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Abstract. Ordering constraints are formally analogous to instances of
the satisfiability problem in conjunctive normal form, but instead of a
boolean assignment we consider a linear ordering of the variables in ques-
tion. A clause becomes true given a linear ordering iff the relative order-
ing of its variables obeys the constraint considered.
The naturally arising satisfiability problems are NP-complete for many
types of constraints. We look at random ordering constraints. Previous
work of the author shows that there is a sharp unsatisfiability threshold
for certain types of constraints. The value of the threshold however is
essentially undetermined. We pursue the problem of approximating the
precise value of the threshold. We show that random instances of the be-
tweenness constraint (definition see Subsection 1.1) are satisfiable with
high probability iff the number of randomly picked clauses is ≤ 0.92 · n,
where n is the number of variables considered. This improves the previ-
ous bound which is < 0.82 · n random clauses. The proof is based on a
binary relaxation of the betweenness constraint and involves some ideas
not used before.

Keywords. Algorithms, logic, random structures, probabilistic analysis.

1 Introduction

1.1 Result

Let V always be a set of n variables. A 3-clause over V is an ordered
3-tuple (x, y, z) consisting of three different variables. Thus we have
n(n − 1)(n − 2) = (n)3 clauses altogether. A formula, also called
ordering constraint is a set of clauses. Given a linear ordering of
all n variables a clause evaluates to true if its variables satisfy a
given constraint with respect to the ordering. A formula becomes
true when all its clauses are true. This is the satisfiability problem
the present paper deals with.

The clause (x, y, z) interpreted as a betweenness constraint is
true iff y is between x and z, that is we have x < y < z or z <



y < x with respect to the ordering considered. The corresponding
satisfiability problem is NP-complete [20].

We consider random ordering constraints interpreted as between-
ness constraints. The random instance F (V,m) or the corresponding
probability space is obtained by picking a sequence (or set) of ex-
actly m distinct clauses with uniform probability. Thus F (V,m) is
analogous to the well known random graph G(n,m). More closely
related to F (V,m) are random 3-SAT formulas, see for example [3],
[2] ,[9], [19]. The present paper is a successor to [13].

As common in the theory of random structures this paper deals
with properties holding with high probability, that is 1− o(1) when
n becomes large and m = m(n) is a given function. An additional
piece of notation: A sequence of events En in some probability spaces
holds with uniformly positive probability (abbreviated as wupp) if
there is a constant ε > 0 such that Prob[En] > ε for all sufficiently
large n.

The probability space F (V, p) is obtained by picking each clause
independently with probability p. We call it the binomial space. For
p = r/n2 the expected number of clauses is rn. Moreover, the num-
ber of clauses is asymptotically equal to rn with high probability.
Techniques as detailed on pages 34/35 of [4] show that the spaces
F (n,m) and F (n, p) with pn3 = m = O(n) are for most questions
of interest equivalent. This applies in particular to the satisfiabil-
ity problems treated here as they are monotone problems. Following
common usage we omit the technical details to show this each time.

The initial inspiration for the paper [13] came from some experi-
ments (performed only for n ≤ 300 for running time reasons.) These
experiments show that the random betweenness constraint becomes
unsatisfiable for rn random clauses when r is between 1.5 and 1.6.
Results obtained in the cited paper collects

Fact 1. For the random betweenness instance F (V,m) with m = rn
the following events have high probability:

(a) For r ≤ C the instance is satisfiable where C < 0.82.
(b) For r > 4 · ln 2 ≈ 2.77 the instance is unsatisfiable.
(c) There exist numbers C = C(n), 0.8 ≤ C ≤ 2.77, such that for
each constant ε > 0 we have unsatisfiability for r ≥ (C + ε) and
satisfiability for r ≤ (C − ε).
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Fact 1 (c) means that we have a sharp threshold for unsatisfi-
ability, but we do not know the threshold value precisely. This is
typical when the techniques from [11] are used. Given Fact 1 (a) it
seems to be non-trivial to show that F (V,m) is satisfiable with high
probability for any m substantially larger than 0.82n. We make some
progress and prove

Theorem 2. For m = rn with constant r ≤ 0.921 the random be-
tweenness instance F (V,m) is satisfiable wupp.

Theorem 2 together with Fact 1 (c) implies a high probability
result.

Corollary 3. The random betweenness constraint with m = rn and
r < 0.921 is satisfiable with high probability.

There are two different techniques to show that random struc-
tures are solvable (for example colourable in case of graphs or sat-
isfiable in case of k-SAT instances:) On the one hand it has been
successful to analyze heuristic algorithms and show that they find a
solution to a random instance. On the other hand, and more recently
non-constructive methods have been shown to be successful. In [1] it
is shown that random k-SAT instances are satisfiable based on the
second moment of the number of solutions and general probability
estimates. Our proof consists of a first non-constructive part based
on the second moment and a second constructive part.

1.2 More remarks the literature

Ordering constraints differ from traditional constraints like k-SAT or
more general kinds of constraints in that the underlying assignment
must be an ordering of all variables. This means on the one hand
that each variable can receive one out of n values, its position in the
ordering. On the other hand each of the n values can only be used
once. Altogether we have n! >> 2n many assignments as opposed to
only 2n in the case of satisfiability.

