink fixed slots, the first slot following the last
one. We have

< (Binfon)* - (Bn)*~** (10)
possibilities. The probability that the cycle as inducedsbgh a path is present is

13 N\ /3 1\ 1 3\ ,
< [Z.Z. B I — (Z.Z
- (n 4 d) <4 n) <n 4) d (11)
We multiply both preceding upper bounds with the (generboshd(lj) for the num-
ber of positions where the edges frqfd;, B,) start and withl /s because of cyclic

permutations. This yields that the expected number of syaldengths with exactly
k edges from( By, By) is

A0 ) o) (49

The expected number of cycles of lengtts

s/2

() £0)(
() (2
ORGES

<

[V
e~

IN

Wl »|F
= w
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We need to show that the base under the exponisrgtrictly less thari. We can write
B =exp(—c(l —0y)) = Bo-exp(chy). We recall; = 3 — 3, and calculate

pe B
_ 34 (Bo - exp(cfo) — o) - Bo 2 — exp(—cfh)
Bo exp(cfo) 1 — exp(—cfo)
_y, Blesp(en) —1) 2 — exp(—cih)
N 1 exp(cfy) — 1

=0+ Bo- (2 — exp(—cB))
= Boexp(cBo) + Fo- (2 — exp(—cfh))
= o (2 — exp(—cf) + exp(cf)) -

We bound (by calculator), < 0.48 thenc - 5y < 0.36 andexp(cGy) < 144/100
and— exp(—cfy) < —100/144. Using these bounds we get

Bo - (2 — exp(—cBy) + exp(cfy)) < 1897728/1440000 < 4/3

as3-1897727 = 5693184 < 5760000 = 1440000-4 and the base of the exponentiation
in (12) is bounded above by a constantl. Let const be this constant. We continue
as in the proof of (a) only with two parametessk instead ofs. The probability that
long cycles exist can be made arbitrarily small as censt

For a candidate cycle of lengthwith exactlyk edges from By, By) we introduce
the event’; . ; wherel < i < the number of all such cycles. We let, compare (6) and
(10)

Cs e = % : (Z) - (BinBon)" - (Bn)* 2

be an upper bound to the number of all such cycles.
Next we set, compare (7) and (11)

Any cycle of lengths has dependencies only with((3n)"~!) cycles of lengtht
whereast; — = O((1/n)"). The assumptions of the Local Lemma hold, compare (8),
and we finally get that we have no cycledGiy with probability

> (1 — cons} exp(consy + o(1)

compare (9), which is a constant0.
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