
On the hardness and easiness of random 4-SAT formulas

Andreas Goerdt and André Lanka

Technische Universität Chemnitz, Fakultät für Informatik
Straße der Nationen 62, 09107 Chemnitz, Germany
{goerdt, lanka}@informatik.tu-chemnitz.de

Abstract. Assuming 3-SAT formulas are hard to refute with high probability, Feige showed
approximation hardness results, among others for the max bipartite clique. We extend this
result in that we show that approximating max bipartite clique is hard under the weaker
assumption, that random 4-SAT formulas are hard to refute with high probability. On the
positive side we present an efficient algorithm which finds a hidden solution in an otherwise
random not-all-equal 4-SAT instance. This extends analogous results on not-all-equal 3-SAT
and classical 3-SAT. The common principle underlying our results is to obtain efficiently
information about discrepancy (expansion) properties of graphs naturally associated to 4-
SAT instances. In case of 4-SAT (or k-SAT in general) the relationship between the structure
of these graphs and that of the instance itself is weaker than in case of 3-SAT. This causes
problems whose solution is the technical core of this paper.

1 Introduction and Results

1.1 Some terminology

Given a standard set of n propositional variables Var = Varn a k-clause is an ordered
k-tuple l1 ∨ · · · ∨ lk where li = x or li = ¬x for an x ∈ Varn. We denote the variable
underlying the literal l by Var(l). Litn is the set of literals over Varn. Altogether we have
2knk different k-clauses. A k-SAT formula F simply is a set of k-clauses. A clause C is
true in the not-all-equal sense under the truth value assignment a if it contains one literal
which evaluates to true and another one which evaluates to false under a. This is naturally
extended to formulas. The problem to decide satisfiability in the not-all-equal sense for
3-SAT formulas is NP-complete.

Considering any high probability event, that is the probability goes to 1 when n goes
to infinity and we have an underlying family of probability spaces for each n, the following
certification problem naturally arises: Given a random instance, how can we be sure that
this event really holds for the instance at hand? This question can usually be answered
running appropriate (inefficient) algorithms with the given instance. We however are in-
terested in an efficient algorithm satisfying the following requirements: It always stops in
polynomial time. It says that the instance belongs to the event considered or it gives an
inconclusive answer. If the answer is not the inconclusive one the answer must always be
correct, that is we have a certificate for the event. Moreover the algorithm must be com-
plete, in that it gives the correct answer with high probability with respect to the random
instance. In this case we speak of “efficient certification”.

1.2 The hardness result

Given p = p(n) with 0 ≤ p ≤ 1 the random formula Formn,k,p is obtained as follows: Pick
each of the 2knk k-clauses independently with probability p. Formn,k,c/nk−1 is unsatisfiable

2

with high probability when c > ln 2 is a constant. This follows from a simple first moment
calculation for the number of satisfying assignments. Thus almost all (that is with high
probability) formulas are unsatisfiable, but we have no efficient algorithm to certify this.
Feige [6] introduces the random 3-SAT hardness hypothesis: For any constant c > ln 2
there is no efficient certification algorithm of the unsatisfiability of Formn,3,c/n2 . The truth
of this hypothesis is supported by the fact that for p(n) = o(1/n3/2) no progress concerning
the efficient certification of unsatisfiability of Formn,3,p has been made. The best result
known is efficient certification of unsatisfiability of Formn,3,c/n3/2 for some sufficiently
large constant c, cf. [7]. Feige shows that the random 3-SAT hardness hypothesis implies
several lower bounds on the approximability of combinatorial problems for which such
bounds could not be obtained from worst-case assumptions like P 6= NP. As a random
hardness hypothesis is much stronger than a mere worst-case hypothesis like P 6= NP it is
particularly important to weaken it as much as possible. This motivates to consider random
4-SAT instead of 3-SAT. The random 4-SAT hardness hypothesis reads: For any constant
c > ln 2 there is no efficient certification algorithm of the unsatisfiability for Formn,4,c/n3 .
The trivial reduction: Given F = Formn,3,c/n2 place a random literal into each clause of
F to obtain a 4-SAT instance G, shows, that the 3-SAT hypothesis is stronger than the
4-SAT hypothesis.

Among the problems considered by Feige is the max clique problem for bipartite graphs.
Let G = (V1, V2, E) be a bipartite graph. V1 and V2 are the sets of vertices (V1 is the
left hand side and V2 is the right hand side) and E ⊆ V1 × V2 is the set of edges. A
(bipartite) clique in G is a subgraph H = (W1,W2, F) of G with Wi ⊆ Vi such that
F = W1 ×W2. Sometimes we denote such a clique simply by (W1,W2). We are interested
in the optimization problem maximum clique, that is to determine the maximum size
of a clique in G. When the size of H is measured as # of vertices of H = |W1| + |W2|
the problem is solvable in polynomial time [9], problem GT24. If however the size of H
is measured as # of edges of H = |W1 × W2| = |W1| · |W2| the problem interestingly
becomes NP-hard [15] and approximation algorithms are of interest. This is the version
of the problem we consider. The approximation ratio of an algorithm for a maximization
problem is the maximum size of a solution divided by the size of the solution found by
the algorithm. For the classical clique problem no approximation ratio below n1−ε for
any constant ε > 0 is possible by a polynomial time algorithm (unless P = NP), cf.
[12]. Interesting enough, such results are not known for the bipartite case. Feige shows
in [6] that there is a constant δ > 0 such that the bipartite clique problem cannot be
approximated with a ratio below nδ, provided the random 3-SAT hardness hypothesis
holds. Our hardness result is

Theorem 1. Under the random 4-SAT hardness hypothesis there is no polynomial time
approximation algorithm for the bipartite clique problem with a ratio below nδ for some
constant δ > 0, where n is the number of vertices.

The technical heart of the proof of Theorem 1 is the subsequent Theorem 2 from which
Theorem 1 is obtained by means of the derandomized graph product [1].

Theorem 2. Under the random 4-SAT hardness hypothesis there exist two constants ε1 >
ε2 > 0 such that no efficient algorithm is able distinguish between bipartite graphs G =

3

(V1, V2, E) with |V1| = |V2| = n which have a clique of size ≥ (n/16)2(1 + ε1) and those in
which all cliques are of size ≤ (n/16)2(1 + ε2).

1.3 The easiness result

Given an assignment φ we let CTi = CTi,φ be the set of all clauses with exactly i literals
true (= 1) under φ and 4 − i false (= 0). We have that |CTi| =

(
4
i

)
n4. We let CTnae =

CTnae,φ = CT1∪CT2∪CT3 be the set of all clauses satisfied by φ in the not-all-equal sense.
We describe the way to generate our random formula I. To this end let 0 < η1, η2, η3 < 1
be three constants and let d = dη1,η2,η3 be a (large) constant. We let pi = ηid/n3 be three
probabilities.

1. We pick any assignment φ of Varn. (This is the hidden solution.) Note that φ need not
be a random assignment, just any assignment.

2. Let M = CTnae,φ. Pick a uniform random clause C ∈ M and delete it from M. Include
C in the random instance I with probability pi iff C ∈ CTi,φ.

3. Repeat 2. until M = ∅.

All instances generated are satisfiable in the not-all-equal sense and we are left with a
classical certification problem. Such certification problems have a long tradition. Seminal
work has been done by [2] in that spectral techniques have been introduced to find a
hidden 3-coloring in a sparse random graph, that is with a linear number of edges. Note
that usually hidden solutions in denser instances are easier to find because the structure
gives more information. This approach has been further developed to 2-colorings of random
3-uniform hypergraphs (or not all equal 3-SAT instances) with a linear number of edges
(clauses) [3] and – recently – to hidden satisfying assignments in a random 3-SAT formula
[8]. By developing this approach further we show

Theorem 3. Let 0 < ηi < 1 be constants and d = dη1,η2,η3 be a (large) constant. There
is an efficient certification algorithm which finds an assignment π satisfying a random
instance I as above in the not-all-equal sense with high probability. (Note that we fix d and
then n gets large.)

2 Proof of Theorem 1

We prove Theorem 2 in the next but one subsection based on

2.1 Discrepancy certification in random bipartite graphs

Let B = (V1, V2, E) be a bipartite graph an 2n vertices with |V1| = |V2| = n. Let

E(X, Y) = {{x, y} ∈ E | x ∈ V1, y ∈ V2}

be the set of edges with one endpoint in X ⊆ V1 and the other in Y ⊆ V2. We abbreviate
|E(X, Y)| with e(X, Y).

Definition 4. We say B as above is of low discrepancy with respect to ε iff for all
X ⊆ V1, |X| = αn and all subsets Y ⊆ V2, |Y | = βn we have that

|e(X, Y)− αβ · |E|| ≤ ε|E|

4

The random bipartite graph Bn,c/n has the set of vertices V1 = {1, . . . , n} and V2 =
{n + 1, . . . , 2n}. Each each edge {x, y} with x ∈ V1 and y ∈ V2 is picked with probability
c/n independently. Then Bn,c/n enjoys the low discrepancy property for each arbitrarily
small constant ε > 0 if only c = c(ε) is large enough.

At first we show that the number of edges in Bn,c/n is with high probability cn·(1+o(1)).
Note that the number of edges |E| in Bn,c/n is binomially distributed with parameters n2

and c/n. So, the expectation of |E| is n2 · c/n = cn.
The well known tail bound for a random variable Z distributed according to the bino-

mial distribution Bin(N, p) (Chernoff’s bound) reads that for any 1 > δ > 0

Pr[Z ≥ (1 + δ)E[Z])] ≤ exp((−1/3)δ2E[Z])) (1)

and

Pr[Z ≤ (1− δ)E[Z]] ≤ exp((−1/2)δ2E[Z]))]. (2)

Letting δ = 1/ log n we get

Pr[| |E| − cn| ≥ cn/ log n] ≤ 2 exp((−1/3)cn/ log2 n) = o(1).

So with probability 1− o(1) we have that |E| = cn · (1 + o(1)).
To show that Bn,c/n has the low discrepancy property take some arbitrary small con-

stant ε > 0. Let X ⊆ V1 and Y ⊆ V2 be two fixed subsets with |X| = αn and |Y | = βn.
Then e(X, Y) is a random variable follows the binomial distribution Bin(|X| · |Y |, c/n).
The expectation of e(X, Y) is

µ = E[e(X, Y)] = |X| · |Y | · c/n = αn · βn · c/n = αβ · cn

Picking c sufficiently large, for example such that ε ≥ 1/ log c, we see with (1) and (2)
together with |E| = cn · (1 + o(1)) = µ/(αβ) · (1 + o(1)) that

Pr[|e(X, Y)− µ| ≥ ε|E|] = Pr[|e(X, Y)− µ| ≥ ε/αβ · (1 + o(1)) · µ]
< 2 · exp(−ε2/(αβ)2 · (1 + o(1)) · µ/3)
≤ 2 · exp(−ε2cn/4)
= o(2−2n).

As we have at most 2n · 2n possible sets X and Y , we have the low discrepancy property
for all sets X and Y defined as above with high probability. We get

Lemma 5. Given ε > 0 an arbitrarily small constant and c = c(ε) sufficiently large but
constant Bn,c/n has low discrepancy with respect to ε with high probability.

Moreover, there is a polynomial time algorithm BipDisc introduced in [4], which is
able to check the property stated in the lemma. This algorithm takes as input a bipartite
graph B = (V1, V2, E). It tries to certify that for all sets X ⊆ V1 with |X| = αn and
Y ⊆ V2 with |Y | = βn

|α · β · |E| − e(X, Y)| ≤ c1 ·
√

α · β · |E|n + n · e−|E|/(c1·n) (3)

5

where c1 is a constant independent of the rest. If the algorithm gets Bn,c/n as input it
certifies (3) almost surely.

So for any constant ε > 0 and c large enough, for example so that ε ≥ 1/ log c and
c ≥ c3

1, we have with |E| = cn · (1 + o(1)) that asymptotically

c1 ·
√

α · β · |E|n + n · e−|E|/(c1·n) ≤ c1 ·
√

cn2 + n · e−c/c1

≤ c1 · |E|/
√

c + n

≤ c−1/6 · |E|+ c−1|E|
≤ ε|E|

and Algorithm BipDisc certifies low discrepancy for every constant ε > 0 if c = c(ε) is
large enough.