Beyond random k-SAT there is a considerable body of work on
random constraints with finite domain from which the values for each
variable are taken. Only a small selection of the literature, in part
due to Michael Molloy is [17], [18], [15]. The paper [17] points out
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that the investigation of thresholds is not only of structural interest,
but has also algorithmic relevance: Random instances at thresholds
often have some algorithmic hardness which makes them attractive
as test cases for algorithms.

As far as we know systematic experimental studies of random
ordering constraints have not been made. Our preliminary experi-
ments indicate that instances closer to the threshold become harder.
This shows that our study is relevant from the algorithmic point of
view.

Ordering constraints tend to occur in knowledge representation
formalisms. For example in [14] the cyclic ordering constraint occurs.
In [7] a weighted version of an extended betweenness constraint is
used to describe some biological situation. From the point of view of
worst case complexity ordering constraints are investigated in [12] .
Concerning the classification of the complexity of more general kinds
of ordering constraints a recent breakthrough is [5] . We find [6] and
[8] considering optimization versions of ordering constraints.

2 Outline of the proof of Theorem 2

We recall

Theorem 2. For m = rn with constant r ≤ 0.921 the random be-
tweenness instance F (V,m) is satisfiable wupp.

2-clause simply is a pair of distinct variables x < y, and we
have n(n− 1) = (n)2 2-clauses altogether. Given an ordering of the
variables the 2-clause is satisfied iff x is smaller than y. A boolean
assignment of the set of variables V is an assignment a : V → {0, 1}
such that n/2 variables receive the value 1 and n/2 the value 0. Thus,
in our case boolean assignments are balanced. A clause (x, y, z) is
satisfied in the boolean sense by a iff it does not evaluate to (0, 1, 0) or
to (1, 0, 1). Thus we have six out of 8 different possibilities to satisfy
a clause in the boolean sense. A formula is satisfied in the boolean
sense by a iff each clause is satisfied by a. A boolean assignment is
equivalent to a partition of V into two sets V0 and V1 each with n/2
variables: V0 the set of variables set to 0 and V1 the set of variables
set to 1. Let A = y1 < y2 < y3 < . . . < yn. The ordering A induces
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the partition Vl = {y1, . . . , yn/2} and Vu is the upper half of the
ordering. These notations directly imply

Proposition 4. If the betweenness constraint F is satisfied by the
ordering A then F is satisfied by the boolean assignment equivalent
to the partition Vl and Vu.

The following reduction allows to shrink a given betweenness
constraint.

Definition 5. Let F be a betweenness constraint and let V0, V1 be
a partition of V into two disjoint sets of n/2 variables each. If F is
satisfied by the boolean assignment equivalent to V0 and V1 we say
that the constraints F0 over V0 and F1 over V1 are defined.

Let (x, y, z) be a clause from F with at least two variables from
V0. It induces clauses as follows in F0 :

- (x, y, z) ∈ (V0, V0, V0)(= V0 × V0 × V0) implies (x, y, z) ∈ F0

- (x, y, z) ∈ (V0, V0, V1) implies x < y ∈ F0

- (x, y, z) ∈ (V1, V0, V0) implies y > z ∈ F0.

Let (x, y, z) be a clause from F with at least two variables from
V1. It induces clauses as follows in F1 :

- (x, y, z) ∈ (V1, V1, V1) implies (x, y, z) ∈ F1,
- (x, y, z) ∈ (V1, V1, V0) implies x > y ∈ F1 ,
- (x, y, z) ∈ (V0, V1, V1) implies y < z ∈ F1.

F in the preceding definition has no clauses from (V0, V1, V0) and
(V1, V0, V1) as it is satisfied by the boolean assignment associated to
V0 and V1. The simple relationship between F and F0 and F1 is made
clear by

Proposition 6. Let F, V0, and V1 be such that F0 and F1 are de-
fined. F is satisfied by a linear ordering with V0 < V1 iff F0 and F1

are both satisfiable.

We consider the random instance F = F (V,m). Given a boolean
assignment a we define indicator random variables Xa and Ya :
Xa(F ) = 1 if F is satisfied in the boolean sense by a. X =

∑
a Xa

is the number of satisfying boolean assignments. Ya(F ) = 1 iff F is
satisfied by an ordering A which induces the same partition as a.
(That is Vl = V0 and Vu = V1.) We let Y =

∑
a Ya. The following

remark follows from Proposition 4.
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Remark 7. (a) Ya ≤ Xa.
(b) Prob[F is satisfiable as betweenness constraint ] =
= Prob[Y ≥ 1] ≤ Prob[X ≥ 1]

We have n! orderings as candidate solutions to a given between-
ness constraint F. It is natural to consider the random variable which
gives the number of satisfying orderings. However, in part due to the
large number of n! >> 2n solution candidates this random variable
seems not easy to deal with. The random variable Y is useful be-
cause it counts orderings associated to the same boolean assignment
only once. It thus has to do only with 2n candidates. The proof of
the next proposition uses analytical techniques introduced in [1]. It
is in Subsection 4.2

Proposition 8. For the random instance F (V,m) with m = rn, r ≤
1 we have:
(a) E[X] ≥ (3/2)n(1−ε) for any constant ε > 0.
(b) E[X2] ≤ C · (E[X])2 for an appropriate constant C.

As X is a random variable which is ≥ 0 and has finite variance
we can use the Paley-Zygmund inequality: For any 0 ≤ Θ ≤ 1

Prob[X ≥ ΘE[X]] ≥ (1−Θ)2(E[X])2 / E[X2]. (1)

With Proposition 8 as E[X] ≥ 1 we directly get (but do not really
need)

Corollary 9. The event X ≥ 1 holds wupp.

