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Abstract. Ordering constraints are analogous to instances of the satisfiability problem in conjunc-
tive normalform, but instead of a boolean assignment we consider a linear ordering of the variables
in question. A clause becomes true given a linear ordering iff the relative ordering of its variables
obeys the constraint considered.
The naturally arising satisfiability problems areNP-complete for many types of constraints. The
present paper seems to be one of the first looking at random ordering constraints. Experimental
evidence suggests threshold phenomena as in the case of random k-SAT instances and thus natural
problems to be proved. We state some basic observations and prove two results:
First, random instances of the cyclic ordering and betweenness constraint (definition see Subsection
1.1) have a sharp threshold for unsatisfiability. The proof is an application of the threshold criterion
due to Friedgut.
Second, random instances of the cyclic ordering constraintare satisfiable with high probability if
the number of randomly picked clauses is< 1 · n, wheren is the number of variables considered.

Topics: Algorithms, logic, random structures, probabilistic analysis

1 Introduction

1.1 Results

Let V always be a set ofn variables. A3-clause overV is anordered 3-tuple(x, y, z)
consisting of three different variables. A formula, also called ordering constraint is a
set of clauses.

In analogy with random3-SAT formulas, a selection of the literature is [1] [3] [8]
[20] we consider random ordering constraints. The random instanceF (V, p) or the
corresponding probability space is obtained by picking each of then(n − 1)(n − 2)
clauses independently with probabilityp. ThusF (V, p) is analogous to the well known
random graphG(n, p). As common in the theory of random structures this paper deals
with properties holding with high probability, that is1 − o(1) whenn becomes large
andp = p(n) is a given function.

Given a linear ordering of alln variables a clause evaluates to true if its variables
satisfy a given constraint with respect to the ordering. A formula becomes true when
all its clauses are true. This is the satisfiability problem the present paper deals with.

The clause(x, y, z) interpreted ascyclic ordering constraintis true iff x < y < z
or z < x < y or y < z < x with respect to the ordering considered. This means
there is a cyclic permutation of(x, y, z) which is monotonously increasing with re-
spect to the ordering. Note that clauses which are cyclic permutations of each other are



2

equivalent, syntactically we distinguish them nevertheless. (Our results do not depend
on this.) The associated satisfiability problem isNP- complete as known for long [13].

In case of thebetweennessproblem the clause(x, y, z) is true iffy is betweenx and
z, that is we havex < y < z or z < y < x with respect to the the ordering considered.
The corresponding satisfiability problem isNP-complete, too [21]. Chor and Sudan
[7] consider the optimization version of the betweenness constraint with methods of
semidefinite programming.

Basic observations which follow readily from the literature as shown in Section 2
collects

Proposition 1. For random instancesF (V, p) withp = a/n2 the following events have
high probability:

(a) For a < 0.8 the random cyclic ordering and betweenness instance is satisfiable.
(b) For a > 9 · ln 3 ≈ 9.88 the the cyclic ordering instance is unsatisfiable.
(c) For a > 4 · ln 2 ≈ 2.77 the betweenness instance is unsatisfiable.

The expected number of clauses ofF (V, p) with p = a/n2 is an. Moreover, the
number of clauses is asymptotically equal toan with high probability. Techniques as
detailed on pages 34/35 of [4] enable us to show that analogous results holds for the
random instance obtained by picking a random set of exactlyan clauses. This applies
to all of our results.

The initial inspiration for this paper came from some experiments (performed only
for n ≤ 40 for running time reasons.) these experiments show that random cyclic
ordering instances with up to1.5n clauses tend to be satisfiable. For more than1.6n
many clauses we usually get unsatisfiability.

For the random betweennness constraint we experimentally observe the same phe-
nomenon foran random clauses whena is between1 and1.2. The experimental ob-
servations seem to reflect the fact that a clause interpretedas a betweenness constraint
is true for2 orderings of its variables , whereas for the cyclic orderingconstraint we
get3 (out of6.)

As far as the author knows no theoretical results concerningthe preceding observa-
tions or even random ordering constraints in general exist.We prove that the transition
from satisfiability to unsatisfiability is swift, that is there is a sharp threshold.

Theorem 2. There existsC = C(n), 0.8 ≤ C ≤ 9.88(2.77) such that for each con-
stantε > 0 the cyclic ordering constraint (betweenness constraint)F (V, p) is unsatis-
fiable with high probability ifp = (C + ε)/n2 and satisfiable ifp = (C − ε)/n2.

Note that we have only bounds onC within which the threshold valueC may
vary depending onn. The situation is analogous to random3-SAT or colourability of
random graphs, see [11]. As in these cases the proof of Theorem 2 is an application of
the threshold criterion of Friedgut [10] which gives no information of the value.

Given Proposition 1, to show thatF (V, a/n2) is satisfiable with high probability
for any a substantially larger than0.8 seems to be non-trivial. Analyzing a heuristic
algorithm which tries to find a satisfying ordering we make some progress.
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Theorem 3. For p = a/n2 with a ≤ 1 the random cyclic ordering instanceF (V, p) is
satisfiable with probability≥ ε for a constantε > 0.

Theorem 3 together with Theorem 2 implies a high probabilityresult.

Corollary 4. The random cyclic ordering constraint withp = a/n2 and a < 1 is
satisfiable with high probability.

1.2 On the literature

Ordering constraints differ from traditional constraintslike k-SAT or more general
kinds of constraints in that the underlying assignment mustbe anorderingof all vari-
ables. This means on the one hand that each variable can receive one out ofn values,
its position in the ordering. On the other hand each of then values can only be used
once. Altogether we haven! many assignments as opposed to only2n in the case of
satisfiability.

Beyond randomk-SAT there is a considerable body of work on random constraints
with finite domain from which the values for each variable aretaken. Only a small
selection of the literature, in part due to Michael Molloy is[18], [19], [16] . The paper
[18] points out that the investigation of thresholds is not only of structural interest,
but has also algorithmic relevence: Random instances at thresholds often have some
algorithmic hardness which makes them attractive as test cases for algorithms.

As far as we know systematic experimental studies of random ordering constraints
have not been made by now. Our preliminary experiments indicate that instances closer
to the threshold become harder.

Many real world notions like time and space involve some kindof ordering. There-
fore it is not surprising that knowledge representation formalisms may contain or-
dering constraints. In [15] for example the cyclic orderingconstraint occurs. In [6]
a weighted version of an extended betweenness constraint isused to describe some
biological situation. These applications provide additional motivation to investigate
ordering constraints systematically. From the point of view of worst case complexity
ordering constraints are investigated in [14]. As we have many different kinds of or-
dering constraints, it is natural to try to classify them according to their complexity.
For some cases the authors can show a dichotomy either polynomial time solvable or
NP-hard. Moreover, [14] has additional pointers concerning applications of ordering
constraints.