2.2 Proof of Theorem 2

Before we take care on the proof of Theorem 2, we review the following algorithm. It takes
as input any 4-SAT formula and bounds the number of variables set to true resp. set to
false by a satisfying assignment a. Let Ta (resp. Fa) be the set of variables set to true (resp.
false) under a. We denote the set of clauses in F containing only non-negated variables
P = P (F). This set is also called positive clauses. The clauses containing only negated
variables form the set N = N(F) and are called negative clauses.

Algorithm 6.
Input: A 4-SAT formula F .

1. Set S := P (F) and i := 0.
2. While (S 6= ∅) do
3. Take some clause C = l1 ∨ l2 ∨ l3 ∨ l4 from S.
4. Delete all clauses containing one of the li from S.
5. i := i + 1
6. Output i as a lower bound on |Ta|
7. Repeat 1-5 for S := N(F).
8. Output i as a lower bound on |Fa|.

The idea of the algorithm is the following. In every clause C there must be at least one
literal true. If we consider the set P (F), at least one variable per clause must be set to
true. As we do not know this variable, we delete all clauses containing a variable from the
chosen clause C. If some clauses left, we repeat the procedure, because some more variables
must be set to true. Looking on N(F) we get a lower bound on the number of variables
set to false by a satisfying assignment. This shows the correctness of the algorithm.

On Formn,4,c/n3 the algorithm almost surely certifies that the number of variables set
to true is at least n/16 · (1 + o(1)). It gives the same lower bound for the variables set to
false. To see this, let k be the value of i in Step 6. We have chosen k clauses and have
at most 4k different variables in these clauses. Let s be the number of clauses containing
one of these variables. Then E[s] is bounded by 4k · 4|P |/n. Using Chernoff’s bound we
derive that with high probability s ≤ 16k · |P |/n · (1 + 1/ log k). So we deleted at most

6

16k|P |/n · (1 + 1/ log k) clauses in Step 4. As we reached step 6 S must be empty. This
shows, that k is at least n/16 · (1 + o(1)). The other bound can be obtained analogously.

We need this algorithm and its answer for the further results. By using it, we can rely
on the important property that any satisfying assignment for a given formula F sets a
linear number of variables to true and a linear number to false. We need this now and
then and state out the importance when we use this fact.

Now we come to the proof of Theorem 2. The proof relies on the certification of
low discrepancy of certain bipartite projection graphs of Formn,4,c/n3 . Let F be a 4-SAT
formula and S ⊆ F an arbitrary set of clauses from F . Then we define 6 projection graphs
Bij = (V1, V2, Eij), 1 ≤ i < j ≤ 4, of S. The sets V1 and V2 are copies of the variables Var
of F . So we set V1 = Var×{1} and V2 = Var×{2}. But for clarity of reading we relinquish
on (x, 1) (resp. (y, 2)) and use only x (resp. y). So x ∈ V1 denotes another vertex than
x ∈ V2 even if they mean the same variable in Var.

We have an edge {x, y} ∈ Eij with x ∈ V1 and y ∈ V2 if and only if we have a clause
l1 ∨ l2 ∨ l3 ∨ l4 ∈ S with Var(li) = x and Var(lj) = y.

Algorithm 7.
Input: A 4-SAT formula F and ε > 0.

1. Apply Algorithm 6 to F . Give an inconclusive answer if one bound is below n/20.
2. Check that |P | = cn · (1 + o(1)) and |N | = cn · (1 + o(1)).
3. Construct the 6 projection graphs of N and the 6 projection graphs of P . Check for

every projection that the number of edges is ≥ |N | · (1−o(1)) for N and |P | · (1−o(1))
for P . Give an inconclusive answer if this is not the case.

4. Apply the Algorithm BipDisc from Section 2 to certify low discrepancy with respect
to ε > 0 to all these projection graphs. Give an inconclusive answer if one application
gives an inconclusive answer. Give a positive answer otherwise.

Lemma 8. Algorithm 7 is complete for Formn,4,c/n3 whenever c is a sufficiently large
constant.

Proof. Step 1 is complete as Algorithm 6 gives on Formn,4,c/n3 almost surely two bounds
of size n/16 · (1 + o(1)). The completeness of Step 2 follows from Chernoff’s bound on
|P | and |N |. Step 4 is passed successfully as follows from the completeness of BipDisc
for Bn,c/n when c is large enough. Note that in our case the projections considered are
random bipartite graphs Bn,p with p = 1− (1− c/n3)n2

= c/n · (1 + o(1)).
Now we calculate the difference between the number of clauses of P and the number of

edges in the projection Bij . As every edge is induced by at least one clause, we must have
that |Eij | ≤ |P |. But some clauses induce no edge in Eij . We could have pairs of clauses
l1 ∨ l2 ∨ l3 ∨ l4, g1 ∨ g2 ∨ g3 ∨ g4 ∈ P inducing the same edge in Gij . This means li = gi

and lj = gj . The expected number of such pairs is n2 · n4 · (c/n3)2 = c2. By Markov’s
inequality the number of these pairs exceeds log n with probability o(1). So we have with
high probability more than |P | − log n = |P | · (1− o(1)) edges in Bij . The same holds for
the projections of N . This implies that Formn,4,c/n3 passes Step 3 successfully with high
probability. ut

Let S be a set of clauses. Then we say a clause C = l1 ∨ l1 ∨ l3 ∨ l4 is of type
(X1, X2, X3, X4)S iff Var(li) ∈ Xi for i = 1, . . . , 4 and C ∈ S.

7

Low discrepancy of the projections implies interesting properties. Let |Fa| = αn and
|Ta| = (1− α)n.

Lemma 9. Let a be a satisfying assignment for F . Then low discrepancy with respect to
ε of the projections gives that 1/3−O(ε) ≤ α ≤ 2/3 + O(ε).

Note that the above statement is only useful when ε is very small against α. As ε > 0
is a constant α should have a constant lower bound independent of ε. Remember, this
feature is assured by the first step of Algorithm 7.

Proof. Consider the projection B1,1 = (V1, V2, E1,1) of P . Low discrepancy of B1,1 gives

|e(Fa, Fa)− α2 · |E1,1|| ≤ ε · |E1,1|.

The edges in E1,1(Fa, Fa) are induced by clauses of type (Fa, Fa,Var,Var)P . Together
with |E1,1| = |P | · (1 + o(1)) we have that |(Fa, Fa,Var,Var)P | = (α2 + O(ε))|P |. As a is
a satisfying assignment, the third or the fourth variable in these clauses comes from Ta.
This means that

|(Fa, Fa, Ta, Fa)P |+ |(Fa, Fa, Ta, Ta)P | ≥ (α2/2 + O(ε))|P |

or
|(Fa, Fa, Fa, Ta)P |+ |(Fa, Fa, Ta, Ta)P | ≥ (α2/2 + O(ε))|P |.

The first possibility gives that e(Fa, Ta) in B1,3 is at least (α2/2 + O(ε))|P |. But by low
discrepancy this is at most (α · (1− α) + O(ε))|P |. From

α2/2 + O(ε) ≤ α · (1− α) + O(ε)

we get α ≤ 2/3 +O(ε). Note, the derivation holds only if α is bounded away from 0 by an
independent constant as we divide by α. Here again we use the result given by Algorithm
6.

We get the same bound for the second possibility and the graph B1,4. The bound
α ≥ 1/3−O(ε) we get by doing the same things for N beginning with B1,1 and E1,1(Ta, Ta).

ut

We let % = |P | = |P (F)| and ν = |N | = |N(F)|. Then %i = %i,a is the number of
clauses of P which contain exactly i literals true under a. We use the analogous notation
νi = νi,a for N .

Then low discrepancy of the projections gives some stronger results than Lemma 9.

Theorem 10. Given ε > 0 a arbitrarily small constant Algorithm 7 certifies that for any
assignment a with |Fa| = αn satisfying Formn,4,c/n3 the following equations, hold:

(a) %0 = 0
%2 = 6α2%− 3%1 + O(ε)%
%3 = (−12α2 + 4α)% + 3%1 + O(ε)%
%4 = (6α2 − 4α + 1)%− %1 + O(ε)%

8

(b) The equations for the νi are analogous with 1− α instead of α:
ν0 = 0
ν2 = 6(1− α)2ν − 3ν1 + O(ε)ν
ν3 = (−12(1− α)2 + 4(1− α))ν + 3ν1 + O(ε)ν
ν4 = (6(1− α)2 − 4(1− α) + 1)ν − ν1 + O(ε)ν

Note that (a) and (b) imply that the %i, νi, i ≥ 2, are determined by α and %1, ν1 up to
the O(ε)-terms. The claim of Theorem 10 is only useful if α is substantial larger than ε.
This again shows the relevance of Algorithm 6. It certifies that α is bounded away from 0
by a fixed constant. This fact allows us to find a sufficiently small constant ε > 0.

Proof. To show that Algorithm 7 correctly certifies the properties of Theorem 10 let ε > 0
be a constant and F be a 4-SAT formula which passes the algorithm successfully. Let a
with |Fa| = αn be a satisfying assignment of F . The first equation %0 = 0 trivially holds
as a satisfies F .

By low discrepancy we get for any projection B of P = P (F) that in B

e(Fa, Fa) = α2 · % + O(ε)%

No clause from %3 induces an edge belonging to E(Fa, Fa). Looking at all 6 projections
each clause from %2 induces one edge in one projection and each clause from %1 induces
one edge in three projections. Thus we have

6α2% + O(ε) · % =
∑
B

eB(Fa, Fa) = 3%1 + 1%2 + o(%), (4)

where G ranges over all 6 projection of P . The o(%) term accounting for those pairs of
clauses inducing the same edge. In each projection B of P we have

eB(Ta, Ta) = (1− α)2 · % + O(ε)%

and therefore
6(1− α)2 · % = 6%4 + 3%3 + %2 + O(ε)%. (5)

Finally
% = %4 + %3 + %2 + %1. (6)

Remember, %0 = 0 as a is a satisfying assignment. The second equation from (a)

%2 = 6α2%− 3%1 + O(ε)% (7)

follows directly from (4). Plugging (7) into (5) yields

6(1− α)2% = 6%4 + 3%3 + 6α2%− 3%1 + O(ε) · %

and simply algebra gives

2%− 4α% = 2%4 + %3 − %1 + O(ε)%. (8)

Plugging (7) into (6) gives

(1− 6α2)% = %4 + %3 − 2%1 + O(ε)%. (9)

9

Subtracting (9) from (8) we get

2%− 4α%− (1− 6α2)% = %4 + %1 + O(ε)%.

and simple algebra gives the fourth equation of (a)

%4 = (1 + 6α2 − 4α)%− %1 + O(ε)%. (10)

Plugging (10) into (8) we get

2%− 4α% = 2% + 12α2%− 8α%− 2%1 + %3 − %1 + O(ε)%

and this gives the third equation from (a)

%3 = −12α2% + 4α% + 3%1 + O(ε)%

(b) follows analogously with N and |Ta| = (1− α)n. ut

We can obtain Lemma 9 from the above equalities, too. For this use % ≥ %1 + %4 to get
α ≥ 2/3 + O(ε). The other bound we could get through ν ≥ ν1 + ν4.

To extend the construction from section 4.1 of [6] from 3-SAT to 4-SAT is the purpose
of

Definition 11. Given two sets V1 and V2 of 4-clauses, the bipartite graph BG(V1, V2) =
(V1, V2, E) is defined by: For C ∈ V1, D ∈ V2 we have an edge {C,D} ∈ E iff C =
u1 ∨ u2 ∨ u3 ∨ u4, D = v1 ∨ v2 ∨ v3 ∨ v4 and for all i Var(ui) 6= Var(vi).