Given a boolean assignment a, we consider the random instance
Fa(V,m) which is F (V,m) conditioned on the event Xa = 1. Thus
Fa(V,m) consists ofm clauses each satisfying the boolean assignment
a. We have b = (3/4)(n)3 · (1 + O(1/n)) clauses satisfying a. The
probability of a given instance of m such clauses is (b)m (in case of
sequences of distinct clauses .) In the next section we prove the main

Lemma 10. Let a be an arbitrary boolean assignment. We consider
the random instance Fa(V,m) with m = rn, r ≤ 0.921 . Then the
event Ya = 1 holds wupp.
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While Proposition 8 holds for r > 0.921, at present we cannot
prove Lemma 10 for r ≥ 0.93. Lemma 17 (b) gives the reason.

At this point the reader may wonder why we cannot derive The-
orem 2 directly with Corollary 9 and the preceding Lemma. This
however is not clear. The underlying probability spaces are not as
closely related as it seems. In particular an instance from F (V,m)
with X ≥ 1 may not be very random any more. It thus may not have
much to do with a random instance Fa(V,m) to which the Lemma
refers. Instead we only use the second moment of X.

Proof of Theorem 2. For a suitable constant ε > 0 and any boolean
assignment a we have with Lemma 10

E[Ya] = Prob[Xa = 1] · Prob [Ya = 1|Xa = 1] ≥ Prob[Xa = 1] · ε.

The second estimate above is Lemma 10. The first equation follows
from the formula of total probability as Prob [Ya = 1 |Xa = 0 ] = 0
(Remark 7 (a).) Then we get EY ≥ ε·EX →∞ ( with Prop. 8 (a). )

Furthermore we have

E[Y 2] ≤
∑
(a,b)

Prob[Xa = 1 and Xb = 1]

= E[X2] ≤ C(EX)2 ≤ (C/ε2)(EY )2

using Remark 7 (a) for the first estimate and Proposition 8 (b) to
bound E[X2]. Now, Theorem 2 follows with Equation (1). ut

3 Proof of Lemma 10

We switch to the binomial space because the subsequent probability
calculations appear slightly easier. The random instance F (n, p, q)
is obtained by throwing each 3-clause randomly with p and each
2-clause with q. We let

c = (1/3) · r and d = (2/3) · r, or r = 3c = (3/2)d

for the rest of this section. The main work is to prove

Lemma 11. For r = 0.921 F (n, c/n2, d/n) is satisfiable wupp.
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Proof of Lemma 10 from Lemma 11 . For F = Fa(V,m), we have
Ya(F ) = 1 iff both formulas F0 and F1 as in Definition 5 are satisfi-
able (Proposition 6, V0 = a−1(0) and V1 = a−1(1)).

In F the number of clauses from each of the 6 admissable pos-
sibilities among (Vi, Vk, Vj) with i, j, k = 0, 1 is concentrated at its
expectation, that is asymptotically (1/6)m with high probability.
With high probability 2 clauses which overlap in 2 variables do not
occur as m is linear in n. Therefore F0 and F1 have (1/6)m many
3-clauses and (2/6)m many 2-clauses each over n/2 variables. More-
over, F0 and F1 are stochastically independent (given their respective
number of clauses which is concentrated). For m = rn F0 and F1 are
two independent random formulas with asymptotically cn 3-clauses
and dn 2-clauses over n variables (scaling to n variables instead of
n/2.)

Following the remark in the Introduction concerning the binomial
space, F (n, c/n2, d/n) is satisfiable wupp implies that F0 and F1 are
both satisfiable wupp, by independence of F0 and F1. Lemma 10
follows. ut

Definition 12. The directed (multi-)graph of F has as vertices the
variables of F . Its edges are given by: The clause C = (x, y, z) ∈ F
induces the edges (x, y), (y, z) and (x, z) each marked with C. The
clause x < y ∈ F induces the edge (x, y).

Clearly, if the graph of F is cycle free then F is satisfiable (by
any topological ordering of the graph.) To reduce a formula F we
apply

Algorithm 13. Input: A formula F.
V1 := the set of those variables which occur exactly once in a 3-
clause of F and nowhere else.
V2 := those variables x which occur only at the position x < −.
This means that all 2-clauses with x are of the form x < y and we
have no 3-clauses with x. Here the case that x does not occur at all
is included.
V3 := the variables x which occur only and at least once as − < x.

The result H of the algorithm is obtained by deleting all variables
from V1 ∪ V2 ∪ V3 and clauses containing them from F.
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The algorithm is correct in the sense of

Lemma 14. If H is satisfiable then F is satisfiable.

We iterate Algorithm 13 and therefore need

Definition 15. The w2,k and w3,k for k ≥ 0 are defined inductively
by

w2,0 = w3,0 = 0,

w2,k+1 = exp (−d(1− w2,k)) · exp
(
−3c(1− w3,k)

2
)
,

w3,k+1 = exp (−d(1− w2,k)) · w2,k+1.

Following [19] we consider the following type of random Poisson
hypertree (which is approximately the random neighbourhood of a
given variable in F (n, c/n2, d/n). ) The vertices of the tree are vari-
ables and edges are clauses. For each variable in the tree we have
<-clauses resp. >-clauses, and 3-clauses as candidate child clauses.
The number of child <- resp. >-clauses is distributed according to
Po(d), the Poisson distribution with parameter d. The number of
child 3-clauses follows Po(3c). All distributions are independent. The
random hypertree of depth l is obtained by generating l generations
of children starting from a given root variable.