More theoretically , besides the papers [7] and [14] mentioned above, we find [5]
which deals with non-approximability results for the optimization version of the be-
tweenness constraint.

2 Observations

We collect basic results which follow directly from the literature or are otherwise easy.
The 2-core of a constraintF is the (unique) largest subformula ofF in which each
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variable which occurs at all has degree≥ 2 , that is occurs at least twice. The2-core is
non-trivial iff it is not empty.

Proposition 5. Let F be a constraint which has only the trivial2-core.F interpreted
as a cyclic ordering (betweenness) constraint is satisfiable.

Proof. The proof is based on the fact that the clauses ofF can be satisfied one by
one. An induction on the number of clauses ofF formalizes this:F has a clauseC
which contains a variablex which occurs only once.F without C can be satisfied by
induction hypothesis. ThenC can be satisfied by putting the variablex in the right
position. Note that we can always find a suitable position forx as we have a cyclic
ordering ( betweenness) constraint.

Satisfiable constraints with non-empty2-core are easy to find:

Example 6.We consider the orderingx < y < z < u and the constraint
(x, y, z), (x, z, u), (y, z, u). Each variable occurs twice. The constraint (interpreted as
betweenness or cyclic ordering constraint) is satisfied by the ordering.

Molloy’s Theorem 1.2, on page 666 of [20], for graphs and hypergraphs can be
read as threshold theorem for the appearance of a non-trivial 2-core inF (V, a/n2) :

Proposition 7. Let
t = min

0<f<1
− ln(1 − f)/(3 · f 2).

(a) If a < t the2-core ofF (V, a/n2) is empty with high probability.
(b) If a > t the random constraintF (V , a/n2) has a2-core of linear size with

high probability.

First insight into the curve− ln(1 − f)/(3 · f 2) can be obtained by looking at the
logarithm series− ln(1−f) = f +f 2/2+f 3/3+ · · · which holds for0 ≤ f < 1. The
t in the preceding proposition is slightly larger than0.8. Therefore the cyclic ordering
(resp. betweenness ) constraintF (V, a/n2) is satisfiable with high probability fora <
0.8 proving Proposition 1 (a) .

Concerning unsatisfiability we can use a standard first moment argument (as know
from randomk-SAT for example): We consider the cylic ordering constraint. Given a
fixed linear ordering with the three variablesx, y, z ordered asx < y < z. The clause
(x, y, z) and its cyclic permutations become true under the ordering.The remaining3
clauses overx, y, z are false. Altogether we have asymptoticallyn3/2 clauses which
are false under the ordering. As clauses are picked independently the probability that a
randomF (V, a/n2) is true under the ordering therefore is

(1 − a/n2)n3/2 < exp(−an/2).

The expected number of linear orderings satisfying a randomF (V, a/n2) then is
bounded above byn!×exp(−an/2). This approaches0 only whena ≥ ln n. Markov’s
inequality shows that the random formula is unsatisfiable with high probability in this
case. Concerning betweenness constraints we get2n3/3 instead of then3/2 before and
thus essentially the same result. We can get unsatisfiability already for constanta.
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Lemma 8. (a) LetF be a satisfiable cyclic ordering constraint. There exists a partition
of the variables into3 setsK, L, M each withn/3 variables such that we have no
clause fromK × M × L or its cyclic permutations inF.

(b) Let F be a satisfiable betweenness constraint. There exists a partition of the
variables into two setsK, L each withn/2 variables such that we have no clause from
K × L × K and no clause fromL × K × L in F.

Proof. (a) Let K be the first third of the variables of the satisfying ordering, L the
second third , andM the last third of the variables. A clause fromK × M × L and its
cyclic permutations is false under the ordering and thus must not belong toF.

(b) As (a) using the first and second half of the variables instead.

We come to the proof of Proposition 1 . Given a partitionK, L, M as in the proof of
Lemma 8. There are3(n/3)3 clauses belonging toK×M×L or its cyclic permutations.
The probability that a random formula does not contain one ofthese clauses is

(1 − a/n2)3(n/3)3 ≤ exp(−an/9).

The expected number of partitionsK, L, M such that we have no clause fromK ×
M ×L or its cyclic permutations is bounded above by3n · exp(−an/9) = exp((ln 3 −
a/9)n). This goes to0 whena/9 > ln 3 and the first moment argument implies (b) of
Proposition 1. Concerning (c) we proceed analogously.

3 The threshold

We refer to [11] which we apply to our setting of random formulas. Random formu-
las can be seen as random3-uniform directed hypergraphs. Unsatisfiability of a cyclic
ordering (betweenness) constraint is a monotone property,as it is preserved under the
additon of clauses. Morever, unsatisfiability is a propertywhich is invariant under per-
mutation of the variables. Therefore it satisfies the symmetry properties necessary for
the application of the criterion from [11].

We need some abbreviations. For a formulaF we abbreviate the property thatF
is unsatisfiable by UNSAT(F ), in case of the random formulaF = F (V, p) we also
write UNSAT(V, p). SAT(F ) meansF is satisfiable.

A variety of types of random formulas are needed: The random instanceF (V, p)∪
F (V, q) is constructed by first pickingF (V, p) and second and independently adding
F (V, q) to the formula picked . For a given formulaM the random formulaM∗ is a
random copy ofM (formula isomorphic toM) on variables fromV. A formula M is
balanced iff its average degree (=

∑

x degree ofx in M / ♯variablesx of M) is not
smaller that that of any subformula ofM. The formulaF (V, p) ∪ M∗ is obtained by
pickingF (V, p) andM∗ independently and forming their union.

We say that UNSAT(V, p) has a coarse threshold iff we have a critical probability
pc = pc(n) and (small) constantsε, ε′ and δ such thatε < Pr[ UNSAT(V, pc) ] <
1 − ε andε′ < Pr[ UNSAT(V, (1 + δ)pc) < 1 − ε′. In the case at handpc = a/n2.
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And a threshold is coarse iff adding an arbitrarily small, but linear number of clauses
to F (V, pc) doesnot yield unsatisfiability with high probability (cf. the remark after
Proposition 1. )

There exist several formulations of Friedgut’s threshold criterion. In our case most
convenient to apply is

Fact 9 (cf. Corollary 2.3 of [12]). If UNSAT(V, p) has a coarse threshold then there
exist

- a (critical) probabilitypc = pc(n),
- a balanced formulaM and a constantb > 0 , and
- a constantε > 0

such that for infinitely manyn we have

- ε < Pr [ UNSAT(V, pc) ] < 1 − ε,
- the expected number of copies ofM in F (V, pc) is ≥ b , and
- Pr [ UNSAT(F (V, pc) ∪ M∗) ] − Pr [ UNSAT(F (V, pc) ∪ F (V, εpc)) ] ≥ ε.