As we consider clauses as ordered it can be well that

{x1 ∨ x2 ∨ x3 ∨ x4 , ¬x2 ∨ ¬x1 ∨ x4 ∨ x3} ∈ E

provided the xi are all distinct. However we never have that

{x1 ∨ x2 ∨ x3 ∨ x4 , ¬x1 ∨ v1 ∨ v2 ∨ v3} ∈ E

as Var(x1) = Var(¬x1) = x1.
For a set of clauses S and 1 ≤ i ≤ 4 the rotations of S are:

ROT1(S) = {v2 ∨ v3 ∨ v4 ∨ v1 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT2(S) = {v3 ∨ v4 ∨ v1 ∨ v2 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT3(S) = {v4 ∨ v1 ∨ v2 ∨ v3 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT4(S) = S

Corollary 12. There exists a small constant δ > 0 (e.g. δ = 1/50) such that Algorithm
7 certifies the following property for Formn,4,c/n3 where c is sufficiently large: If F =
Formn,4,c/n3 is satisfiable there must be a bipartite clique of size ≥ (cn/16)2 · (1+ δ) in one
of the following eight graphs:

BG(P,ROTi(N)) with 1 ≤ i ≤ 4
BG(P,ROTi(P)) with i = 1, 2
BG(N,ROTi(N)) with i = 1, 2

10

Proof. We only need to show that Algorithm 7 correctly certifies the property claimed. To
this end let F be a 4-SAT formula which passes Algorithm 7 successfully. We distinguish
two cases. In the first case is %2 ≤ 3/8 · % · (1 + δ) and ν2 ≤ 3/8 · ν · (1 + δ). In the second
case at least one inequality is violated. We start with the second case.

Assume %2 > 3/8 · %(1 + δ). Note that %2 refers to six subsets of clauses containing
two variables true and two variables false under a. So there is at least one subset with
cardinality ≥ 1/16 · %(1 + δ). Let for an example (Ta, Fa, Fa, Ta)P be this subset. Then
BG(P,ROT2(P)) has a large bipartite clique. For the left side of the clique take all clauses
of type (Ta, Fa, Fa, Ta)P in P . The right side is the rotated set of these clauses. Through
the rotation the clauses change to (Fa, Ta, Ta, Fa)ROT2(P). As Ta∩Fa = ∅, (Ta, Fa, Fa, Ta)P

and (Fa, Ta, Ta, Fa)ROT2(P) form a bipartite clique. The size of the clique is bounded below
by

(1/16 · %(1 + δ))2 ≥ (cn/16)2 · (1 + δ)2 · (1− o(1)) > (cn/16)2 · (1 + δ).

For any of the five other types we get the same bound maybe using BG(P,ROT1(P)). If
ν2 > 3/8 · ν(1 + δ) use BG(N,ROT1(N)) resp. BG(N,ROT2(N)) in the same way.

Now we come to the case %2 ≤ 3/8 · %(1 + δ) and ν2 ≤ 3/8 · ν(1 + δ) From the second
equalities of (a) and (b) in Theorem 10 we get

%1 = 2α2%− %2/3 + O(ε)% ≥ 2α2%− 1/8 · %(1 + δ) + O(ε)%

and
ν1 ≥ 2(1− α)2ν − 1/8 · ν(1 + δ) + O(ε)ν.

As %1 consists of four subsets of clauses having exactly one variable true under a we
have one subset with cardinality ≥ (α2/2 − (1 + δ)/32 + O(ε))%. For example this is
(Fa, Ta, Fa, Fa)P . Also we get one subset in N having exactly one variable false under a
with at least ((1−α)2/2− (1+δ)/32+O(ε))ν clauses. Let this subset be (Fa, Ta, Ta, Ta)N .
Looking at BG(P,ROT3(N)) we see that this two subsets form a bipartite clique with at
least (

α2

2
− 1 + δ

32
+ O(ε)

)
% ·
(

(1− α)2

2
− 1 + δ

32
+ O(ε)

)
ν (11)

edges. Conceive (11) as a function of α. Then it is concave for 1/5 ≤ α ≤ 4/5. Lemma
9 gives us 1/3 − O(ε) ≤ α ≤ 2/3 + O(ε) as a is a satisfying assignment. Because of
the concavity we only have to check these both limits to lower bound (11). For ε and δ
sufficiently small we get in both cases a lower bound of(

(1/3−O(ε))2

2
− 1 + δ

32
+ O(ε)

)
% ·
(

(2/3 + O(ε))2

2
− 1 + δ

32
+ O(ε)

)
ν

≥
(

1
18

− 1 + δ

32
+ O(ε)

)
% ·
(

2
9
− 1 + δ

32
+ O(ε)

)
ν

≥ % · ν
250

≥ (cn · (1 + o(1)))2

250
=

(cn)2

256
· 256
250

· (1 + o(1))

>
(cn

16

)2
· (1 + δ)

ut

11

Theorem 13. Let ε > 0 be an arbitrarily small constant and c = c(ε) large enough. For
F = Formn,4,c/n3 the maximum clique size in the graphs below is with high probability
bounded above by (cn/16)2 · (1 + ε). This applies to the graphs BG(R, T) where R and T
each are one among the sets ROTi(N(F)), ROTi(P (F)) for 1 ≤ i ≤ 4 (R = T is also
possible).

Proof. Let G = BG(R, T) = (R, T, E). We show the claim for R = P (F) and T =
ROT1(P (F)). Clearly the remaining cases can be treated similarly. Let K ⊆ R and L ⊆ T
such that K × L ⊆ E, meaning that K and L induce a clique in G. For 1 ≤ i ≤ 4 let

Ki = {x | u1 ∨ u2 ∨ u3 ∨ u4 ∈ K, x = Var(ui)}

and analogously for Li. By definition of BG(R, T) and as K × L ⊆ E we have that
Ki ∩ Li = ∅ for all 1 ≤ i ≤ 4. The theorem follows when we show that for all sets
Ki ⊆ Var, Li = Var \Ki

|(K1,K2,K3,K4)R| · |(L1, L2, L3, L4)T | ≤ (cn/16)2 · (1 + ε)

with high probability for Formn,4,c/n3 . Given Ki, Li let

X = |(K1,K2,K3,K4)R| and Y = |(L1, L2, L3, L4)T |.

Then X is binomially distributed with parameters κ and c/n3, and κ = |K1| · |K2| ·
|K3| · |K4|. Y is also binomially distributed but with the parameters λ and c/n3, and
λ = |L1| · |L2| · |L3| · |L4|. Note that X and Y can be dependent because T = ROT1(R).

Assume first that κ, λ ≥ εn4. In this case we have

E[X] = κ · c/n3 ≥ ε · cn and E[Y] = λ · c/n3 ≥ ε · cn.

By Chernoff’s bound we have

Pr[X ≥ E[X] · (1 + ε2)] ≤ exp(−ε4/3 ·E[X]) ≤ exp(−ε5/3 · cn)

and
Pr[Y ≥ E[Y] · (1 + ε2)] ≤ exp(−ε4/3 ·E[X]) ≤ exp(−ε5/3 · cn)

Concerning the product we get from these estimates that

Pr[X · Y ≥ E[X] ·E[Y] · (1 + ε2)2] ≤ 2 · exp(−ε5/3 · cn)

The product E[X] · E[Y] is maximized when |Ki| · |Li| = n/2 for 1 ≤ i ≤ 4. In this case
κ = λ = n4/16, E[Y] = E[X] = n4/16 · c/n3 = cn/16 and

Pr[X · Y ≥ (cn/16)2 · (1 + ε)]
≤ Pr[X · Y ≥ (cn/16)2 · (1 + ε2)2] For ε small enough.
≤ Pr[X · Y ≥ E[X] ·E[Y] · (1 + ε2)2]
≤ 2 · exp(−ε5/3 · cn).

Picking c large enough this probability is o(2−4n).
The second case arises for κ < εn4. As P (F) = cn · (1 + o(1)) with high probability,

we can condition on the event Y ≤ cn · (1 + o(1)). Let Z be binomially distributed with

12

the parameters εn4 and c/n3. Then we get

Pr[X ≥ c/162 · n]
≤ Pr[Z ≥ c/162 · n]
≤ Pr[Z ≥ 1/(256ε) · εcn]
≤ Pr[Z ≥ 2 · εcn] For ε < 1/512.

= Pr[Z ≥ 2 ·E[Z]]
≤ exp(−1/3 · εcn)

leading to

Pr[X · Y ≥ (cn/16)2 · (1 + ε)] ≤ Pr[X ≥ c/162 · n] ≤ exp(−1/3 · εcn),

which is o(2−4n) when c is large enough. The third case λ < εn4 can be handled similarly
and is omitted. The claim follows as we have only 24n possibilities to choose K1, . . . ,K4.

ut

Corollary 12 and Theorem 13 shows the correctness of Theorem 2. If we would have an
approximation algorithm with ratio for example 1.01, we could distinguish between the
satisfiable formulas inducing graphs with cliques ≥ (cn/16)2 · (1.02) (Corollary 12) and
the typical formulas whose graphs only have cliques of size e.g. (cn/16)2 · (1.001) from
Theorem 13. This means we could refute 4-SAT on average.

2.3 The proof of Theorem 1

Let ε1 > ε2 > 0 be constants as in Theorem 2. Let Gl (l for large) be the set of graphs G =
(V1, V2, E) with |V1| = |V2| = n having a bipartite clique of size at least (n/16)2 · (1 + ε1).
The set Gs (s for small) contains all the graphs G = (V1, V2, E) with |V1| = |V2| = n
and the maximal clique is at most (n/16)2 · (1 + ε2). The size of the cliques in Gl and Gs

differ by a factor (1 + ε1)/(1 + ε2). This factor we call gap. As the gap of (1 + ε1)/(1 + ε2)
is constant, we have no chance to detect it directly with an approximation algorithm A
having ratio nδ. So we construct from G a graph G = (V1,V2, E) with |V1| = |V2| having
significantly more vertices and edges as G. The goal is to enlarge the constant gap to a
factor of |V1|δ for some constant δ > 0. Then we can detect the gap with A. Firstly, we
examine the following idea:

1. Choose k ∈ N.
2. Let V1 be the set of all k-tuples of vertices in V1.
3. Let V2 be the set of all k-tuples of vertices in V2.
4. Two vertices x = (x1, . . . , xk) ∈ V1, y = (y1, . . . , yk) ∈ V2 induce an edge {x, y} ∈ E iff

({x1, . . . , xk}, {y1, . . . , yk}) form a bipartite clique in G.

Let M ⊆ V1, then V1(M) denotes the set of all tuples in V1 consisting only of vertices from
M and analogously for N ⊆ V2 and V2(N). With the above construction |V1(M)| = |M |k
and |V2(N)| = |N |k.

From die construction of E the following two statements hold. Firstly for every bipartite
clique (L,R) in G we have that (V1(L),V2(R)) is a bipartite clique in G. Secondly for every

13

clique (L,R) in G let L be the vertices in the tuples of L and R be the vertices in the tuples
of R. Then (L,R) form a bipartite clique in G. Note that L ⊆ V1(L) and R ⊆ V2(R).

For G ∈ Gs we use this fact to get an upper bound for the clique size in G. Let (L,R)
and (L,R) as above. Then

|L| · |R| ≤ |V1(L)| · |V2(R)| = |L|k · |R|k = (|L| · |R|)k ≤ (n/16)2k · (1 + ε2)k

bounds the clique size in G.
From the first statement we get for G ∈ Gl and (L,R) its maximal clique that G has

a clique of size

|V1(L)| · |V2(R)| = |L|k · |R|k = (|L| · |R|)k ≥ (n/16)2k · (1 + ε1)k.

Now we have a gap of ((1 + ε1)/(1 + ε2))k. For a bounded k this is still constant. But for
unbounded k we cannot construct the sets V1 and V2 in polynomial time as they have size
nk. So we have to choose a subset of all tuples.

The next idea is to choose every tuple uniform and independent. Then we have for
M ⊆ V1 that E[V1(M)] = (|M |/n)k · |V1|. Together with Chernoff’s bounds we have with
high probability

|V1(M)| = (|M |/n)k · |V1| · (1 + o(1))

provided |M | and |V1| are so that E[V1(M)] is linear in n. We get for G ∈ Gl and (L,R)
its maximal clique that G has a clique of size

|V1(L)| · |V2(R)| ≥
(
|L|
n

)k

· |V1| ·
(
|R|
n

)k

· |V2| · (1 + o(1))

≥
(

1 + ε1

256
+ o(1)

)k

· |V1| · |V2|.