For the sake of analyzability we apply Algorithm 13 to the ran-
dom hypertree of depth l in the following way: In the first iteration
we apply the algorithm to the variables in depth l− 1, in the second
iteration to the variables in depth l − 2, and so on.

Lemma 16. Let 1 ≤ k ≤ l − 1. Conditional on the event that x
is a variable in depth l − k of the random hypertree of depth l the
probability that x gets deleted in the k’th iteration is

(a) w2,k if x is connected to its father by a 2-clause,
(b) w3,k if x is connected to its father by a 3-clause.

Proof. By induction on k. For the induction step we proceed as fol-
lows. Condition on the event that x is a variable in depth l−k. After
the k− 1’st iteration of the algorithm we have: The probability that

9



x has no child <-clauses is∑
m≥0

Prob[Po(d) = m]· wm2,k−1 =
∑
m≥0

(dw2,k−1)
m

m!
· exp(−d)

= exp(−d(1− w2,k−1)).

A similar calculation shows that the probability that x has no
child 3-clauses is exp (−3c(1− w3,k−1)

2) , multiplying we get w2,k.
We proceed for w3,k in the same way. ut

Lemma 17. (a) For r = 0.921 and k →∞ we have w2, k, w3,k → 1.
(b) For r = 0.93 we have w2, k < 0.605 and w3,k < 0.475 for all k.

We postpone the proof of Lemma 17 to Subsection 4.1.

Lemma 18. Let r = 0.921 and let k be such that w3,k > 0.95. We
denote S := 3 · lnn. Let H be the formula obtained after iterating
Algorithm 13 k-times starting with F = F (n, c/n2, d/n).

(a) The expected number of cycles of length ≥ S + 1 in H is o(1).
(b) The expected number of cycles of length 2 ≤ s ≤ S in H is

(3c(1− w3,k) + d)s

s
+ O(1/n0.7).

With Lemma 18 we can finish the main argument:

Proof of Lemma 11 . Let F = F (n, c/n2, d/n) and let H be the
formula obtained after k iterations of Algorithm 13 from F. We use
the k from Lemma 18. The probability to have a cycle of length
≥ S + 1 in H is o(1) by (a) of Lemma 18.

The probability to have a cycle of any length between 2 and S
is bounded above the expectation. By (b) of Lemma 18 we have a
bound of

S∑
s=2

(3c(1− w3,k) + d)s

s
+ S ·O(1/n0.7)

< (0.7)2/2 ·
∑
s≥0

(0.7)s + o(1)

= (0.49 · 10)/(2 · 3) + o(1) < 1,
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where we use that 3c(1− w3,k) + d < 0.7 and the geometric series.
H has no cycle wupp. With the remark after Definition 12 H

is satisfiable. Using Lemma 14 inductively we get that F itself is
satisfiable wupp. ut

Proof of Lemma 18. First the values:

3c = 0.921, d = 0.614, 3c+ d = 1.535 and 3c/d = 1.5.

Occasionally we assume that constants like c and d are slightly
larger than the original ones, this allows us to treat expressions like
(c+ o(1))n simply as being bounded above by cn.

We consider only cycles x0 → x1 → x2 · · · → x0 such that the xi
are distinct (simple cycles). Moreover, we assume wlog. that different
edges xi → xi+1 are induced by different clauses. Otherwise we have
a 3-clause (x, y, z) and the piece · · ·x→ y → z · · · on the cycle. This
piece is replaced with x→ z.

A given edge is induced by one 2-clause and 3(n − 2) 3-clauses.
Therefore the expected number of ways in which an edge occurs in
the graph of F is 3(n − 2)c/n2 + d/n = 1.535/n. The probability
that a given edge is present is
1− (1− c/n2)3(n−2) · (1− d/n) = (3c+ d)/n+O(1/n2). Observe that
(3c+ d) = 1.535/n. Disregarding dependencies between edges F in-
duces a directed random graph well above the strongly connected
component threshold which occurs at edge probability 1/n, see [21],
[16]. As such F itself should contain cycles.

Proof of Lemma 18 (a). Each cycle of length≥ S+1 contains a simple
path of length S. We show that the expected number of such paths
in H is o(1). Let x0 → x1 → x2 · · · → xS be a candidate path with t
edges in t fixed slots induced by 3-clauses. The additional variables
to fill the 3-clauses are denoted by (y1, . . . , yt). We assume that yi
includes the information about its slot (one out of 3) in its 3-clause.

Altogether we have < nS+1 ·
(
S
t

)
· (3n)t such candidate paths. The

probability that a candidate path occurs in F is (c/n2)t · (d/n)S−t.
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First case: Let C be a constant. In F the expected number of
paths with t ≤ C is bounded above as

nS+1 ·
∑
t≤C

St · (3n)t · (c/n2)t · (d/n)S−t

< O( poly (log n)) · n · (3c/d)C · dS = o(1)

note that 3c/d = 1.5(> 1), 3 ln d ≈ −1.429, and S = 3 lnn.
Second case: We consider paths with t > C such that the number

of new variables among (y1, . . . , yt) is ≤ t − 3. A yi is not new if it
occurs among the xj or there is a j < i with yj = yi. For the expected
number of paths of this type in F we get an upper bound of

nS+1 ·
∑
t>C

(
S

t

)
S3 · (3n)t−3 · (3 · poly (log n))3 · (c/n2)t · (d/n)S−t

< n · poly (log n) · (3c+ d)S · (1/n)3 = o(1)

as 3 ln(3c+ d) ≈ 1.28 and S = 3 lnn.
For candidate paths to which the preceding two cases do not

apply we consider the neighbourhood of those yi which occur only
once in the candidate. There are at least t− 4 of them as there are
at least t− 2 new variables among (y1, . . . , yt).