Fact 9 says that in case of a coarse threshold there exists a formulaM such that
addingM∗ to F (V, pc) is more likely to makeF (V, pc) unsatisfiable than adding a
(small) but linear number of random clauses. We will show that anyM with the prop-
erties of Fact 9 such that Prob[F (V, pc ∪ M∗) unsatisfiable] ≥ Prob[F (V, pc) unsat-
isfiable] + ε necessary for the last inequality cannot satisfy the last inequality.

In the subsection to come we prove a crucial Lemma (from whichthe experienced
reader already sees that we must have a sharp threshold.) Thedetails for the contradic-
tion are presented Subsection 3.2.

3.1 The Lemma

We split the of variablesV into two disjoint subsetsU andW . U is a set ofk variables
wherek is a fixed constant independent ofn, andW contains the remainingn − k
variables. The random instanceF (U, W, p) is obtained by picking each clause with at
least one variable fromU independently with probabilityp.

For arbitrary fixed formulasF over W andF ∗ over U ( think of F ∗ as a fixed
instance of the random formulaM∗ above) we consider the random formula overV =
W ∪ U given byF ∪ F ∗ ∪ F (U, W, p). We assume thatp = c/n2 wherec1 < c < c2

for constantsc1, c2 > 0 independent ofn. Note thatc = c(n) itself may depend onn.
For the rest of this subsectionF andF ∗ are given formulas and both satisfiable

as a betweenness (cyclic ordering) constraint. Letx1 < x2 < · · · < xn−k be an
ordering satisfyingF and y1 < y2 < · · · < yk for F ∗ (where{x1, . . . , xn−k} =
W, {y1, . . . , yk} = U.) We assume that the underlyingn is sufficiently large and
ε > 0 is a constant independent ofn. Let UNSAT be the event that the random instance
F∪F ∗∪F (U, W, p) is unsatisfiable as a betweenness (cyclic orering ) constraint. Recall
thatF (W, p) is the usual random instance with variables fromW.

We have
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Lemma 10. Let ε > 0 be a constant. If Pr[UNSAT]> ε then for any constantδ > 0
the random instanceF ∪ F (W, δ · p) interpreted as a betweennness (cyclic ordering)
constraint is unsatisfiable with high probability.

Proof idea.Prob[ UNSAT ] > ε means that Prob[ F ∪ F ∗ ∪ F (U, W, p) is un-
satisfiable] > ε . Unsatisfiability is only caused byF (U, W, p). If F ′ = F (U, W, p)
causes unsatisfiability thenF ∪ F ∗ ∪ F ′ is in particular false under all orderings with
W1 < U < W2 for W1 ∪ W2 = W. That is, we consider the orderings in which the
variables ofU are adjacent. When we substitute the variables fromU in F ′ with an
arbitrary variablex from W we get an unsatisfiable formula overW. As F (U, W, p)
causes unsatisfiabilty with probability> ε we get that a linear number of random
clauses overW makesF unsatisfiable even with high probability. This holds, as in this
caseeach variable ofW can serve asx.

Proof. As F ∪ F ∗ is satisfiable, unsatisfiability is due to the clauses fromF (U, W, p).
The expected number of clauses ofF (U, W, p) is E[♯F (U, W, p)] = 3kc(1 + o(1)).
Let M be a sufficiently large constant such that♯F (U, W, p) ≤ M with probability≥
1−(1/10)ε. Such anM = 10 E[♯F (U, W, p)]/ε can be found with Markov’s inequality.

We have

Pr[UNSAT | ♯F (U, W, p) ≤ M ]

≥ Pr[UNSAT and ♯F (U, W, p) ≤ M ]

≥ Pr[UNSAT] − Pr[♯F (U, W, p) > M ]

≥ ε · (1 − 1/10) = (9/10)ε.

Let F (U, W, M) be the random instance which is a uniform random set of exactly
M clauses with at least one variable fromU. The random instanceF∪F ∗∪F (U, W, M)
is unsatisfiable with probability≥ 9/10ε by monotonicity, which is shown by the
following (not unknown, cf. [4], page 34 for related arguments) general consideration:

We consider a general monotonously increasing eventA over{0, 1}n endowed with
the binomial distribution withp. Let M ≤ n andam be the number of elements ofA
with exactlym 1’s, let bm be the binomial coefficient

(

n
m

)

.
We need to show that

∑M
m=0 ampm(1 − p)n−m

∑M
m=0 bmpm(1 − p)n−m

≤
aM

bM

. (1)

Note that the left-hand side is the conditional probabilityand the right-hand side the
probability for exactlyM 1’s under the uniform distribution.

We observe that

am ·

(

n − m

M − m

)

≤ aM ·

(

M

m

)

.

This because the number of ordered pairs of elements(a, b) with a, b ∈ A such thata
has exactlym 1’s andb hasM 1’s and extendsa is equal to the left hand side of the
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preceding inequality. Starting withb eacha can be obtained by deleting a set ofM−m
1’s out ofM . This gives the upper bound.

Next we observe that

am ≤ aM

(

M
m

)

(

n−m
M−m

) and

(

M
m

)

(

n−m
M−m

)bM = bm.

This implies the required result by substitution into inequality (1).
Let F (W, x, M) be the random set ofM clauses each of them containing the

variablex. Next we show thatF ∪ F (W, x, M) is unsatisfiable with probability≥
(9/10)ε .

Let{L1, . . . LM} be an instance ofF (W, x, M). If F∪{L1, . . . , LM } issatisfiable
then we have thatF ∪ F ∗ ∪ {K1, . . . , KM } is satisfiable whereKi is obtained by
replacing the variablex in Li with an arbitrary variable fromU. For if

x′
1 < x′

2 · · · < x′
i < · · · < x′

n−k where x′
i = x

makesF ∪ {L1, . . . , LM } true thenF ∪ F ∗ ∪ {K1, . . . , KM } is true for

x′
1 < x′

2 . . . x′
i−1 < y1 < y2 < . . . < yk < x′

i < x′
i+1 < · · · < x′

n−k.