For G ∈ Gs let (L,R) and (L,R) as in the second statement above. We get

|L| · |R| ≤ |V1(L)| · |V2(R)|

≤
(
|L| · |R|

n2

)k

· |V1| · |V2| · (1 + o(1))

≤
(

1 + ε2

256
+ o(1)

)k

· |V1| · |V2|.

Both facts together give us a gap of(
1+ε1
256 + o(1)

1+ε2
256 + o(1)

)k

=
(

1 + ε1

1 + ε2
+ o(1)

)k

≥ (1 + ε)k

for some constant ε > 0. Now we choose k = dlnne, then this gap is at least (1 + ε)ln n =
nln(1+ε). Choosing every tuple with probability say n2/nk, we get with high probability
|V1| = n2 · (1 + o(1)) and |V2| = n2 · (1 + o(1)). So for δ < ln(1 + ε)/2 algorithm A with
ratio nδ recognizes this large gap. So through this construction of G A could decide if a
given graph G belongs to Gs or to Gl.

14

But as we are interested in deterministic algorithms we do not want to choose the
tuples randomized. We use the so called derandomized graph product as introduced in [1].
This makes use of Ramanujan graphs, cf. [14]. These regular graphs have good expansion
properties. The above construction of V1 and V2 is substituted by the following procedure:

1. Choose k ∈ N odd and a large constant d ∈ N.
2. Construct a Ramanujan graph H with n vertices and degree d.
3. Identify every vertex from V1 with exactly one vertex in H.
4. Enumerate all walks in H of length k− 1. Each of this walks can be seen as a tuple of

k vertices from V1 (in order of appearance on the walk). Put each such tuple into V1.
5. Identify every vertex from V2 with exactly one vertex in H.
6. Enumerate all walks in H of length k− 1. Put for each walk the relating tuple into V2.

Note that |V1| = |V2| = n · dk−1 as we have n vertices in H each has d neighbors.

Fact 14. From [1] section 2 we have for every set M ⊆ V1

|V1(M)| ≤ |M | · dk−1 ·
(
|M |
n

+
2√
d
·
(

1− |M |
n

))k−1

|V1(M)| ≥ |M | · dk−1 ·
(
|M |
n

− 2√
d
·
(

1− |M |
n

))k−1

and the same for N ⊆ V2 and V2(N).

The first inequality evaluates to

|V1(M)| ≤ |M | · dk−1 ·
(
|M |
n

+
2√
d
·
(

1− |M |
n

))k−1

≤ |M |
n

· ndk−1 ·
(
|M |
n

+ O

(
1√
d

))k−1

≤ |V1| ·
(
|M |
n

+ O

(
1√
d

))k

and the second to |V1(M)| ≥ |V1| ·
(
|M |
n + O

(
1√
d

))k
where the constant behind the O is

< 0. We get for every N ⊆ V2 on the same way |V2(N)| = |V2| ·
(
|N |
n + O

(
1√
d

))k

With the same calculations as in the randomized case above we get for G ∈ Gl in G a
clique of size at least |V1| · |V2| · ((1 + ε1)/256 + O(1/

√
d))k. In the case G ∈ Gs we have in

G only cliques of size at most |V1| · |V2| · ((1 + ε2)/256 + O(1/
√

d))k. So we have a gap of(
1+ε1
256 + O(1/

√
d)

1+ε2
256 + O(1/

√
d)

)k

=

(
1 + ε1 + O(1/

√
d)

1 + ε2 + O(1/
√

d)

)k

= (1 + ε)k

for some constant ε > 0 provided d large enough. If we set k to the smallest odd integer
≥ lnn, we have a gap of at least (1 + ε)ln n = nln(1+ε). The number of vertices in G is
bounded above by 2n · dk−1 = O(n1+ln d), remember d is a constant. So an approximation
ratio for A of nδ with δ < ln(1+ε)

1+ln d and constant suffices to detect the gap. As this contradicts
the random 4-SAT hardness hypothesis, we found a δ for Theorem 1. The certification
algorithm for unsatisfiability of Formn,4,c/n3 could be the following:

15

Algorithm 15. Input a 4-SAT formula F .
Step 1. Apply Algorithm 7 to F .
Step 2. Construct G = (V1,V2, E) as described for every BG from Corollary 12.
Step 3. Apply A to every G.
Step 4. If A detects a clique of size ≥ |V1| · |V2| · ((1 + ε1)/256 + O(1/

√
d))k/|V1|δ give an

inconclusive answer, otherwise give a positive answer.

The correctness of the algorithm follows from Corollary 12. Its completeness from Theorem
13 and the completeness of Algorithm 7.

3 Proof of Theorem 3

3.1 The algorithm

For Ui ⊆ Var we say that a clause l1 ∨ l2 ∨ l3 ∨ l4 is of type {U1, U2, U3, U4} if there is a
permutation g1 ∨ g2 ∨ g3 ∨ g4 of the li such that Var(gi) ∈ Ui. Remember Var(gi) denotes
the variable underlying the literal gi. Note, the definition of the type is slightly different to
that in Section 1, p. 6. Given a (4-SAT) formula F , {U1, U2, U3, U4}F is the set of clauses of
type {U1, U2, U3, U4} in F. We write {U1, U2,−,−} = {U1, U2, V, V } and {U1, U2,−,−}F

then stands for the subset of clauses C of F in which we have two positions one of which is
filled with a literal over U1 and the other one with a literal over U2. (Note that the literals
in the two positions can be equal.)

Given a formula F and an assignment φ we let CTi(F) = CTi,φ(F) = F ∩CTi,φ be the
set of those clauses of F with exactly i literals true under φ. The support in CT1 of the
variable x with respect to F and φ is

Supp1,F,φ(x) = |{C ∈ CT1,φ(F) |x ∈ C and φ(x) = 1 or¬x ∈ C, φ(x) = 0}|.

Similarly for CT3 we have

Supp3,F,φ(x) = |{C ∈ CT3,φ(F) |x ∈ C and φ(x) = 0 or¬x ∈ C, φ(x) = 1}|.

Thus SuppF,φ(x) = Supp1,F,φ(x) + Supp3,F,φ(x) is the number of clauses of F which have
exactly one literal true or exactly one literal false under φ and this literal is either x or
¬x. OccF (x) = OccF (¬x) = |{C ∈ F |x ∈ C or ¬x ∈ C}| is the number of clauses of
F which contain x or ¬x. Note that Occ(x) need not be equal to the number of actual
occurrences of x,¬x as x, ¬x can occur several times inside a clause.

Recall the generation procedure of our formulas from Subsection 1.3. Let φ be the
assignment picked in Step 1, then we have that |CTi,φ(I)| follows the binomial distribution
with parameters |CTi,φ| and pi. For the expectation we have E[|CTi(I)|] = pi · 4n4 for
i = 1, 3 and E[|CT2(I)|] = p2·6n4. For x ∈ Var we can decompose OccI(x) = X1+X2+X3

where Xi follows the binomial distribution with parameters 4n4−4(n−1)4 = 16n3+O(n2)
and pi for i = 1, 3. X2 follows the binomial distribution with 6n4−6(n−1)4 = 24n3+O(n2).
We have that

E[OccI(x)] = (16η1 + 24η2 + 16η3)d + O(1/n).

We let µ = 16η1 + 24η2 + 16η3 and di = ηid throughout. SuppF,φ(x) = Y1 + Y3 where Yi

follows the binomial distribution with parameter 4n3 + O(n2) and pi. Then E[Supp(x)] =

16

4ηd + O(1/n) where η = η1 + η3 throughout. R(I) is the subset of those variables for
which OccI(x) and SuppI,φ(x) are approximately right (like the expectation). Given an
assignment φ and ε > 0 we define

R(I) = Rφ,ε(I) = {x ∈ V | |OccI(x)− µd| ≤ εd , |SuppI,φ(x)− 4ηd| ≤ εd}.

Concerning R′(I) ⊇ R(I) we are slightly more generous concerning the support:

R′(I) = R′
φ,ε(I) = {x ∈ V | |OccI(x)− µd| ≤ εd , |SuppI,φ(x)− 4ηd| ≤ 4εd}.

Given a set of variables W ⊆ V , the boundary of W with respect to a (random) instance
I and ε > 0 is ∂(W) = ∂I,ε(W) = {x ∈ W | |{x,W,W,W}I | ≤ (µ− 2ε)d}. (Recall that
E[Occ(x)] ∼ µd.) The core of W with respect to I and ε > 0, C(W) = CI,ε(W), is the
largest subset W ′ ⊆ W with ∂(W ′) = ∅. It can be obtained by the following algorithm
which iteratively deletes a variable from the current boundary:

W ′ := W
while ∂(W ′) 6= ∅ do
Pick any x ∈ ∂(W ′); W ′ := W ′ \ {x}.

The correctness follows with the invariant C(W) ⊆ W ′.
The following algorithm to find a satisfying assignment in the not-all-equal-sense yields

the main result. It is inspired by the algorithm in [8] for 3-SAT.

Algorithm 16. Input: Constants d, ηi, ε and a 4-SAT formula I over Varn (generated as
above).

1. Construct the graph G = GI = (V,E) with V = Litn. For l 6= k ∈ Litn we have
{l, k} ∈ E iff we have a clause C ∈ I with l, k ∈ C. (Note that we have no loops or
multiple edges.)

2. Construct G′ = (V,E′) by deleting all edges incident with vertices l ∈ V with dl ≥ 180d.
Here dl is the degree of l. Compute the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ2n of the adjacency
matrix A of G′. We have

∑
λi = 0 and λ1 ≥ a where a is the average degree of G′, cf.

[16]. Let e2n = (a1, . . . , a2n)t (t for transpose) be the eigenvector of the most negative
eigenvalue λ2n. Let ai be the entry corresponding to the variable xi and an+i be the
entry corresponding to ¬xi.

3. We construct the assignment π: For the variable xi we let π(xi) := 1 if the entry ai ≥ 0
and an+i < 0. If ai < 0 and an+i ≥ 0 we let π(xi) := 0. The variables which have no
truth value by now can be given any truth value (for example all 1).

4. For i = 1, 2, . . . , log n do
W := {x ∈ V | |{C ∈ F | (x ∈ C or ¬x ∈ C) and C false under π}| ≥ 5εd}.
For all x ∈ W do π(x) := 1− π(x).

5. We consider the core CI,ε(R′
π,ε(I)). (For R′

π,ε(I) recall the definition above.) Modify
π to a partial assignment by unassigning all variables not belonging to the core C′ =
CI,ε(R′

π,ε(I)).
6. Construct the graph Γ = (Var, E) where

{x, y} ∈ E iff x, y ∈ V \ C′ and {x, y,−,−}I 6= ∅.

(Note that π(x), π(y) is undefined at present.) Determine the connected components of
Γ. If any of these has more that log n vertices the algorithm fails. Otherwise it searches

17

for a satisfying assignment by trying out all possibilities for each connected component
by itself and assigning the unassigned variables of π such that a not-all-equal solution
of I is obtained, if possible. If no such assignment is found the inconclusive one is the
answer.

For the subsequent analysis of this algorithm we let φ be the assignment fixed in Step 1
of the generation algorithm. Usually we denote by I a random instance.

Theorem 17. For every constant δ > 0 and for all sufficiently large constants d we have
for the assignment π after Step 3 of the algorithm that |{x ∈ Var |π(x) 6= φ(x)}| ≤ δn},
or the symmetric statement |{x ∈ Var |π(x) 6= 1− φ(x)}| ≤ δn}.

3.2 Proof of Theorem 17

The proof of Theorem 17 follows [8], but due to the application of some recent lemmas
from [5] is somewhat simpler.