The following principle is our guide: Let y = yj be a variable
occurring only once and let xi → y → xi+1 be the 3-clause with y.
If k iterations of Algorithm 13 have the effect that y is deleted the
edge xi → xi+1 disappears, too. A lower bound on the probability of
this event can be derived from that part of the k-neighbourhood of
y which is still random. This means the standard k-neighbourhood
of y is modified in that the clause xi → y → xi+1 is not any more
included. (The 1-neighbourhood of y in our sense are the clauses
containing y, except of xi → y → xi+1. )

Let P be a given candidate path, let y1, . . . , yt−4 be variables
among the yi which occur only once. The k-neighbourhood of y1, . . . , yt−4

altogether is the union of the k-neighbourhoods of y1, . . . , yt−4. We
call the k-neighbourhood of y1, . . . , yt−4 exceptional if the number
of yi whose k-neighbourhoods are hypertrees disjoint from the rest
of the k-neighbourhood is ≤ t − 4 − 6 = t − 10. Let PEX be the
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event that the path P occurs in F and that the k-neighbourhood of
y1 . . . yt−4 is exceptional. Further below we prove the following

Claim. The probability of PEX is bounded above as

(c/n2)t · (n/d)S−t ·O( poly (log n)/n)3.

Third case: The expectation of the number of paths P in F for
which the event PEX holds is bounded above as

nS+1 ·
∑
t>C

(
S

t

)
· (3n)t · (c/n2)t · (d/n)S−t ·O( poly (log n))3

< n · (3c+ d)S ·O( poly (log n)/n)3 = o(1)

as in the second case.
Fourth case: Let P be a candidate with t edges induced by 3-

clauses and at least t − 4 new variables. The probability that P is
present in H and P¬EX in F is

Prob [P in H ∧ P¬EX ]

= Prob [P in H |P¬EX ] · Prob [P¬EX ]

< wt−9 · (c/n2)t · (n/d)S−t. (2)

Estimate (2) holds because of the following observations.
Prob [P¬EX ] < (c/n2)t · (n/d)S−t by definition of P¬EX . Condi-

tional on P¬EX we can assume wlog. that the k-neighbourhood of
y1, . . . , yt−9 consists of hypertrees disjoint from the rest of the k-
neighbourhood. This part of the neighbourhood can be viewed as
t − 9 independent Poisson hypertrees as considered in Lemma 16.
(We skip the detailed argument on this point and refer to [19].) By
Lemma 16 (b) the probability that yi survives in H is < w, indepen-
dently

For the expected number of paths P with P¬EX in F we therefore
get a bound of
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nS+1 ·
∑
t>C

(
S

t

)
· (3n)t · wt−9 · (c/n2)t · (d/n)S−t

< n ·
∑
t>C

(
S

t− 9

)
· (3cw)t−9 · dS−(t−9) · (S · 3c/d)9

< n · poly (log n) · (3cw + d)S = o(1)

as 3 ln(3cw + d) ≈ −1.234 and S = 3 lnn.

Summing the preceding four o(1)-terms we get that the expected
number of paths of length S in H is o(1).

Proof of the claim. The claim is easily proved by generating the k-
neighbourhood step by step. Conditionings on appropriate events
(which we skip) would lead to a complete formalization. Recall that
y1, . . . , yt−4 are the additional variables of the 3-clauses of P which
occur only once. We first generate the neighbours of y = y1. The 3-
clauses with y follow the binomial distribution Bin(3(n−1)(n−2)−
1, c/n2), for the 2-clauses we get two Bin(n − 1, d/n) distributions.
These distribution are independent as they refer to disjoint sets of
clauses. The probability that we get a clause which produces an
overlap (that is it contains another variable of the path P or collides
with another neighbor of y is O( poly(log n)/n). Observe that the
probability to get at least a log n new 3-clauses with y (a a small
constant) is very small:

∑
h≥a logn

(
3n2

h

)(
c

n2

)h
≤ (3c)a logn

(a log n)!
·
∑
h≥0

(3c)h

h!
< 1/nΩ(log logn).

The same argument applies when we consider the 2-clause distribu-
tion. When we have > a log n new clauses we stop the process. We
condition the following consideration on the event that this has not
happened.

When we have an overlap by now we proceed with the next new
yi which still occurs only once (there are at least t − 4 − 2 of them
Otherwise we generate the next generation of neighbours of y. Due
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to our conditioning the distributions stay essentially unchanged and
we can continue analogously. When we have generated k generations
of neighbours of y without overlap we go to y2. We proceed in this
way and stop only when we have 3 overlaps or a variable with degree
> a log n.

The probability to hit upon 3 overlaps is O( poly (log n)/n3) as
long as the number of neighbours of each variable is < a log n. This is
ensured by our conditioning. Moreover, the probability of > a log n
neighbours at some point is much smaller than O( poly (log n)/n3)
and thus can be added without weakening the upper bound. This
proves the claim because when the number of independent hypertrees
rooted at the yi is reduced from t− 4 to t− 10 we must have at least
3 overlaps in the neighbourhood.