This holds becausey1 < y2 < . . . < yk is a satisfying ordering ofF ∗ and theKi’s
contain exactly one variable fromU and do not contain the variablex = x′

i any more.
Each satisfiable instance ofF ∪ F (W, x, M) induceskM distinct satisfiable in-

stances ofF ∪F ∗ ∪F (U, W, M). Moreover, for different instances ofF (W, x, M) the
corresponding sets ofkM instances ofF (U, W, M) are disjoint. Therefore the num-
ber of instances ofF (U, W, M) inducing satisfiabilty is at least as large askM× the
number instances ofF (W, x, M) inducing satisfiability.

We come to the number of all instances. With high probabilityan instance of
F (U, W, M) doesnot contain:

- A clause with two or three variables fromU.
- Two or more clauses with the same two variables fromW.
- A clause withx.

This follows ask and M are both constant by elementary expectation calculations
together with Markov’s inequality. ThereforeF (U, W, M) has (asymptotically because
of the three preceeding items )

(

3(n − k − 1)(n − k − 2)k

M

)

=
(3(n − k − 1)(n − k − 2)k)M

M !
(1 + o(1))

many instances. ForF (W, x, M) we have

(

3(n − k − 1)(n − k − 2)

M

)

=
(3(n − k − 1)(n − k − 2))M

M !
(1 + o(1))
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instances. The quotient iskM . As F (U, W, M) and F (W, x, p) are uniformly dis-
tributed we finally get

Pr [ F ∪ F (W, x, M) sat.] ≤ Pr [ F ∪ F ∗ ∪ F (U, W, M) sat. ] ≤ (1/10)ε.

Let ε′ ≥ (9/10)ε be the probability thatF ∪ F (W, x, M) is unsatisfiable. An instance
{L1, . . . , LM} of F (W, x, M) is calledbad iff F ∪ {L1, . . . , LM} is unsatisfiable.

We come toF (W, p′) with p′ = δp. Let BADx be the the event: There areexactly
– only to simplifiy the subsequent calculation –M clauses containingx and this set of
clauses is bad. The probability of BADx is (recallp = c/n2)

= ε′ ·

(

3(n − k − 1)(n − k − 2)

M

)

p′M · (1 − p′)3(n−k−1)(n−k−2)−M

= ε′ ·
(3δc)M

M !
· exp(−3δc)(1 + o(1)).

We abbreviate the probability of BADx as

ε′′ = ε′ ·
(3δc)M

M !
· exp(−3δc) , still a constant> 0.

The expectation of the number of variablesx such that BADx is = ε′′n. The subse-
quent second moment argument shows that we have at least one variablex with BADx

with high probability, and the lemma holds.
The second moment argument rests on the observation that theevents BADx and

BADy are essentially independent forx 6= y: The number of clauses overW containing
bothx andy is 3 · 2 · (n − k − 2) and we have asymptotically

PROB [ BADx and BADy ]

=

(

ε′
(

3(n − k − 1)(n − k − 2) − 6(n − k − 2)

M

)

p′M · (1 − p′)3(n−k−1)(n−k−2)−M

)2

= ε′′2(1 + o(1)),

as the probability of clauses with bothx andy is O(1/n). The remaining calculation
only applies Tchebyscheff’s inequality, see [2] for the argument.

3.2 The contradiction

Proof of Theorem 2.We show that the items as necessary for a coarse threshold as
stated in Fact 9 together cannot exist. Thus the threshold cannot be coarse, but must be
sharp and Theorem 2 holds.

We have from Proposition 1 thatpc = a/n2 and0.8 ≤ a ≤ 9.88.
We show that the formulaM must be satisfiable as cyclic ordering (betweenness)

constraint. This follows because (as detailed next)M has no non-trivial2-core, cf.
Section 2.
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Let k be the number of variables inM andt be the number of clauses. Then the
expectation of the number of copies ofM is O

(

nk ·
(

a
n2

)t
)

. We must havet ≤ k/2 in

order for the expectation to be≥ b. An analogous argument applies to any subformula
of M asM is balanced. Ask/2 clauses have3k/2 < 2k slots fork variables there
must always be a variable of degree< 2.

To visualize the calculation of some (conditional) probabilities we generateF (V, p)∪
M∗ with a different process from the standard one (first, generate F (V, p) and second
and independently addM∗.) The distribution however remains the same. Additional
visualization (if necessary) can be gained by thinking in terms of a probability tree.
Random steps occurring sequentially are independent.

1. Pick a random setU ⊆ V of k variables (k is the number of variables ofM . )
Generate the random formulaM∗ isomorphic toM onU. We letW = V \ U.

2. AddF (W, pc) to M∗.
3. AddF (U, W, pc) (cf. the beginning of Subsection 3.1 for notation.)

We come toF (V, pc) ∪ F (V, εpc). Given an arbitrary setU of k variables,W =
V \ U, it can be generated as follows.

1. GenerateF (W, pc).
2. GenerateF (W, εpc)
3. Generate the rest necessary to get an instance ofF (V, pc) ∪ F (V, εpc). (Note

V \ W 6= ∅. )

Let ε > 0 be fixed and assume that the last item of Fact 9 holds, that is

Pr [ UNSAT(F (V, pc) ∪ M∗) ] − Pr [ UNSAT(F (V, pc) ∪ F (V, εpc)) ] ≥ ε.

This assumption is shown to contradict Lemma 10.
Concerning the process to generateF (V, p) ∪ M∗, we observe that the probability

spaces generated by the second and third step are isomorphic. Therefore we condition
what comes on a fixed choice for the first step that is we fixU andM∗ and start the
proecess with the second step. Concerning the process forF (V, pc) ∪ F (V, εpc), we
can use the sameU.

We have
Pr [ UNSAT(F (V, pc) ∪ M∗) ] =

=
∑

F, SAT(F )

Pr [ F = F (W, pc) ] · Pr [ UNSAT(M∗ ∪ F ∪ F (U, W, pc)) ]

+
∑

F, UNSAT(F )

Pr [ F = F (W, pc) ].
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And

Pr [ UNSAT(F (V, pc) ∪ F (V, εpc)) ]

=
∑

F, SAT(F )

Pr [ F = F (W, pc) ]· Pr [ UNSAT(F∪F (W, εpc)∪“the rest, i. e. from Step 4”) ]

+
∑

F, UNSAT(F )

Pr [ F = F (W, pc) ].

Then

Pr [ UNSAT(F (V, pc) ∪ M∗) ] − Pr [ UNSAT(F (V, pc) ∪ F (V, εpc)) ] =

=
∑

F, SAT(F )

Pr [ F = F (W, pc) ]·

·
(

Pr [ UNSAT(M∗∪F∪F (U, W, pc)) ] − Pr [ UNSAT(F∪F (W, εpc)∪“ Step 4” ]
)

.