Let G and G′ be the graphs constructed from the random instance I in Step 1 and Step
2. Let I be a random NAE-4-Sat formula generated as described. Assume every literal in
I occurs in every position in every clause from CTi,φ (notation see Subsection 1.3) exactly
how it is expected. Then every literal true under φ occurs in 4d1 clauses from CT1,φ. Note,
the 4 comes from the 4 positions the true literal can occupy. Additionally every literal true
under φ occurs in 12d2 clauses from CT2,φ and in 12d3 clauses in CT3,φ. In the same way
we get that every false literal in φ occurs in CT1,φ in 12d1 clauses, in 12d2 clauses from
CT2,φ an in 4d3 clauses from CT3,φ.

Now consider the matrix A. To simplify the following things, we assume that every
clause in I induces exactly 6 edges to G. Let vT (resp. vF) be the characteristic 0/1-vector
for the literals true (resp. false) under φ. Note that vt

T ·vT = n, vt
F ·vF = n and vt

F ·vT = 0.
We calculate A · vT . In a row in A corresponding to a literal true under φ the number

of 1s we count is 12d2 (every clause in CT2,φ contributes one 1 for the sum) + 2 · 12d3 (as
each clauses in CT3,φ contributes two 1s for the sum). In a row corresponding to a literal
false under φ we get a value of 12d1 + 2 · 12d2 + 3 · 4d3. So we can say

AvT = (12d2 + 24d3) · vT + (12d1 + 24d2 + 12d3) · vF and
AvF = (12d1 + 24d2 + 12d3) · vT + (24d1 + 12d3) · vF ,

where the calculation for AvF is omitted.
Note that for every linear combination v of vT and vF Av gives again a linear combi-

nation of these both vectors. So, vT and vF span an eigenspace of A. The eigenvalues and
the eigenvectors of this space can be found by solving the following eigenvalue problem

12
(

d2 + 2d3 d1 + 2d2 + d3

d1 + 2d2 + d3 2d1 + d3

)
·
(

β
γ

)
= α ·

(
β
γ

)
(12)

By calculating and solving the characteristic polynomial of the above matrix we get

α± = 12(d1 + d2 + d3 ±
√

(d1 + d2 + d3)2 + (d1 + 2d2 + d3)2 − (d2 + 2d3)(2d1 + d2))
= 12(d1 + d2 + d3 ±

√
(d1 + 2d2 + d3)2 + (d1 − d3)2)

18

And we have α+ ≥ 12(2d1 + 3d2 + 2d3) and α− ≤ −12d2. So α+ = Θ(d) and α− = −Θ(d)
where the constants behind the Θ are positive and depend only of η1, η2, η3. The above
linear system of equations yields two eigenvectors f = β−vT +β−vF and g = β+vF +γ+vF

of A. We normalize f and g so that β2
−+γ2

− = β2
++γ2

+ = 1. This insures that gtg = f tf = n.

Lemma 18. Each of β−, β+, γ−, γ+ is in absolut value ≥ 1/4 and β−β+ + γ−γ+ = 0.
Moreover, β− and γ− have different signs.

Proof. We can follow from (12) that

12((d2 + 2d3)β+ + (d1 + 2d2 + d3)γ+) = α+β+ and
12((d1 + 2d2 + d3)β+ + (2d1 + 2d2)γ+) = α+γ+.

By substituting α we get

2d3 − 2d1 + (d1 + 2d2 + d3) ·
(

γ+

β+
− β+

γ+

)
= 0. (13)

Assume |β+| < 1/4. Then |γ+| >
√

15/4 because β2
+ + γ2

+ = 1. So the term | γ+

β+
− β+

γ+
| >

√
15 − 1/

√
15 exceeds 2 in absolut value. This shows that the left side of (13) cannot

reach 0 as either all coefficients of the di are positive or all coefficients are negative. The
remaining cases can be treated similarly.

The second fact follows directly from f tg = 0 (f and g are orthogonal):

0 = f tg = (β−vT + γ−vF)t(β+vT + γ+vF) = β−β+vt
T vT + γ−γ+vt

F vF = n(β−β+ + γ−γ+).

The signs of β− and γ− must be different because α− < 0 and all entries of A are ≤ 0. ut

Unfortunately, our random instances I the matrix A has rarely that regular structure.
But we will show that the smallest eigenvalue is near α− and the corresponding eigenvector
is similar to f .

Let ET,T be the set of edges in G′ with both endpoints are set to true under φ. ET,F

and EF,F are defined analogously. The following lemma results from standard calculations
which are omitted, cf. [8, Appendix A].

Lemma 19. Let F be a random NAE-4-Sat formula generated as described. For the graph
G′ = G′(F) the following holds with high probability:

1. |ET,T | = (6d2 + 12d3 + o(1))n
2. |ET,F | = (12d1 + 24d2 + 12d3 + o(1))n
3. |EF,F | = (12d1 + 6d2 + o(1))n
4. |E \ E′| ≤ 2−2d/Cn, where C is a constant independent from d.

Lemma 20. With the above notation the following holds with high probability for some
constant C independent of d.

1. α− − 2−d/C ≤ f tAf ≤ α− + 2−d/C

2. α+ − 2−d/C ≤ gtAg ≤ α+ + 2−d/C

19

Proof. We show the proof for the upper bound in 1. explicit. The other statements can be
shown analogously.

f tAf = (β−vT + γ−vF)tA(β−vT + γ−vF)
= β2

−vt
T AvT + γ−β−vt

F AvT + β−γ−vt
F AvT + γ2

−vt
F AvF

= β2
− · 2|E′

T,T |+ 2γ−β−|E′
T,F |+ γ2

− · 2|E′
F,F |

≤ β2
− · 2|ET,T |+ 2γ−β−|ET,F |+ γ2

− · 2|ET,T |+ 2 · 2−2d/Cn

= β2
− · 2(6d2 + 12d3)n + 2γ−β−(12d1 + 24d2 + 12d3)n + γ2

− · 2(12d1 + 6d2)n +

o(n) + 2 · 2−2d/Cn

=
(
β− γ−

)
·
(

12d2 + 24d3 12d1 + 24d2 + 12d3

12d1 + 24d2 + 12d3 24d1 + 12d3

)
·
(

β−
γ−

)
+ 3 · 2−2d/Cn

≤ α−n + 2−d/Cn

ut

As A = A(G′(F)) is real valued and symmetric, A has 2n (not necessary different)
eigenvalues λ1 ≥ . . . ≥ λ2n. Let e1, . . . , e2n be a set of corresponding eigenvectors with
‖ei‖ = 1 and Aei = λiei, where ‖ · ‖ denotes the standard Euclidean norm. As λ2n =
minv 6=0 vtAv/(vtv) we get that λ2n ≤ f tAf/(f tf) ≤ α− + 2−d/C .

Lemma 21. For any unit vector v perpendicular on vT and vF we have with high proba-
bility that ‖Av‖ = O(

√
d).

Proof. Note, that we have some dependencies between the entries of A. The edges induced
by different clauses are independent, but the edges that come from the same clause are
not. To avoid problems, we color every 4-clique that comes from a clause in F . We use
six colors and every edge from a 4-clique gets a different color uniformly. This gives six
partitions of edges. For every partition c we get a matrix Ac containing exactly the entries
belonging to the edges in c. So we have six matrices Ac and now there are no dependencies
between the entries in any Ac. Surely, the matrices are not independent of each other, but
this does not disturb.

Next, we divide every Ac into four blocks Ac
i,j with i, j ∈ {F, T}. For example, the

block Ac
T,F contains all entries aij from A with i true under φ and j false under φ and

having color c.
The reason for these blocks is, that now Ac

i,j and the vector v have the following
behavior. Every Ac

i,j is like a truly random n × n-matrix, where each entry is included
with the same probability d′/n.

Although d′ is different for every Ac
i,j , it is constant and linear in d and so can be suffi-

ciently large. The vector v behaves to Ac
i,j like a vector perpendicular to the n-dimensional

all-1-vector 1.
For such random matrices B it is known, for example from [5], that whp. for all unit

vectors v perpendicular to 1 ‖Bv‖ = O(
√

d′) holds. Note, in case of AF,T and AT,F we
have matrices that are not symmetric and the diagonal elements can be different from 0.
For these both use Lemma 45 of [5] and for AT,T and AF,F use Lemma 39 of the cited
paper.

20

With

‖Av‖ =

∥∥∥∥∥∥
6∑

c=1

∑
i,j∈{F,T}

Ac
i,jv

∥∥∥∥∥∥ ≤
6∑

c=1

∑
i,j∈{F,T}

‖Ac
i,jv‖ ≤ 24 ·O(

√
d)

follows the lemma. ut

Fact 22. Let A, f , g and v as above, then the following facts hold with high probability

1. |f tAv| = O(
√

dn)
2. |gtAv| = O(

√
dn)

3. |f tAg| = O(2−d/Cn)

Proof. The first fact can be seen easily as |f tAv| = |(f,Av)| ≤ ‖f‖ · ‖Av‖ =
√

n ·O(
√

d).
In the same way one can conclude 2. A similar calculation as in the proof of Lemma 20 in
conjunction with the fact β−β+ + γ−γ+ = 0 yields |f tAg| = O(2−d/Cn).

Lemma 23. For every constant δ > 0 there exists a constant d′ so that for all d > d′ the
following holds with high probability. There are at most δn coordinates where f and e2n

have different signs or at most δn coordinates where −f and e2n have different signs.

Proof. Note that the vector e2n can be expressed as linear combination of f , g, and v with
v perpendicular to f and g and ‖v‖ = 1. As f and g both are linear combinations of vT

and vF , v fulfills the conditions of Lemma 21. Let e2n = c1f/‖f‖+ c2g/‖g‖+ c3v. As e2n,
f/‖f‖, g/‖g‖, and v are unit vectors, we have c2

1 + c2
2 + c2

3 = 1.
With Lemma 21 and Fact 22 in mind we calculate

et
2nAe2n =

(
c1

f

‖f‖
+ c2

g

‖g‖
+ c3v

)t

A

(
c1

f

‖f‖
+ c2

g

‖g‖
+ c3v

)
= c2

1

f tAf

‖f‖2
+ c2

2

gtAg

‖g‖2
+ c2

3v
tAv + 2

(
c1c2

f tAg

‖f‖ · ‖g‖
+ c1c3

f tAv

‖f‖
+ c2c3

gtAv

‖g‖

)
≥ c2

1

f tAf

‖f‖2
+ c2

2

gtAg

‖g‖2
− c2

3‖v‖ · ‖Av‖+ O(
√

d)

≥ c2
1α− + c2

2α+ + O(
√

d),

where the constant behind the O is negative. As et
2nAe2n = λ2n ≤ α− + 2−d/C we get

α− + 2−d/C ≥ c2
1α− + c2

2α+ + O(
√

d)
α− ≥ c2

1α− + c2
2α+ + O(

√
d)

1 ≤ c2
1 + c2

2

α+

α−
+ O(

√
d/α−).

As shown earlier both α− and α+ are linear in d and α− < 0. This gives for some constant
c′ > 0 independent from d

1 ≤ c2
1 − c′ · c2

2 + O(1/
√

d)

where the constant behind the O now is positive. Now set c1 = 1− δ′ with 0 ≤ δ′ ≤ 1

1 ≤ 1− 2δ′ + δ′
2 − c′ · c2

2 + O(1/
√

d)

0 ≤ −2δ′ + δ′
2 − c′ · c2

2 + O(1/
√

d)
0 ≤ −δ′ − c′ · c2

2 + O(1/
√

d)

21

As the both first terms have negative signs, they must be in absolut value O(1/
√

d). And
so by setting d sufficiently large δ′ becomes arbitrarily small. From e2n = c1f/‖f‖ +
c2g‖f‖+ c3v we get ‖e2n − f/‖f‖ ‖ = c2

2 + c2
3 ≤ 2δ′. Let x be the number of entries where

f and e2n have different signs. Remember, each entry of f is at least 1/4 in absolut value.
So in every of the x entries e2n must be at least 1/(4

√
n) in absolut value. This gives

2δ′ ≥ ‖e2n − f/‖f‖ ‖ ≥ x/16n respective x ≤ 32δ′n. As δ′ can be made sufficiently small
by increasing d, the claim holds. For the case 2 ≥ δ′ > 1 the above argumentation works
with −f instead of f . ut

Now Theorem 17 follows as β−, γ− have different signs and therefore we know that the
positive entries of f either correspond to the literals set to 1 by φ and the negative ones
to those set to 0 or the other way round.