Proof of Lemma 18 (b). We refer to (a) for unexplained notions and
employ the same principle. Let x0 → x1 → . . . → xs−1 → x0 be
a candidate cycle of length s with s ≥ t ≥ 0 edges induced by 3-
clauses. Let (y1, . . . , yt) be the additional variables of the 3-clauses
(each variable comes with its slot in the 3-clause, 1 out of 3.) The

number of such candidates is bounded above as (ns/s) ·
(
s
t

)
· (3n)t.

(The 1/s because of cyclic permutations. ) The probability that a
candidate occurs in F is (c/n2)t · (d/n)S−t. The expectation of the
number of cycles of length s in F is bounded above by (3c + d)s/s.
Recall that 3c+d = 1.535. We bound the expected number of cylces
in H depending on the overlap structure among the yi and the k-
neighbourhood in F.

First case: We consider cycles of length s such that all yi are new.

Conditioning on the event that the k-neighbourhood in F con-
sists of disjoint hypertrees each yi surives with probability bounded
above by w independently. For the expected number of cycles whose
the k-neighbourhood in F consists of disjoint hyperterees and which
survive in H we get a bound of (3cw + d)s/s.

The event that we have exactly one overlap in the k-neighbourhood
has probability O(log n/n). Conditioning in this event, at least t− 2
of the yi survive with probability bounded above by w independently.
For the expected number of cycles in H with such a k-neighbourhood
in F we get a bound of
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ns ·
∑
t≥0

(
s

t

)
· (3n)t · (c/n2)t · (d/n)s−t · wt−2 ·O( poly (log n)/n)

< (3cw + d)s/s · O( poly (log n)/n) < O( poly (log n)/n).

For two or more overlaps in the k-neighbourhood we need only
F and bound the expectation as

(3c+ d)s/s ·O( poly (log n)/n)2 = O(1/n0.7)

as s ≤ S = 3 lnn and 3 ln(3c+ d) ≈ 1.28.
Second case: If one yi is not the number of candidates is ns ·

(3n)t−1·O( poly (log n)). If we have no overlap in the k-neighbourhood
we have at least t − 2 independent hypertrees rooted at the yi. We
get the same result as in the first case with one overlap.

If we have in addition one overlap in the k-neighbourhood we
have another factor of O( poly (log n)/n). We get the same result as
in the first case with at least 2 overlaps.

Third case: If at least two yi are not new we have ns · (3n)t−2 ·
O( poly (log n))2 candidates and get the same result as the first case
with at least two overlaps. ut

4 The remaining proofs

4.1 Proof of Lemma 17

Recall

Lemma 17. (a) For r = 0.921 and k →∞ we have w2, k, w3,k → 1.
(b) For r = 0.93 we have w2, k < 0.605 and w3,k < 0.475 for all k.

Proof. We define

w0 = 0, w1 = exp(−d) · exp(−3c) and for k ≥ 1

wk+1 = exp
(
− d(1− wk)

)
· exp

(
− 3c ·

(
1− exp

(
− d(1− wk−1)

)
· wk︸ ︷︷ ︸

Compare to w3,k

)2
)
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By induction wk = w2,k. Moreover, 0 ≤ wk ≤ 1, wk+1/wk > 1 and
the wk are strictly monotonously increasing. Therefore they have a
limit W := lim wk. We have 0 < W ≤ 1.

The recursive definition of wk+1 induces the function

F (w) := exp
(
− d(1− w)

)
· exp

(
− 3c ·

(
1−

K(w) := G(w)w =︷ ︸︸ ︷
exp

(
− d(1− w)

)
︸ ︷︷ ︸

G(w) :=

·w
)2)

.

By continuity F (W ) = W, that is W is a fixpoint of F (w). We
recall that r = 3c = (3/2)d and rewrite

F (w)=exp

(
d ·
(
− (5/2) + w + 3K(w) − (3/2) · (K(w))2

)
︸ ︷︷ ︸

E(w) :=

)
.

Some derivatives:

G′(w) = d ·G(w) and G′′(w) = d2 ·G(w)

K ′(w) = d ·K(w) + G(w) = (1 + dw)G(w)

K ′′(w) = d ·G(w) + d · (1 + dw) ·G(w) = d2 ·K(w) + 2d ·G(w)

E ′(w) = d ·
(

1 + 3K ′(w) − 3

2
· 2 ·K(w) ·K ′(w)

)
= d ·

(
1 + 3K ′(w) · (1 − K(w))

)
= d ·

(
1 + 3 ·G(w) · (1 + dw) · (1−K(w))

)
Some facts for 0 ≤ w ≤ 1 :

– G(w) > 0, G′(w) > 0, G′′(w) > 0.

– G(w) strictly monotonously increasing from G(0) = exp(−d) to
G(1) = 1. G(w) is convex.
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– K(w) ≥ 0 , K ′(w) > 0, K ′′(w) > 0 .

– K(w) is strictly monotonously increasing from K(0) = 0 to
K(1) = 1. K(w) ≤ G(w) and K(w) is convex.

– E(w) is strictly monotonously increasing from E(0) = −(5/2)d
to E(1) = 0.

– By the preceding item F (w) is strictly monotonously increasing
from F (0) = exp(−5d/2) to F (1) = 1.

– W is the smallest positive fixpoint of F (w) because of mono-
tonicity.