Our assumption above implies that we must have a satisfiable formulaF overW
such that

Pr [ UNSAT(M∗∪F∪F (U, W, pc)) ] − Pr [ UNSAT(F∪F (W, εpc)∪“ Step 4”) ] > ε.

However, such anF cannot exist because by Lemma 10 any suchF must already
satisfy

Pr [ UNSAT(F ∪ F (W, εpc)) ] = 1 − o(1).

4 The cyclic ordering constraint

We come to the proof of Theorem 3.

4.1 The reduction

In addition to3-clauses as above we need2-clauses which are ordered pairs(x, y) con-
sisting of two different variables. Their interpretation is x < y throughout,3-clauses
are interpreted as cyclic ordering constraints from now on.The graph associated to the
set of2-clausesE is calledGE . It is obtained by viewing each2-clause(x, y) as the
directed edgex → y. The random instanceF (V, p, q) is the union of two independent
instances ofF (V, 3, p) andF (V, 2, q) whereF (V, 3, p) = F (V, p) picks each3-clause
with p independently andF (V, 2, q) each2-clause withq. For subsetsA, B, C ⊆ V
we use the notation(A, B, C) = A × B × C and(A, B) = A × B.

The following definition is the basis of our reductions.
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Definition 11. Let F = D ∪ E be a constraint with2-clausesE and 3-clausesD
over the set of variablesV. Let A, B be any partition ofV into two disjoint sets with
A ∪ B = V. If E contains clauses from both,(A, B) and (B, A) the constraintsFA

andFB are not defined. Otherwise the constraintFA overA is defined as:
The2-clauses ofE which belong to(A, A) are inFA.
Let (x, y, z) ∈ D with at least two variables belonging toA. It induces clauses as

follows inFA :

- (x, y, z) ∈ (A, A, A) implies (x, y, z) ∈ FA

- (x, y, z) ∈ (A, A, B) implies (x, y) ∈ FA

- (x, y, z) ∈ (A, B, A) implies (z, x) ∈ FA

- (x, y, z) ∈ (B, A, A) implies (y, z) ∈ FA.

ConstraintFB is defined in totally the same way exchanging the roles ofA andB
above.

Note that the2-clauses fromF belonging to(A, B) (resp.(B, A)) get lost when
constructingFA andFB. WhenGE has a cycle the whole cycle must either belong to
A or toB in order thatFA andFB are defined.

The next Lemma states the satisfiability properties which are preserved when com-
paringF with FA andFB.

Lemma 12. F without2-clauses from(B, A) is satisfiable by a linear ordering with
A < B iff FA andFB are satisfiable.

Proof. Let F be without2-clauses from(B, A). ThenFA andFB are defined.
For “⇒”, let F be satisfiable by an ordering withA < B. ThenFA andFB are

satisfied by the same ordering, or better its restrictions toA andB.
Look at FA. The 3-clauses fromFA are3-clauses fromF and therefore are true

under the ordering. LetC = (x, y) be a2-clause fromFA. ThenC is true by a case
distinction as to which clause fromF inducesC.

- C is a2-clause fromF. thenC is true.
- C is induced by the3-clause(x, y, z). As z ∈ B in this case we havex < y in the

ordering makingF true andC is true.
- C is induced by(y, z, x). Againx < y asz ∈ B.
- C is induced by(z, x, y). Thenx < y as before.

By Definition 11 these are all possibilities which induceC in FA and we are finished.
In the same way we check thatFB is true under the ordering ofF. For completeness

the details: The3-clauses are true. Again letC = (x, y) be a2-clause fromFB. We
look at the cases which induceC.

- C is a2-clause fromF. ThenC is true.
- C is induced by the3-clause(x, y, z). As z ∈ A andA < B we havex < y in the

ordering makingF true andC is true.
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- C is induced by(y, z, x). Againx < y asz ∈ A.
- C is induced by(z, x, y). Thenx < y as before.

These are all possibilities to induceC andFB becomes true.
Now “⇐”. Assume thatFA is true under an ordering ofA andFB under one ofB.

We show thatF becomes true under the ordering in which the one ofB is appended to
thatA so that in particularA < B.

The2-clauses fromF belong to(A , A), (B , B), or (A , B) and they are all true
under the ordering becauseFA andFB are true.

Concerning the3-clauses ofF we have some cases.3-clauses from(A, A, A) and
(B, B, B) are true asFA andFB are true.

We look at3-clauses fromF with exactly two variables fromB. Let C = (x, y, z)
be such a clause.

- x, y ∈ B. Thenx < y as we have the2-clause(x, y) in FB andC becomes true as
A < B.

- x, z ∈ B. Thenz < x andC is true asA < B.
- y, z ∈ B. Theny < z and we are done.

We omit the analogous argument for3-clauses with two variables fromA.

We consider a set of2-clausesE over the set of variablesV. The following notions
are the natural graph theoretic ones as induced byGE the graph associated toE. The
outdegree of a variablex, denoted as OdegE(x) , is the number of clauses(x,−) ∈ E.
The set of neighbors ofx is NE(x) = {y|(x, y) ∈ E}. A neighbor ofx is reached by
oneedge fromx in GE.

Definition 13. (a) The boundaryB0 = B0,E is defined by

B0 = {x|Odeg(x) = 0}.

(b) B1 = B1,E is

B1 = {x|NE(x) ⊆ B0 andNE(x) is not empty}.

(c) B = BE = B0 ∪ B1 is the boundary.
(d) The interior is

Int = IntE = V \ B.

(e) WhenF consists of3-clausesD and2-clausesE we letBF = BE .... for all
notions introduced.

The proof of Theorem 3 is an analysis of the reduction as visualized in Figure 1.
F is a formula overV consisting only of3-clauses.A is a fixed set of one half of the
variables fromV andB (not to be confused with a boundary ) is the other half.

Note that all formulas of the tree comply with Definition 11 and thus are defined,
as any formulaF has no2-clauses from(BF , IntF ) by Definiton 13. With Lemma
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Fig. 1.

12 the rootF is satisfiable if all formulas at the leaves are satisfiable. We prove that
for F = F (V, 1/n2) the probability of the event thatall formulas at the leaves
F ′

Int
F ′

, F ′
B

F ′
, F ′′

Int
F ′′

, F ′′
B

F ′′
are simultaneously satisfiable does not go to0.

Theorem 14 concerns the first step of the reduction and shows thatF ′ andF ′′ can
be treated independently. Note that to us only the casea = 1 of the Theorem is of
interest.

Theorem 14. Leta be a constant.F (V, 3, a/n2) is satisfiable with probability> ε′ >
0 if F (V, b/n2, c/n) with b = (1/4)a and c = (3/4)a is satisfiable with probability
> ε > 0.