3.3 Proof of Theorem 3

The remaining part of the algorithm is also analyzed based on Flaxman’s work, but some
subtle details have to be taken care of. With Theorem 17 we assume that for the assignment
π after Step 3 |{π(x) = φ(x)}| ≥ (1 − δ)n. If |{π(x) = 1 − φ(x)}| ≥ (1 − δ)n we proceed
analogously. We pick an ε sufficiently small (for this d must be sufficiently large.)

Lemma 24.

1. With probability 1 − e−Ω(n) we have |Rφ,ε(I)| ≥ (1 − e−d/C)n for a constant C inde-
pendent of d.

2. If δ = δ(ε) is a sufficiently small constant, then we have with probability 1−O(n−
√

d)
for all U ⊂ Var, |U | ≤ 2δn that |{U,U,−,−}I | ≤ 1/9 · εd|U |.

Proof. 1. Choose some arbitrarily small constant ε′ with 0 < ε′ < ε/5. Let Occi(x) be
the number of clauses in I having a literal over x at the i’th position. Let Zi

x be
an indicator variable with Zi

x = 1 if |Occi(x) − (4d1 + 6d2 + 4d3)| > ε′d and Zi
x = 0

otherwise. Further below we show that Pr[Zi
x = 1] ≤ e−d/C′

. Let Zi =
∑

x Zi
x, then Zi is

binomially distributed with parameters n and Pr[Zi
x = 1]. This gives E[Zi] ≤ e−d/C′

n.
We use the general Chernoff bound which holds for any δ ≥ 0

Pr[Zi ≥ (1 + δ) ·E[Zi]] ≤
(

eδ

(1 + δ)1+δ

)E[Zi]

.

So we get for any m ≥ E[Zi]

Pr[Zi ≥ m] = Pr
[
Zi ≥ m

E[Zi]
·E[Zi]

]
≤

(
em/E[Zi]−1

(m/E[Zi])m/E[Zi]

)E[Zi]

=
em−E[Zi]

(m/E[Zi])m
= e−E[Zi] ·

(
e ·E[Zi]

m

)m

≤
(

e ·E[Zi]
m

)m

(14)

22

Now we choose m = 3e−d/C′ ≥ 3 ·E[Zi] and obtain

Pr
[
Zi ≥ 3e−d/C′

n
]
≤
(

e ·E[Zi]
3E[Zi]

)3e−d/C′
n

= (e/3)Ω(n) = e−Ω(n)

So we have for each fixed i that with probability e−Ω(n) more than 3e−d/C′
n variables

x have |Occi(x)−(4d1+6d2+4d3)| > ε′d. Thus with probability ≤ 1−4e−Ω(n) we have
at each position at most 3e−d/C′

n variables with this property. Summing over the 4
positions we get with probability 1− 4e−Ω(n) that at most 12e−d/C′

n variables x have∣∣∣∣∣
4∑

i=1

Occi(x)− (16d1 + 24d2 + 16d3)

∣∣∣∣∣ > ε′d. (15)

Since
∑4

i=1 Occi(x) ≥ Occ(x) and ε > ε′ we have with probability 1 − 4e−Ω(n) that
there are at most 12e−d/C′

variables x with Occ(x)− (16d1 + 24d2 + 16d3) > ε.
The difference between

∑4
i=1 Occi(x) and Occ(x) is bounded by 4-times the number of

clauses containing x twice or more. Similarly to the above calculation one can show that
with probability 1−e−Ω(n) there are at most e−d/C′

n variables x with |{x, x,−,−}I | >
ε′d. So for at least (1 − e−d/C′

)n variables x we have Occ(x) ≥
∑4

i=1 Occi(x) − 4ε′d
yielding together with (15)

(16d1 + 24d2 + 16d3)−Occ(x) ≤ (16d1 + 24d2 + 16d3)−

(
4∑

i=1

Occi(x)− 4ε′d

)
< 5ε′d

for at least (1−13e−d/C′
)n variables x with probability 1−5e−Ω(n). All these variables

fulfil the requirements of Rφ,ε(I) with respect to Occ as ε′ < ε/5
Remark, the proof of Pr[Zi

x = 1] ≤ e−d/C′
is still missing. We do this know. Fix x

and i. Remember, Zi
x = 1 iff |Occi(x) − (4d1 + 6d2 + 4d3)| ≥ ε′d. We partition the

clauses containing x at the i’th position into three groups depending on the number
of literals true under φ. We denote by Occi

j(x) the number of clauses in I containing
exactly j literals true under φ and having x at its i’th position. Clearly we have
Occi(x) =

∑3
j=1 Occi

j(x). Each Occi
j(x) is binomially distributed for j = 1, 2, 3 with

parameters 4n3 and d1/n3, 6n3 and d2/n3, 4n3 and d3/n3. Using Chernoff’s bound it
is easy to show that for each j

Pr[|Occi
j(x)−E[Occi

j(x)]| ≥ ε′d/3] ≤ e−d/(2C′)

for some constant C ′ independent of d. This leads to
(a) Pr[|Occi

1(x)− 4d1| ≥ ε′d/3] ≤ e−d/(2C′)

(b) Pr[|Occi
2(x)− 6d2| ≥ ε′d/3] ≤ e−d/(2C′)

(c) Pr[|Occi
3(x)− 4d3| ≥ ε′d/3] ≤ e−d/(2C′).

As

|Occi(x)− (4d1 + 6d2 + 4d3)| ≤ |Occi
1(x)− 4d1|+ |Occi

2(x)− 6d2|+ |Occi
3(x)− 4d3|

23

we get finally

Pr[Zi
x = 1] = Pr[|Occi(x)− (4d1 + 6d2 + 4d3)| ≥ ε′d]

≤ Pr[|Occi
1(x)− 4d1|+ |Occi

2(x)− 6d2|+ |Occi
3(x)− 4d3| ≥ ε′d]

≤ Pr[|Occi
1(x)− 4d1| ≥ ε′d/3] + Pr[|Occi

2(x)− 6d2| ≥ ε′d/3]
+Pr[|Occi

3(x)− 4d3| ≥ ε′d/3]
≤ 3e−d/(2C′)

≤ e−d/C′
.

It remains to show that with probability (1− e−Ω(n)) at most e−d/C′′
n variables have

the wrong support. This gives that at most e−d/C′′
n + 13e−d/C′

n < e−d/Cn variables
are not in Rφ,ε with probability 1− e−Ω(n). The proof for Supp is omitted because it
is analogously to the above proof for Occ.

2. Fix any set U ⊂ Var with |U | = αn ≤ 2δn. Fix i and j with 1 ≤ i < j ≤ 4 and let
Xi,j denote the number of clauses in I having variables from U at it’s i’th and j’th
position. Note that

∑4
i,j=1; i<j Xi,j ≥ |{U,U,−,−}I |. We show that with probability

≤ (c · α2)αn·
√

d the value of Xi,j exceeds ε′α · nd for ε′ < ε/54. Then a simple union
bound shows that with probability ≤ 6 · (c · α2)αn·

√
d

|{U,U,−,−}I | ≥ 6ε′α · nd > 1/9 · εα · nd.

As we have at most
(

n
αn

)
≤ (e/α)αn such sets U we get finally

Pr[There is a set U with|{U,U,−,−}I | ≥ 1/9 · αε · nd]

≤ 6
(
c · α2

)αn·
√

d ·
(e

α

)αn

≤
(
c · α2

)αn·
√

d ·
(e

α

)αn·
√

d

≤ (c · e · α)αn·
√

d

Seeing (c · e · α)αn·
√

d as a function of α, it is convex for α > 0. As 1 ≤ αn ≤ 2δn
it suffices to check the bounds α = 1/n and α = 2δ. For α = 1/n we get a value of
(c · e/n)

√
d = O(n−

√
d). To bound the other case we choose δ sufficiently small, i.e. so

that c · e · α ≤ c · e · 2δ < 1. Then we get a value of (c · e · 2δ)2δn·
√

d = e−Ω(n) since the
basis is < 1. The claim follows.
We are left to bound Pr[Xi,j > ε′α · nd] for a fixed set U . The random variable Xi,j

follows the binomial distribution. Its expectation is bounded by 16(αn)2 · n2 · d/n3 =
16α2dn as we have (αn)2 · n2 possibilities to choose the variables, 16 ways to set the
negation signs and each clause is chosen with probability at most d/n3.

24

We make use of inequality (14) and get

Pr[xi,j ≥ ε′α · nd] ≤
(

e ·E[Xi,j]
ε′α · nd

)ε′α·nd

≤
(

e · 16α2nd

ε′α · nd

)ε′α·nd

≤
(

16e · α
ε′

)ε′α·nd

<

(
256e2 · α2

ε′2

)αn·
√

d

We can assume ε′ ·
√

d > 2.

< (C · α2)αn·
√

d

for some constant C independent of d and n.
ut

The core CI,ε(Rφ,ε(I)) is only slightly smaller than Rφ,ε(I) itself.

Lemma 25. If I fulfils the properties of Lemma 24, then we have |CI,ε(Rφ,ε(I))| ≥ (1−
2−d/C)n.

Note, that the lemma means that we have |CI,ε(Rφ,ε(I))| ≥ (1− 2−d/C)n with proba-
bility at least 1−O(n−

√
d).

Proof. Let R = Rφ,ε(I) and C = CI,ε(R) and recall the algorithm from Section 3.1 to
generate C. We show that the while loop of this algorithm is executed m ≤ e−d/Cn-times.
Then the result follows, for |Var \ C| = |Var \R| + m ≤ 2e−d/Cn ≤ 2−d/Cn.

Assume that the loop of the algorithm is executed at least m-times and consider
the first m executions of the loop. (We specify m further below.) Let xi = x after the
i’th execution of the loop and let C0 = R and Ci = Ci−1 \ {xi}. Then Ci is the value
of W ′ of the algorithm after the i’th execution of the while loop. Let Ui = Var \ Ci.
As xi ∈ ∂(Ci−1) ⊆ R we have that |{xi,−,−,−}I | ≥ (µ − ε)d. As xi ∈ ∂(Ci−1) we
have that |{xi, Ci−1, Ci−1, Ci−1}I | ≤ (µ− 2ε)d. Therefore |{xi, Ui−1,−,−}I | ≥ εd and thus∑m

i−1 |{xi, Ui−1,−,−}I | ≥ mεd. Clauses from {xi, xi+1, xi+2, Ui−1}I are counted 3-times
in the sum. No clause is counted 4 or more times. Thus the number of different clauses
contributing to the sum is ≥ 1/3mεd. As for all i {xi, Ui−1,−,−}I ⊆ {Um, Um,−,−}I

we get that |{Um, Um,−,−}I | ≥ 1/3mεd. Now assuming m = e−d/Cn we have that
|Um| = 2m ≤ 2δn and |{Um, Um,−,−}I | ≥ 1/6|Um|εd contradicting item 2 of Lemma
24. ut

Lemma 26. Let C = CI,ε(Rφ,ε(I)), πi = the assignment π after the i’th execution of the
loop in step 4 of the algorithm, and let Bi = {x ∈ C |πi(x) 6= φ(x)}. If the properties of
Lemma 24 hold for I then we have for all i ≤ log n that |Bi| ≤ |Bi−1|/2.

This lemma directly implies that after Step 4 all variables from C have the right truth
value.

25

Corollary 27. With high probability we have after step 4 that for the core C as above
C ⊆ {x ∈ Varn |π(x) = φ(x)}.