For w > 0 we have

F (w) = w ⇔ F (w)/w︸ ︷︷ ︸
H(w) :=

= 1.

As H(w) → +∞ for w → 0 and H(1) = 1, there is positive
fixpoint w < 1 of F (w) iff H(w) has a local minimum ≤ 1 in 0 <
w < 1.

H ′(w) =
F (w) · (E ′(w) · w − 1)

w2

E ′(w) · w = d ·
(
w + 3 ·K(w) · (1 + dw) · (1−K(w))

)
(3)

using wG(w) = K(w) to get Equation (3).

H ′(w) → −∞ for w → 0

H ′(w) < 0 ⇔ 1 > E ′(w) · w ⇔ 1 − dw

1 + dw
> 3d ·K(w) · (1−K(w))

H ′(w) > 0 ⇔ 1 < E ′(w) · w ⇔ 1 − dw

1 + dw
< 3d ·K(w) · (1−K(w))

(4)

H ′(w) = 0 ⇔ 1 = E ′(w) · w ⇔ 1 − dw

1 + dw︸ ︷︷ ︸
L(w) :=

= 3d ·K(w) · (1−K(w))︸ ︷︷ ︸
R(w) :=

.
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More derivatives:

L′(w) =
−2d

(1 + dw)2
(5)

L′′(w) =
4d2

(1 + dw)3
(6)

R′(w) = 3d
(
K ′(w) − 2K(w)K ′(w)

)
= 3dK ′(w) · (1 − 2 ·K(w)).

(7)

R′′(w) = 3d
(
K ′′(w) − 2 ·K ′′(w) ·K(w) − 2 ·K ′(w) ·K ′(w)

)
= 3d

(
K ′′(w) · (1− 2K(w)) − 2 ·K ′(w) ·K ′(w)

)
(8)

More facts:

– L′(w) < 0 , L′′(w) > 0, Equation (5) and (6).

– L(w) is strictly monotonously decreasing from L(0) = 1/d to
L(1) = 1/(1 + d) − d/(1 + d) > 0 and convex.

– R(0) = R(1) = 0.

– Let w0 be uniquely determined by K(w0) = 1/2. (Recall that
K(w) is strictly increasing from 0 to 1.) We have R′(w) > 0 for
w < w0 and R′(w) < 0 for w > w0 by Equation (7).

– R(w) has one extremum: a maximum at w0.

– For w ≥ w0 R(w) is concave by K(w) > 1/2 and Equation (8).

By the first observation of (4) the first local extremum of H(w)
must be a minimum. In the next paragraph we show that we have
at most 2 arguments w, 0 < w < 1 with L(w) = R(w). The last
observation of (4) implies that H(w) has at most 2 local extrema for
0 < w < 1.

We proceed by a case distinction on R(w0) and L(w0).
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– Let R(w0) > L(w0). We have exactly one w < w0 with L(w) =
R(w) as L(w) is strictly decreasing and R(w) is strictly increasing
for w < w0. We have exactly one w > w0 with L(w) = R(w) as
L(w) is decreasing and convex, whereas R(w) is decreasing but
concave and L(1) > R(1) = 0.

– Let R(w0) = L(w0). We have no w < w0 with L(w) = R(w). We
can have only one or none w > w0 with R(w) = L(w) as R(w) is
concave and L(w) convex.

– Let R(w0) < L(w0). We have no w < w0 with L(w) = R(w)
and either none or one or two (but not more ) w > w0 with
L(w) = R(w). The argument is as before (concave vs. convex. )

We finally need some concrete values. Our calculations are made
with Maple. We show only the first 5 digits after the decimal point.
We assume that the first 4 are right.

Proof of (a). We consider d = 0.614 and 3c = 3d/2 = r = 0.921. We
have

L(0.602) = 0.46025 > 0.45900 = R(0.602)

L(0.604) = 0.45894 < 0.45921 = R(0.604)

With the observations in (4) we see that H ′(0.602) < 0 and
H ′(0.604) > 0 and H(w) has a local minimum for a 0.602 < w <
0.604.

We show that H(w) > 1 for all 0.602 < w < 0.604. Therefore we
return to

F (w)=exp

(
d ·
(
− (5/2) + w + 3K(w) − (3/2) · (K(w))2

))
.

To get lower bound for F (w) for all 0.602 < w < 0.604 we sub-
stitute the first two w’s in the right hand side of F (w) with 0.602
and the last with 0.604. Recall that K(w) is increasing in w. We get

20



exp

(
d ·
(
− (5/2) + 0.602 + 3K(0.602) − (3/2) · (K(0.604))2

))
= 0.60440 > 0.604

and F (w) > 0.604 ≥ w for all 0.602 ≤ w ≤ 0.604.

There is another w with H ′(w) = 0. For this we have 0.8 < w <
0.85. This need not concern us as it must be a local maximum. We
have no more extrema.

Proof of (b). Consider the case d = 0.62 and r = 0.93. Then F (0.605) =
0.6494 < 0.605 and W < 0.605.

4.2 Proof of Proposition 8

Recall

Proposition 8. For the random instance F (V,m) with m = rn, r ≤
1 we have:
(a) E[X] ≥ (3/2)n(1−ε) for any constant ε > 0.
(b) E[X2] ≤ C · (E[X])2 for an appropriate constant C.