Proof. We consider an arbitrary but fixed partitionA, B of then variables inV into
two halves, for exampleA = {x1, . . . , xn/2}. WhenF = F (V, 3, a/n2) the3-clauses
of FA according to Definition 11 are distributed asF (A, 3, a/n2).

A given 2-clause(x, y) is induced by3n/2 many3-clauses as can easily checked
in Definition 11. It is present inFA with probability1 − (1 − a/n2)3n/2 = 3a/(2n),
asymptotically, independently. Therefore the2-clauses ofFA are distributed asF (A, 2, 3a/(2n)
and independent from the3-clauses. Substitutingm = n/2 we get thatFA is distributed
asF (A, (1/4)a/m2, (3/4)a/m).

The same applies toFB and the claim follows with Lemma 12 withε′ = ε · ε. Note
thatFA andFB are independent asA, B are sets fixed beforehand.

4.2 The second step of the reduction

We analyze the probability that the formulas at the leaves ofFigure 1 are satisfiable by
investigating (the absence of) cycles in graphs associatedto these formulas.

Definition 15. LetF be a constraint of2- and3-clauses.
(a) A trivial ordering ofF is an ordering which hasx < y for each2-clause(x, y)

andx < y andy < z for each3-clause(x, y, z).
(b) The directed graph associated toF is denoted byGF . It has as vertices the

variables ofF. Its edges are the2-clauses ofF and for each3-clause(x, y, z) of F the
three edges(x, y) , (y, z) and(x, z).
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(c) By a cycle of lengths ≥ 2 in GF resp.F we mean a set of edges(x1, x2), (x2, x3), . . . (xs x1)
in GF with x1, . . . xs all different.

Obvious consequences of the previous definition collects

Lemma 16. LetF be a formula.
(a) F is satisfiable iff there exists a formulaH which contains the2-clauses ofF

and for each3-clause ofF a cyclic permutation of this clause such that the graphGH

has no cycle.
(b) F is satisfiable by a (or any) trivial ordering iffGF is cycle free.
(c) A trivial ordering ofF can be found efficiently by sortingGF topologically.

The proof of Theorem 3 proceeds by showing the random graphs associated to the
formulas at the leaves of Figure 1 are cycle free with probability not going to0.

We take a look at cycles in standard random graphs. Following[9] who treat the
undirected case, [22] seems to be the first work on the directed case. The classical
directed random graphG(n, p) is obtained by picking each of then2 directed edges
(including loops) with probabilityp independently. The basic result concerning cycles
is from [22] and [17], the giant component threshold.

Fact 17. LetG = G(n, c/n).
(a) For constant0 ≤ c ≤ 1 Prob[G has a directed cycle] = c(1 + o(1)).
(b) If c > 1 theG has a strongly connected component of linear size with high proba-
bility. For c < 1 we have no strongly connected component of linear size.

Note that the our graphs neither are standard random graphs,in particular edges
may be dependent, nor are they independent of each other,F ′

Int
F ′

andF ′
B

F ′
are depen-

dent as are theF ′′’s.
To provide some perspective, we sketch the proof in [22] of (a) (it should be well

known to the random graph expert). Letp = c/n with c < 1.
For k ≥ 1 we have

(

n
k

)

· (k − 1)! possible cycles of lengthk overn vertices. The
probability of a fixed cycle ispk and the expected number of cycles of lengthk is
asymptotically

∑

C

Prob[C] =
ck

k

whereC ranges over all possible cycles of lengthk. Disregarding any asymptotic detail
we have that the expectation of the number of all cycles is

∑

D

Prob[D] =
∑

k≥1

∑

C

Prob[C] =
∑

k

ck

k
= − ln(1 − c)

by the logarithm series. HereD ranges over all possible cycles and givenk, C over all
cycles of lengthk.
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Next an “obvious sieve” (citation from [9]). The probability that a cycle exists is

∑

D

Prob[D] −
∑

D1,D2

Prob[D1 andD2] + · · · (2)

whereD ranges over all cycles,D1, D2 ranges over allsets of two different cycles.
. . .D1, . . .Ds over all sets of exactlys cycles. Some more detailed analysis of the
probability of cycles with common edges shows that sufficiently many sets of different
cycles are independent and

∑

D1,...,Dm

Prob[D1 and . . . andDk] =
1

m!
·

(

∑

D

Prob[D]

)m

=
1

m!
(− ln(1 − c))m

The definiton of the exponential function yields the result by plugging this into equa-
tion (2). In our case the detailed analysis of the dependencies between different cycles
required here may well be possible, but should be lengthy. Weuse a different approach
(Lovasz Local Lemma) to bound the probability of the absenceof cycles from below.

The subsequent Theorem 18 together with Lemma 12 and Theorem14 implies
Theorem 3.

Theorem 18. For F = F (V, b/n2, c/n) with b = 1/4 andc = 3/4 we have
Prob[FInt andFB are satisfiable] is bounded strictly above0.

To prove Theorem 18 we show that bothFInt andFB are cycle free in the sense of
Definition 15 (c). Note thatFInt andFB are not any more independent asFA andFB

are in Theorem 14.
The stochastic dependency problem requires some preparation. Usually one thinks

of F = F (V, p, q) as being generated first by picking each3-clause with its probability
p and then each2-clause withq. We use a different generation process which in the end
yields the right distribution. In its first step the process determines the boundariesB0,E

, B1,E whereE is the set of2-clauses of a random formulaF. This allows to calculate
probabilities conditional on given boundariesB0 andB1 in a transparent way.

The process is motivated by the following formula. Given disjoint setsB0 andB1

and we observe that Prob[B0,E = B0 andB1,E = B1] is equal to the following big
product

∏

x∈B0

(1 − q)n−1 ×
∏

x∈B1

Prob[NE(x) ⊆ B0 and |NE(x)| ≥ 1] ×

×
∏

x∈Int
Prob[NE(x) ∩ V \ B0 is not empty]. (3)

This is the case as edges starting at different vertices are independent asGE, the graph
associated toE is a directed graph.
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For anyx we havex ∈ B0,E with probability(1 − q)n−1 independent of anything
else. LetB0 be a fixed set,b0 = |B0|. Condition onB0,E = B0 and assume that the
2-clausesE of a random formula come. For anyx /∈ B0 we get thatx ∈ B1,E with
probability
(1 − (1 − q)b0)(1 − q)n−1−b0 independent of anything else. . In the same way we get
for x /∈ B0 thatx ∈ IntE with probability1 − (1 − q)n−1−b0 .

This suggests the following generation process ofF = F (V, p, q). The process
has five independent steps, that is the probabilities multiply. Recall the notation of
Definition 13 (e).