Proof of Lemma 26. From Theorem 17 we know that |B0| ≤ δn. Further below we show
that for all x ∈ Bi we have |{x,Bi−1,−,−}I | ≥ 2εd. This implies the claim as fol-
lows. By induction we can assume that |Bi−1| ≤ δn. Assuming that |Bi| > |Bi−1|/2
we let B′ ⊆ Bi with |B′| = b|Bi−1|/2c + 1. From the statement above we get that∑

x∈B′ |{x,Bi−1,−,−}I | ≥ |B′|2εd. For x1, . . . , x4 ∈ B′ ∩ Bi−1 all distinct a clause like
x1 ∨ x2 ∨ x3 ∨ x4 is counted 4-times. No clause is counted more than 4-times. This im-
plies that |{B′, Bi−1,−,−}I | ≥ |B′|2εd/4. Now consider B = B′ ∪ Bi−1, then we have
that |B| ≤ 2δn, but |{B,B,−,−}I | ≥ |{B′, Bi−1,−,−}I | ≥ |B|2εd/16 as |B′| ≥ |B|/4 in
contradiction to item 2 of Lemma 24.

We now show the statement above by the case distinction that for x ∈ Bi either
x ∈ Bi−1 or x /∈ Bi−1. Let

a = |{C ∈ F |(x ∈ C or ¬x ∈ C) and C false under πi}|.

If x ∈ Bi and x ∈ Bi−1 we have that πi−1(x) = πi(x) = ¬φ(x). Moreover, as the
value of x has not been changed by the loop we know that a ≤ 5εd. As x ∈ C ⊆ R(I)
we have that SuppI,φ(x) ≥ (4η − ε)d. Therefore we have at least (4η − ε)d − 5εd =
(4η − 6ε)d clauses C ∈ F with the property: There is a literal l ∈ C which makes C
true under πi−1, but for the underlying variable y we have that πi−1(y) 6= φ(y). As x ∈
C we have that |{x,−,−,−}I | ≤ (µ + ε)d and |{x, C, C, C}I | ≥ (µ − 2ε)d. Therefore
|{x,Var \ C,−,−}I | ≤ 3εd. Hence, among the (4η − 6ε)d clauses containing x above, we
have at least (4η − 6ε)d − 3εd = (4η − 9ε)d ≥ 2εd (ε sufficiently small) clauses which
contain a literal over a variable y from C which is false under πi−1. For this y we clearly
have y ∈ Bi−1.

If x ∈ Bi and x /∈ Bi−1 the value of x has been changed in the loop of the algorithm and
we know that a ≥ 5εd. Each of these a clauses obviously contains a literal over a variable
y such that πi−1(y) = ¬φ(y). We show that for at least 2εd of these a clauses we have
that y ∈ Bi−1. This follows as |{x,−,−,−}I | ≤ (µ + ε)d and |{x, C, C, C}I | ≥ (µ − 2ε)d.
Therefore |{x,Var \ C,−,−, }I | ≤ 3εd and we get |{x,Bi−1,−,−, }I | ≥ 2εd. ut

After Step 5 of the algorithm the core C remains correctly assigned.

Lemma 28. Let π be the partial assignment obtained after executing Step 5. If I complies
with the items of Lemma 24 then we have:

1. C = CI,ε(Rφ,ε(I)) ⊆ {x |π(x) defined }.
2. For all x with π(x) defined we have π(x) = φ(x).

Proof. Let π′ be the value of the assignment π before Step 5.

1. By Corollary 27 we have that for x ∈ C π′(x) = φ(x). We show below that C ⊆ R′
π′,ε

which clearly implies that C ⊆ CI,ε(R′
π,ε) and the variables from C are still correctly

assigned in π after step 5. Let x ∈ C. Then x ∈ Rφ,ε(I) and we have |{x,−,−,−}I | ≤
(µ + ε)d, and |{x, C, C, C}I | ≥ (µ − 2ε)d. From this we directly get that |{x,Var \
C,−,−}I | ≤ 3εd. Again as x ∈ Rφ,ε(I) we have that SuppI,φ,ε(x) ≥ (4η − ε)d. As
π′ is equal to φ when restricted to C we have that SuppI,π′,ε(x) ≥ (4η − 4ε)d. As
SuppI,φ,ε(x) ≤ (4η + ε)d we get similarly that SuppI,π′,ε(x) ≤ (4η + 4ε)d. Which
shows that C ⊆ R′

π,ε and the proof is finished.

26

2. Let C′ = CI,ε(R′
π′,ε(I)) and let π(x) be defined after step 5 that is x ∈ C′ ⊆ R′

π′,ε.
Thus OccI(x) ≤ (µ + ε)d and |{x, C′, C′, C′}I | ≥ (µ − 2ε)d. This directly implies that
|{x,Var \ C′,−,−}I | ≤ 3εd. Moreover, we have SuppI,π′(x) ≥ (4η − 4ε)d and we have
≥ (4η− 7ε)d clauses in {x, C′, C′, C′}I which are also counted in SuppI,π′(x). If x is not
correctly assigned we would have that φ(x) = ¬π′(x) and all these ≥ (4η−7ε)d clauses
have a literal over a variable y which is also incorrectly assigned under π′ that is φ(y) =
¬π′(y). With U = {y |π′(y) = ¬φ(y)} we have for that |{x,U,−,−}I | ≥ (4η − 7ε)d.
Summing over all such x we get that

∑
x∈U |{x, U,−,−}I | ≥ |U |(4η − 7ε)d. In this

sum each clause can be counted at most 4-times and we have that |{U,U,−,−}| ≥
|U |(4η − 7ε)d/4. As |U | ≤ 2−d/C by Corollary 27 this contradicts item 2 of Lemma
24. ut

Each connected component of Γ of size ≥ log n contains a connected component of
size log n. We show that the expected value of such components goes to 0. To this end let
T ′ = (V (T ′), E(T ′)) be a fixed tree (connected graph without cycles) with V (T ′) ⊆ Var
and |V (T ′)| = log n. Let T ⊆ CTnae,φ be a fixed set of 4-clauses such that for each
{x, y} ∈ E(T ′) we have a clause C ∈ {x, y,−,−}T . Let T be a minimal set with this
property. The tree T ′ induced by T occurs only then in Γ if firstly V (T ′) ∩ CI(R(I)) = ∅
and secondly T ⊆ I. Thus we have to bound

Pr[T ⊆ I and V (T ′) ∩ CI(R(I))] = Pr[T ⊆ I] · Pr[V (T ′) ∩ CI(R(I)) |T ⊆ I].

Lemma 29. Let T and T ′ fixed as above then

1. Pr[T ⊆ I] ≤ (d/n3)|T |

2. Pr[V (T ′) ∩ CI(R(I)) |T ⊆ I] = O
(
n−

√
d
)

The first item is easy to see as each of the |T | clauses is chosen with probability at
most d/n3. The second one is more difficult to show – not only because of the condition
T ⊆ I.

We need to disregard those vertices from V (T ′) which occur to often in T . To this end
let

J = {x ∈ V (T ′) | |{x,−,−,−}T | ≤ 8}.

Note that J ⊆ V (T ′).
Given any 4-SAT formula F we define the set of variables

R̂(F) = {x /∈ V (T) or x ∈ J | (µ− ε)d ≤ OccF (x) ≤ (µ + ε)d− 8 and
(4η − ε)d ≤ SuppF (x) ≤ (4η + ε)d− 8}.

Similarly we abbreviate R̂(F) = R̂φ,ε(F). Clearly we have R̂(F) ⊆ R(F), but more holds:

Lemma 30. We have for all F that CF,ε(R̂(F)) ⊆ CF∪T,ε(R(F ∪ T)).

Proof. Let x ∈ R̂(F), then from the definition of R̂(F) we have that (µ + ε)d − 8 ≥
OccF (x) ≥ (µ − ε)d and additionally x /∈ V (T) or x ∈ J . If x /∈ V (T), then OccF (x) =
OccF∪T (x). So x complies the requirements of R(F ∪ T) with respect to Occ. If x ∈ J
then x occurs in at most 8 clauses from T , so we have OccF∪T (x) ≤ OccF (x) + 8. Again

27

x fulfills the conditions of R(F ∪ T) with respect to Occ. In the same way we get that
any x ∈ R̂(F) complies the conditions of R(F ∪ T) with respect to Supp. We see that
R̂(F) ⊆ R(F ∪ T).

Let Ĉ0 = R̂(F) and let C0 = R(F ∪T). We define Ci+1 = Ci \∂(Ci) and Ĉi+1 = Ĉi \∂(Ĉi).
Note there exist i0 and j0 so that CF (R̂(F)) = Ĉi for any i > i0 and CF∪T (R(F ∪ T)) = Cj

for any j > j0. If we can show Ĉi ⊆ Ci for any i ≥ 0 the claim follows.
We use induction over i. For i = 0 the property holds as shown above. If x ∈ Ĉi+1, then

x ∈ Ĉi and x /∈ ∂(Ĉi). So the number of clauses of type {x, Ĉi, Ĉi, Ĉi} exceeds (µ− 2ε)d.
As Ĉi ⊆ Ci by induction we have that x ∈ Ci and additional |{x, Ĉi, Ĉi, Ĉi}F | ≤

|{x, Ci, Ci, Ci}F∪T |. The second statement gives x /∈ ∂(Ci). Together with the first state-
ment this implies x ∈ (Ci \ ∂(Ci)) = Ci+1 and shows Ĉi+1 ⊆ Ci+1. ut

Lemma 31. PrI [J ∩ C = ∅ |T ⊆ I] ≤ PrI [J ∩ Ĉ = ∅] where Ĉ = CI,ε(R̂(I))

Proof. Let F1 ⊇ T be a formula with J ∩ CF1(R(F1)) = ∅ and let F ′ = F \ T . Then for
any M ⊆ T we have J ∩ CF ′∪M (R̂(F ′ ∪M)) = ∅ by Lemma 30 (F ′ ∪M is in the lemma
F).

The probability that F1 is chosen conditioned on the event our random I contains T
equals the probability that F ′∪· M is chosen conditioned on T ∩ I = M : Since each clause
is chosen independently and F ′ ∩ T = ∅ we have for our random I that

Pr[I = F1 |T ⊆ I] = Pr[I = (F ′ ∪ T) |T ⊆ I]
= Pr[I \ T = F ′ |T ⊆ I]
= Pr[I \ T = F ′ |T ∩ I = M]
= Pr[I = F ′ ∪M |T ∩ I = M].

This gives for all M ⊆ T

PrI [J ∩ CI(R(I)) = ∅ |T ⊆ I] ≤ PrI [J ∩ CI(R̂(I)) = ∅ |M ⊆ I].

We conclude

Pr[J ∩ CI(R̂(I)) = ∅] =
∑

M⊆T

Pr[T ∩ I = M] · Pr[J ∩ CI(R̂(I)) = ∅ |T ∩ I = M]

≥
∑

M⊆T

Pr[T ∩ I = M] · Pr[J ∩ CI(R(I)) = ∅ |T ⊆ I]

= Pr[J ∩ CI(R(I)) = ∅ |T ⊆ I]

ut

We are left to show

Lemma 32. Pr[J ∩ Ĉ = ∅] = O(n−
√

d).

Proof. We denote by ξ the event that the following two properties hold for our random
instance I.

28

1. The number of variables x in Var with (µ − ε)d ≤ OccI(x) ≤ (µ + ε)d − 8 and
(4η − ε)d ≤ SuppI(x) ≤ (4η + ε)d − 8 is at least (1 − e−d/C′

)n for some constant C ′

independent of d.
2. Property 2. from Lemma 24 holds: For all U ⊂ Var, |U | ≤ 2δn we have |{U,U,−,−}I | ≤

1/9 · εd|U |.

Similar to the proof of Lemma 24 one can show that ξ holds with probability 1 −
O(n−

√
d). We get

Pr[J ∩ Ĉ = ∅] = Pr[ξ] · Pr[J ∩ Ĉ = ∅ | ξ] + Pr[ξ] · Pr[J ∩ Ĉ = ∅ | ξ]

= Pr[ξ] · Pr[J ∩ Ĉ = ∅ | ξ] + O(n−
√

d)

≤ Pr[J ∩ Ĉ = ∅ | ξ] + O(n−
√

d)

Similar to Lemma 25 one can conclude that if ξ holds |Ĉ| is bounded below by (1 −
2−d/C′

)n for some constant C ′ independent of d.
Conditioned on the event that |Ĉ| = m all possible Ĉ have the same probability to

appear. To show this let Ĉ and Ĉ′ be two cores of cardinality m. Let F be an arbitrary
formula F with k clauses inducing Ĉ. By a simple bijective renaming of the variables F
can be translated to a formula F ′ with k clauses inducing Ĉ′. So for any k the number
of formulas with k clauses inducing Ĉ is equal to the number of formulas with k clauses
inducing Ĉ′. So Ĉ and Ĉ′ have the same probability to appear.