Proof of (a). Stirling’s formula yields:

EX =
√

2/(πn) (2 · (3/4)r)
n
> (3/2)n(1−ε) as ((3/4)r ≥ 3/4 as r ≤

1)

Proof of (b). Given 2 assignments a, b with overlap 2l = αn, that
is we have 2l variables which have the same truth value under both
a and b, the probability that a random clause is satisfied by both a
and b is = (3 / 4) · (1− α · (1− α)). This can be seen by elementary
consideration and implies that

E [X2] =
∑
(a,b)

Prob[Xa = 1 and Xb = 1] =

=

(
n

n/2

)
·
n/2∑
l=0

(
n/2

l

)2

·
(

3

4
·
(

1− l

n/2
·
(

1 − l

n/2

)))m
. (9)
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With φ(α) := (3/4 · (1− α · (1− α)))r we get for the sum of (4) as
m = rn

Sn :=
n/2∑
l=0

(
n/2

l

)2

·
(
φ

(
l

n/2

))n
. (10)

We apply the next Lemma with q := 2, t := n/2, z := l to Sn.

Lemma 19. (Laplace Lemma [1]) Let φ(α) be a positive, twice-
differentiable function on [0, 1] and let q ≥ 1 be a fixed integer. Let
t = n/q and let

Sn :=
t∑

z=0

(
t

z

)q
φ(z/t)n and g(α) :=

φ(α)

αα(1− α)1−α

where g(α) is defined on [0, 1] and 00 := 1.
If there exists αmax ∈ (0, 1) such that g(αmax) =: gmax > g(α)

for all α 6= αmax and g′′(αmax) < 0, then there is a constant C =
C(q, gmax, g

′′(αmax), αmax) > 0 such that for all sufficiently large n
we have Sn < C · n−(q−1)/2 · (gmax)n.

We get from (10) and the Laplace Lemma that Sn ≤ C ·(1/
√
n) ·

(gmax)n. From Stirling’s formula and (9) we get

E[X2] ≤ 2n ·
√

2

πn
· C · 1√

n
· (gmax)n = D · 1

n
· (2 · gmax)n.

Below we show that gmax = 2 · (3/4)2r (see Equation (11)) and the

claim holds because EX =
√

2/(πn) · 2n · (3/4)rn (cf. Proof of (a).)
We check that the Laplace Lemma is applicable. For the function

φ(α) (definition before Equation (10)) we have for α ∈ [0, 1] that
φ(α) ≥ 0. And φ(α) is twice differentiable and symmetric around α =
1/2. For α = 1/2 we have its minimum on [0, 1] which is φ(1/2) =
(3/4)2r. (Elementary calculus for the proof.)

We come to

g(α) =
φ(α

αα(1− α)1−α =
(3/4 · (1− α · (1− α)))r

αα(1− α)1−α .

It turns out that g(α) is maximized at

gmax = g(1/2) = 2 · (3/4)2r. (11)
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First, g′(α) =(
3

4

)r
(1− α + α2)r−1︸ ︷︷ ︸
=((α−1)2+α)r−1>0

1

αα(1− α)1−α︸ ︷︷ ︸
>0︸ ︷︷ ︸

>0

·
[
r(2α− 1)− (1− α + α2) ln

(
α

1− α

)]
︸ ︷︷ ︸

=:h(α)

and g′(1/2) = 0, as h(1/2) = 0. Moreover,

g′′(1/2) = 1/3 · 9r
(
2−4 r+4r − 24 · 16−r

)
which is easily seen to be < 0 even for r < 3/2.

We consider α ∈ (0, 1/2), r ∈ (0, 3/2). We have

h′(α) = 2r − (2α− 1)︸ ︷︷ ︸
<0

· ln
(

α

1− α

)
︸ ︷︷ ︸

<0︸ ︷︷ ︸
<2r<3

− (1− α + α2) ·
(

1

α
+

1

1− α

)
︸ ︷︷ ︸

=:k(α)

.

We rewrite k(α) = 1/α + 1/(1− α) − 1 and

k′(α) = − 1

α2
+

1

(1− α)2
=

2α− 1

α2 · (1− α)2
< 0

⇒ k(α) strictly monotonously decreasing in (0, 1/2).

k(1/2) = 3⇒ k(α) > 3, ∀ α ∈ (0, 1/2)

⇒ h′(α) < 0, ∀ α ∈ (0, 1/2), 0 < r < 3/2

⇒ h(α) is strictly monotonously decreasing in (0, 1/2).

h(1/2) = 0⇒ h(α) > 0, ∀ α ∈ (0, 1/2)

⇒ g′(α) > 0,∀ α ∈ (0, 1/2)

⇒ g(α) strictly monotonously increasing in (0, 1/2).

ut
Conclusion

Concerning our constant r. The contribution is that the bound of
r < 0.82 from [13] can be improved to r = 0.921 by more advanced
techniques. Our proof cannot easily be extended beyond r = 0.93. In
this case we have w3,k < w2,k < 0.605 by Lemma 17 (b) . Our proof
for r = 0.921 however relies clearly on the fact that w3,k > 0.9.

Acknowledgement. Special thanks to Anja Lau for help with the
calculus.
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5. Bodirsky, M., Kára, J.: The Complexity of Temporal Constraint Satisfaction Prob-
lems. In: Proceedings 40th ACM Symposium on Theory of Computing, pp. 29-38
(2008)

6. Ailon, N., Alon, N.: Hardness of Fully Dense Problems. Information and Compu-
tation 205(8), pp. 1117-1129 (2007)
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