1. For x ∈ V decide independentlyx ∈ B0,F with probability (1 − q)n−1 and
x /∈ B0,F with probability1 − (1 − q)n−1. We abbreviateb0 = |B0,F |.

2. Forx /∈ B0 decide independentlyx ∈ B1,F with

(1 − q)n−1−b0 · (1 − (1 − q)b0)

1 − (1 − q)n−1
,

decidex /∈ B1,E with
1 − (1 − q)n−1−b0

1 − (1 − q)n−1

(Note that the sum of these probabilities is1.)
3. Now we start to generate the2-clauses in the boundaryB = B0 ∪ B1. For each

x ∈ B1 we consider all clauses in(x, B0). For b0 ≥ k ≥ 1 every set withk such
clauses has probability

qk(1 − q)b0−k

1 − (1 − q)b0
.

Add such a random set. (Note that for each vertex the sum of theprobabilites is1.)
4. We start to generate the2-clauses with at least one variable from the interior Int

= V \ B. Forx /∈ B we consider all clauses in(x, V \ B0). Each set ofn − 1 − b0 ≥
k ≥ 1 of these clauses has probability

qk(1 − q)n−1−b0−k

1 − (1 − q)n−1−b0

We add such a random set with its probabilty.
5. We add each clause from(Int, B0) with probabilityq independently.
With the big product above it is easy to show that this processgenerates the2-

clauses fromF (V, p, q) The 3-clauses are added and cause no problem as they are
independent of anything done by now.

The next lemma is easily proved based on the process above. The conditional prob-
abilities are simply calculated by starting the process with Step 3.

Lemma 19. Let F = F (V, p, q) and letB0, B1 be given disjoint sets of variables.
Conditional on the eventB0,F = B0 andB1,F = B1 the constraintsFIntF andFBF

are independent of each other.
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We fix some notation.

β0 = exp(−c) + o(1),

β = exp(−c(1 − β0)) + o(1)

= exp (−c(1 − exp(−c))) + o(1),

β1 = β − β0 andγ = 1 − β.

Theo(1)-terms and in particular their quantification depend on the context. In the as-
sumption of a theorem we have universal quantification, in the conclusion existential
one.

We get some concentration results.

Lemma 20. For F = F (V, b/n2, c/n) we have with high probability the following
equalities:

|B0,F | = β0n,

|BF | = βn,

|B1,F | = β1n

|Int| = γn.

Proof. (a) follows from independence. (b) from independence, conditioning on the fact
thatB0,F is a set of variables satisfying (a). Note that we only need a standard second
moment argument for the concentration (no stronger bounds like Chernoff. )

Lemma 21. We considerF (V, b/n2, c/n) with b = 1/4, c = 3/4. Let B0 be a set
consisting ofβ0n variables. LetB1 be disjoint fromB0 with β1n variables. LetF be
a random instance conditional on the event thatB0,F = B0 andB1,F = B1. For the
conditional probabilities holds:

(a) Prob[FInt has no cycle] > ε > 0
(b) Prob[FB has no cycle] > ε > 0

Given the preceding three lemmas, Theorem 18 follows by combining them. Just
for orientation (by pocket calculator) some values:

β0 = exp(−c) ≈ 0.4723, c(1 − β0) ≈ 0.3957,

β = exp(−c(1 − β0)) ≈ 0.67319

β1 ≈ 0.2, γ ≈ 0.3268

Proof of Lemma 21 (a).We abbreviate

d = 3b +
c

γ
=

3

4
·
γ + 1

γ
=

3

4
·
2 − β

γ
. (4)

In estimates we sometimes and without explicitly mentioning it enlarged by a suffi-
ciently small but constant amount. This in order to boundd + o(1) above by (the en-
larged)d. Not that this is particularly simplifying when bounding terms like(d+o(1))n.
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Crucial isdγ = 3/4 · (2 − β) < 1. The valueβ above yieldsdγ ≈ 0.9951.
More exactly:ln(15/7) > 0.76 > 3/4 = c (pocket calculator) thenexp(−c) < 7/15
thenc(1 − exp(−c)) < 2/5. As exp(2/5) < 3/2 (pocket calculator) we haveβ =
exp(−c(1 − exp(−c))) > 2/3 and3/4(2 − β) < 1.

We denoteGInt = (V, EInt). Consider two fixed variablesx, y ∈Int, thenx → y ∈
EInt with probability

1 −

(

1 −
b

n2

)3(n−2)(

1 −
c

n
·

1

1 − (1 − c/n)n−1−β0n

)

=

(

1

n

(

3b +
c

γ

))

(1 + o(1)) =
d

n
(1 + o(1)).

This is so becausex → y can be induced by one of3(n − 2) many3-clauses or by the
2-clause(x, y). The probability that the2-clause(x, y) is present is
c/n · 1/(1− (1− c/n)n−1−β0n) = (1/n) · (c/γ)(1+ o(1)). Note that two2-clauses like
(x, y) and(x, y′) are not stochastically independent. As| Int | = γn anddγ < 1 it
turns out that we are in a situation analogous to Lemma 17 (a),at least as far as cycles
are concerned.

W.l.o.g. we can restrict attention to cycles which do not contain two edges which
are induced by one3-clause inF. If this is the case we would have a piece like· · · →
x → y → z . . . with x, y, z ∈Int on the cycle and a3-clause(x, y, z) ∈ F. We
substitute· · · → x → y → z . . . with . . . x → z . . . to get a shorter cycle. Then we
proceed inductively.

Given a possible cyclex1 → x2 → x3 . . . xs → x1 with xi ∈Int the edges which
induce this cycle are stochastically independent. The probability of the cycle≤ (d/n)s

Here the preceding restriction is used. The expected numberof cycles of lengthn ≥
s ≥ 2 is

≤

(

γn

s

)

· (s − 1)! ·

(

d

n

)s

≤
(dγ)s

s
. (5)

The expected number of cycles is asymptotically a constant,− ln(1 − dγ) − dγ by
the logarithm series. As the present situation seems to have(slightly) more stochastic
dependencies than theGn,p-case, the argument to come is not based on a direct (and
tedious) analysis of the dependencies between different cycles. We use the Lovasz
Local Lemma instead. Our formulation is from page 53/54 of [2].

Given a constantε > 0 we have a constantS such that the expected number of
cycles of length> S is < ε (by (5) anddγ < 1.) And the probability to have a cycle
of length> S is < ε. We fix ε sufficiently small andS accordingly. Then

Prob[No cycle] ≥ Prob[No cycle of length≤ S] − ε.