As J is fixed, we see abbreviating |J | = j that

Pr[J ∩ Ĉ = ∅ | |Ĉ| = m] =

(
n−j
m

)(
n
m

) =

(
n−m

j

)(
n
j

) =
(n−m) · (n−m− 1) · . . . · (n−m− j + 1)

n · (n− 1) · . . . · (n− j + 1)

One can see that the last fraction is maximized when j and m are minimized. We show
below that j ≥ 1/2 · log n. Since we condition on ξ we have m ≥ (1− 2−d/C′

)n and get

Pr[J ∩ Ĉ = ∅ | ξ] ≤ (2−d/Cn) · (2−d/Cn− 1) · . . . · (2−d/Cn− j + 1)
n · (n− 1) · . . . · (n− j + 1)

≤ (2−d/Cn) · (2−d/C(n− 1)) · . . . · (2−d/C(n− j + 1))
n · (n− 1) · . . . · (n− j + 1)

=
(
2−d/C

)j

≤ 2−d/C·1/2·log n

= n−d/(2C).

This leads to
Pr[J ∩ Ĉ = ∅] ≤ n−d/2C + O(n−

√
d) = O(n−

√
d).

It remains to show that |J | ≥ 1/2 · log n: As T ′ is a tree, there are V (T ′)− 1 edges inside
T ′. So we need at most V (T ′) − 1 clauses in T to “cover” each edge of T ′. Now assume
|J | < |V (T ′)|/2. Then we have at least |V (T ′)|/2 variables in V (T ′) occurring more than
8 times in clauses from T . Each clause from T can cover at most 4 of these variables. So
we must have more than |V (T ′)| clauses in T . This is a contradiction to the minimality of
T .

ut

29

We come to the calculation of the expected number of connected components of size
log n in Γ .

Lemma 33. With high probability we have that Γ contains no connected component of
size larger than log n.

Proof.

Pr[Γ has a connected component larger than log n]
≤ E[#connected components larger than log n] (Markov-Inequality)

≤
∑
T,T ′

Pr[T ⊆ I and V (T ′) ∩ C = ∅]

≤
∑
T,T ′

(
d

n3

)|T |
·O(n−

√
d) (16)

where the sums goes over all trees T ′ with V (T ′) ⊆ Var and all minimal sets of clauses T
so that for any edge {x, y} ∈ E(T ′) we have a clause in {x, y,−,−}T .

At next we bound the number of possibilities of such pairs (T, T ′). For this look at the
following generation process for T and T ′.

1. Choose log n variables for T ′.
2. Choose e3, the number of clauses covering three edges in T ′.
3. Choose e2, the number of clauses covering exactly two edges in T ′ incident with 4

variables.
4. Choose e′2, the number of clauses covering exactly two edges in T ′ incident with exactly

3 variables. Let e1 = log n − 1 − 3e3 − 2e2 − 2e′2 be the number of clauses covering
exactly one edge in T ′.

5. For each of the e3 clauses, choose a different 4-tuple of variables from T ′ and three
edges to connect these variables.

6. For each of the e2 clauses, choose a different 4-tuple of variables from T ′ and two edges
lying between these variables.

7. For each of the e′2 clauses, choose 3 variables from T ′, 1 arbitrarily variable and two
edges lying between. For each of these clauses we must have a different 4-tuple of
variables.

8. For each of the e1 clauses, choose a different pair of variables from T ′, connect them
and choose 2 arbitrarily variables.

9. For every generated tuple of 4 variables choose a clause comprising these variables.

Clearly, the generated T ′ is not necessarily a tree and maybe T is not minimal. But
we can build any pair (T, T ′) satisfying our requirements. We get an upper bound for the
number of possible pairs (T, T ′) generated by the above process:

1.
(

n
log n

)
possibilities.

2. A number between 0 and 1/3 · log n.
3. A number between 0 and 1/2 · log n.
4. A number between 0 and 1/2 · log n.
5.
(
log4 n

e3

)
possibilities to choose the 4-tuples and for each 16 ways to connect the four

vertices.

30

6.
(
log4 n

e2

)
possibilities to choose the 4-tuples and for each 3 ways to connect the four

vertices.
7.
(log3 n

e′2

)
possibilities to choose the 3-tuples, for each 3 ways to connect it, and for each

n possibilities to choose the last variable.
8.
(
log2 n

e1

)
possibilities to choose the pairs and for each pair n2 possibilities to choose the

remaining two variables.
9. For each of the e1 + e2 + e′2 + e3 4-tuples we have 24 possibilities to permutate them

and 16 ways to set the negation signs. This leads to 384|T |.

So the number of possibilities for (T, T ′) is bounded above by

1/3·log n∑
e3=0

(log n−3e3)/2∑
e2+e′2=0

(
n

log n

)
·16e3

(
log4 n

e3

)
·3e2

(
log4 n

e2

)
·(3n)e′2

(
log3 n

e′2

)
·n2e1

(
log2 n

e1

)
·384|T |

Note that the value of e1 is fixed by the other three values as 3e3 + 2(e2 + e′2) + e1 =
|E(T ′)| = log n−1. We have that each ei and e′2 is ≥ 0 and bounded above by |T | ≤ log n.
We simplify the above expression by the inequality

(
n
k

)
≤
(

en
k

)k to a weaker upper bound:

1/3·log n∑
e3=0

(log n−3e3)/2∑
e2+e′2=0

C log n·
(

en
log n

)log n

·
(

e log4 n

e3

)e3

·
(

e log4 n

e2

)e2

·
(

e log3 n

e′2

)e′2

·ne′2+2e1

(
e log2 n

e1

)e1

for some constant C. Since any ei and e′2 are bounded by log n, we have at most

1/3·log n∑
e3=0

(log n−3e3)/2∑
e2+e′2=0

C ′log n · nlog n · (log n)4e3+4e2+3e′2+2e1 · ne′2+2e1

(log n)log n · ee3
3 · ee2

2 · e′2
e′2 · ee1

1

(17)

valid pairs (T, T ′). With |T | = e3 + e2 + e′2 + e1 and 3e3 + 2(e2 + e′2) + e1 = log n − 1 in
mind we plug (17) into (16):

Pr[Γ has a connected component larger than log n]

≤
1/3·log n∑

e3=0

(log n−3e3)/2∑
e2+e′2=0

C ′log n · nlog n · (log n)4e3+4e2+3e′2+2e1 · ne′2+2e1

(log n)log n · ee3
3 · ee2

2 · e′2
e′2 · ee1

1

(
d

n3

)|T |
·O(n−

√
d)

≤
1/3·log n∑

e3=0

(log n−3e3)/2∑
e2+e′2=0

C ′log n · nlog n · (log n)e3+2e2+e′2+e1 · ne′2+2e1

ee3
3 · ee2

2 · e′2
e′2 · ee1

1

(
d

n3

)|T |
·O(n−

√
d)

≤
1/3·log n∑

e3=0

(log n−3e3)/2∑
e2+e′2=0

C ′log n · nlog n · (log n)e3+2e2+e′2+e1 · ne′2+2e1 · d|T |

ee3
3 · ee2

2 · e′2
e′2 · ee1

1 · n3e2+3e2+3e′2+3e1
·O(n−

√
d)

≤
1/3·log n∑

e3=0

(log n−3e3)/2∑
e2+e′2=0

C ′log n · (log n)e3+2e2+e′2+e1 · d|T |

ee3
3 · ee2

2 · e′2
e′2 · ee1

1 · ne2

·O(n−
√

d)

≤
1/3·log n∑

e3=0

(log n−3e3)/2∑
e2+e′2=0

C ′log n · (log n)e3+e2+e′2+e1 · d|T |

ee3
3 · ee2

2 · e′2
e′2 · ee1

1

·O(n−
√

d) (18)

31

Now we lower bound the denominator. The product is minimized, when the logarithm of
the product is minimized. So we deal with e3 log e3 + e2 log e2 + e′2 log e′2 + e1 log e1. Since
x log x is a convex function for x > 0 and e3 +e2 +e′2 +e1 is fixed to |T |, we are able to use
Jensen’s inequality. This gives that the sum is minimized when each of the e’s is at |T |/4.
So the above product is bounded below by (|T |/4)e3+e2+e′2+e1 . As 1/3 · log n ≤ |T | ≤ log n
holds, we have

(log n)e3+e2+e′2+e1

ee3
3 · ee2

2 · e′2
e′2 · ee1

1

≤ (log n)e3+e2+e′2+e1

(|T |/4)e3+e2+e′2+e1
≤ (log n)e3+e2+e′2+e1

(1/12 · log n)e3+e2+e′2+e1
≤ 12log n.

Then (18) simplifies to

1/3·log n∑
e3=0

(log n−3e3)/2∑
e2+e′2=0

C ′log n · 12log n · d|T | ·O(n−
√

d) ≤ log2 n · nlog C′′ · nlog d ·O(n−
√

d) = o(1)

for d large enough but still constant. We are done. ut

References

1. Alon, N., Feige, U., Widgerson, A., Zuckerman, D.: Derandomized Graph Products. Computational
Complexity 5 (1995), 60–75.

2. Alon, N., Kahale N. : A spectral technique for coloring random 3-colourable graphs. DIMACS TR
94-35, 1994.

3. Chen H., Frieze, A.: Coloring bipartite hypergraphs. Proc. 5th IPCO 1996, LNCS, 345 - 358.
4. Coja-Oghlan, A., Goerdt, A., and Lanka, A.: Strong Refutation Heuristics for Random k-SAT. RAN-

DOM 2004. To appear. (http://www.tu-chemnitz.de/informatik/HomePages/TI/publikationen.php.)
5. Coja-Oghlan, A., Goerdt, A., Lanka, A., and Schädlich, F.: Techniques from combinatorial approx-

imation algorithms yield efficient algorithms for random 2k-SAT. Theoretical Computer Science. To
appear. (http://www.tu-chemnitz.de/informatik/HomePages/TI/publikationen.php)

6. Feige, U.: Relations between average case complexity and approximation complexity. Proc. 24th STOC
(2002) 534–543

7. Feige, U., Ofek, E.,: Easily refutable subformulas of large random 3CNF formulas.
(http://www.wisdom.weizmann.ac.il/˜erano/)

8. Flaxman A.: A spectral techn ique for random satisfiable 3CNF formulas. Proc. SoDA 2002, SIAM.
9. Garey, M.R., Johnson, D.S.: Computers and Intractability. 1979

10. Goerdt, A., Lanka, A.: Recognizing more random unsatisfiable 3-SAT instances efficiently. Proc. Typ-
ical Case Complexity and Phase Transitions, Satellite Workshop of Logic in Computer Science 2003
(Ottawa). To appear

11. Goerdt, A., Jurdzinski, T.: Some results on random unsatisfiable k-SAT instances and approximation
algorithms applied to random structures. Combinatorics, Probability and Computing 12 (2003) 245 –
267

12. J. H̊astad, Clique is Hard to Approximate within n1−ε, Acta Mathematica vol. 182, 1999, 105–142
13. Janson, S., Luczak, T., Ruciński, A.: Random graphs. John Wiley and Sons 2000
14. Lubotsky, A., Phillips, R., Sarnak, P.: Ramanujan Graphs. Combinatorica 8(3), 1988 261–277
15. Peeters R.: The maximum edge biclique problem ist NP-complete. Research Memoran-

dum 789, Faculty of Economics and Business Administration, Tilberg University, 2000
(http://econpapers.hhs.se/paper/dgrkubrem/2000789.htm)

16. Strang, G.: Linear Algebra and its Applications. Harcourt Brace Jovanovich 1988