To apply the Lovasz Local Lemma we need some notational preparation. For2 ≤
s ≤ S let

cs =

(

γn

s

)

· (s − 1)! = (γn)s/s (6)
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be the number of all cycles of lengths possible inGInt. Recall the standard notation
(m)s = m · (m− 1) · (m− 2) · · · (m− s+1). We number all possible cycles of length
s with 1, . . . cs and consider eventsCs,j , 1 ≤ j ≤ cs. EventCs,j says that cyclej of
lengths is present. TheCs,j correspond to the eventsAi in the Lovasz Local Lemma.

We set

xs = (d/n)s (7)

where the presentd is larger by an arbitrarily small but constant amount than the d
introduced in (4). This because we need Prob[Cs,−] ≤ xs(1 − o(1)).

The eventCs,i has stochastic dependencies only with those eventsCt,− whose cycle
has variables in common with the cycle ofCs,i. There areO((γn)t−1) such events. Note
thats, t ≤ S a constant. We have

xs ·
S
∏

t=2

(1 − xt)
O(nt−1) = xs(1 − o(1)). (8)

As Prob[Cs,−] ≤ xs(1 − o(1)) for all S ≥ s ≥ 2 the assumptions of the Local Lemma
hold. We conclude usingcs ≤ (γn)s/s and the logarithm series in the subsequent
calculation

Prob[
∧

i,s

¬Cs,i] ≥
S
∏

s=2

(1 − xs)
cs ≥

S
∏

s=2

(1 − xs)
(γn)s/s

=

S
∏

s=2

exp (−(dγ)s/s) + o(1) = exp

(

−
S
∑

s=2

(dγ)s/s

)

+ o(1)

= exp

(

ln(1 − dγ) + dγ +
∑

s≥S+1

(dγ)s/s

)

+ o(1)

> (1 − dγ) · exp(dγ) + o(1) (9)

As the final term is a constant> 0 independent of theS picked above the proof is
finished.

Proof of Lemma 21 (b).DenoteGB = (V, EB). As in the proof of (a) w.l.o.g. we
restrict attention to those cycles inGB for which F does not have any3-clause which
induces two edges belonging to the cycle.

Let x, y be two variables fromB. For (x, y) /∈ (B1, B0) the edgex → y can only
be induced by one of3(n − 2) 3-clauses and

Pr[ x → y ∈ EB ] = 3b · (1/n) + O(1/n2) = (3/4)(1/n)(1 + o(1))

For (x, y) ∈ (B1, B0) the edgex → y can be induced by the2-clause(x, y) or by one
of the3-clauses. We get
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Pr[ x → y ∈ EB ]

= 1 −

(

1 −
b

n2

)3(n−2)

·

(

1 −
c

n
·

1

1 − (1 − c/n)β0n

)

=
1

n

(

3b +
c

1 − exp(−cβ0)

)

(1 + o(1))

=
1

n
·
3

4
·

(

1 +
1

1 − exp(−cβ0)

)

(1 + o(1)).

We abbreviate

d = 1 +
1

1 − exp(−cβ0)
=

2 − exp(−cβ0)

1 − exp(−cβ0)
.

We haveexp(−cβ0) ≈ 0.7 andd ≈ 4.34 and(3/4)d ≈ 3.3255 which is relatively large
as we need constants< 1. But (B1, B0) has only≈ 0.1n2 many candidate edges. This
is important for our argument.

First, we count the number of possible paths throughB of lengths with exactly
k ≤ s/2 edges from(B1, B0) starting ink fixed slots, the first slot following the last
one. We have

≤ (β1nβ0n)k · (βn)s−2k (10)

possibilities. The probability that the cycle as induced bysuch a path is present is

≤

(

1

n
·
3

4
· d

)k

·

(

3

4
·

1

n

)s−k

=

(

1

n
·
3

4

)s

dk (11)

We multiply both preceding upper bounds with the (generous)bound
(

s
k

)

for the num-
ber of positions where the edges from(B1, B0) start and with1/s because of cyclic
permutations. This yields that the expected number of cycles of lengths with exactly
k edges from(B1, B0) is

≤
1

s

(

3

4

)s (
s

k

)

· (β1β0d)k · βs−2k =
1

s

(

3

4
· β

)s

·

(

s

k

)(

β1β0d

β2

)k

.

The expected number of cycles of lengths is

≤
1

s

(

3

4
· β

)s

·

s/2
∑

k=0

(

s

k

)(

β1β0d

β2

)k

≤
1

s

(

3

4
· β

)s(

1 +
β1β0d

β2

)s

=
1

s

(

3

4

)s

·

(

β +
β1β0d

β

)s

. (12)
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We need to show that the base under the exponents is strictly less than1. We can write
β = exp(−c(1 − β0)) = β0 · exp(cβ0). We recallβ1 = β − β0 and calculate

β +
β1β0

β
· d

= β +
(β0 · exp(cβ0) − β0) · β0

β0 exp(cβ0)
·
2 − exp(−cβ0)

1 − exp(−cβ0)

= β +
β0(exp(cβ0) − 1)

1
·
2 − exp(−cβ0)

exp(cβ0) − 1

= β + β0 · (2 − exp(−cβ0))

= β0 exp(cβ0) + β0 · (2 − exp(−cβ0))

= β0 · (2 − exp(−cβ0) + exp(cβ0)) .

We bound (by calculator)β0 ≤ 0.48 thenc · β0 ≤ 0.36 andexp(cβ0) ≤ 144/100
and− exp(−cβ0) ≤ −100/144. Using these bounds we get

β0 · (2 − exp(−cβ0) + exp(cβ0)) ≤ 1897728/1440000 < 4/3

as3·1897727 = 5693184 < 5760000 = 1440000·4 and the base of the exponentiation
in (12) is bounded above by a constant< 1. Let const be this constant. We continue
as in the proof of (a) only with two parameters,s, k instead ofs. The probability that
long cycles exist can be made arbitrarily small as const< 1.

For a candidate cycle of lengths with exactlyk edges from(B1, B0) we introduce
the eventCs,k,i where1 ≤ i ≤ the number of all such cycles. We let, compare (6) and
(10)

cs,k =
1

s
·

(

s

k

)

· (β1nβ0n)k · (βn)s−2k

be an upper bound to the number of all such cycles.
Next we set, compare (7) and (11)

xs,k =

(

1

n
·
3

4

)s

· dk.

Any cycle of lengths has dependencies only withO((βn)t−1) cycles of lengtht
whereasxt,− = O((1/n)t). The assumptions of the Local Lemma hold, compare (8),
and we finally get that we have no cycle inGB with probability

≥ (1 − const) exp(const) + o(1)

compare (9), which is a constant> 0.
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