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Abstract—Background: Researchers and practitioners have
been using code complexity metrics for decades to predict how
developers comprehend a program. While it is plausible and
tempting to use code metrics for this purpose, their validity is
debated, since they rely on simple code properties and rarely
consider particularities of human cognition.
Aims: We investigate whether and how code complexity metrics
reflect difficulty of program comprehension.
Method: We have conducted a functional magnetic resonance
imaging (fMRI) study with 19 participants observing program
comprehension of short code snippets at varying complexity levels.
We dissected four classes of code complexity metrics and their
relationship to neuronal, behavioral, and subjective correlates of
program comprehension, overall analyzing more than 41 metrics.
Results: While our data corroborate that complexity metrics
can—to a limited degree—explain programmers’ cognition in
program comprehension, fMRI allowed us to gain insights into
why some code properties are difficult to process. In particular, a
code’s textual size drives programmers’ attention, and vocabulary
size burdens programmers’ working memory.
Conclusion: Our results provide neuro-scientific evidence support-
ing warnings of prior research questioning the validity of code
complexity metrics and pin down factors relevant to program
comprehension.
Future Work: We outline several follow-up experiments investigat-
ing fine-grained effects of code complexity and describe possible
refinements to code complexity metrics.

PRELUDE

Let us begin with a short subjective assessment of code
complexity. Consider the following code snippet1:

1 public List<Integer> compute(int a, int b, int c) {
2 if (a > b) { int temp = b; b = a; a = temp; }
3 if (a > c) { int temp = c; c = a; a = temp; }
4 if (b > c) { int temp = c; c = b; b = temp; }
5 return Arrays.asList(a, b, c);
6 }

Before going further—putting aside concerns of performance
or coding style—we would like you to spend a few moments
and calculate the result of compute(8,12,4). Based on
this experience, please rate the complexity (i.e., how difficult it
is to understand the parts of the code and their dependencies)

1The code snippet is an example of an unrolled insertion sort, which is fast
for sorting a small number of inputs [1].

of this code snippet on a 5-point scale, from Very Simple to
Very Complex.

Well, how did it go? How did you rate this snippet? Software
engineering research has developed several complexity metrics
calculated based on various structural properties of the code [2].
For example, Halstead’s complexity, a metric for vocabulary
size [3], would yield a score of 21. McCabe’s cyclomatic
complexity, a metric for the number of linearly independent
paths through a program [4], would yield a score of 4. Beyer’s
DepDegree [5], a metric that considers complexity arising from
low-level data flow, results in a score of 31. Finally, a simple
metric of counting lines of code [6] would provide a score
of 7. Apparently, these values differ considerably, although it
is difficult to tell without a common scale.

I. INTRODUCTION

In the past 40 years, the software engineering community
has been using various complexity metrics to predict how
programmers understand code [7], [8], [9], implement quality
gates in continuous integration [10], [11], and predict the
likelihood of defects [12], [13], [14]. For example, from 2010
to 2015, a total of 226 studies proposed or analyzed nearly
300 code metrics alone, with code complexity being one of
the most frequent categories of study [2]. Many of these
metrics are widely used in software analysis tools. For example,
SONARQUBE, a popular static analysis tool used in continuous
integration, supports a multitude of metrics, such as cyclomatic
complexity, across dozens of programming languages. For this
particular metric, the tool will report a “Methods should not
be too complex” violation for any method that exceeds the
default threshold of 10.

While code metrics help to describe properties of code,
they are notoriously limited in capturing human cognition and
behavior: Already 15 years ago, Kaner and Bond warned that
too simplistic software metrics could do more harm than good
because it is doubtful whether they actually measure what we
think they measure [15]. Several studies underline this point.
For example, Scalabrino et al. found in an empirical study, at
most, minuscule correlations between complexity metrics and
code understanding [16]. Ajami et al. found that complexity



metrics fail to consider how humans process code, for example,
flat structures are easier to comprehend than nested ones [17].
In the same vein, Jbara and Feitelson provide evidence that
complexity metrics miss the increased ease of comprehension
of repeated code constructs [18]. Despite these warnings, it is
tempting to use complexity metrics to predict how programmers
perceive the complexity of code or how much cognitive load
it would require to understand a piece of code.

Despite substantial research, the big picture is still unclear.
So, the overarching question that drives our work is:

Can variations in (classes of) code complexity metrics ex-
plain differences in programmer cognition during program
comprehension?

To address this question, we draw on insights from neuro-
science studies on cognitive load and from linguistic studies on
sentence complexity. An extensive body of previous research
has examined how syntax complexity in natural language can
influence brain activation and processing difficulty. For example,
complex sentences such as “The girl that the boy is tickling
is happy” can be difficult to process for patients with Broca’s
aphasia [19] (a cognitive deficiency due to an acute brain
lesion); these patients cannot reliably distinguish between the
girl or the boy being happy. In healthy patients, such sentences
will cause distinct activation of specialized language processing
regions in the brain not seen with simpler grammatical
structures. To perform these studies, neuro-linguists typically
conduct a parameterized analysis of sentences, where they
intentionally construct sentences that vary along several metrics
of interest (such as left-branching complexity [20], movement
distance [21], or filler-gap dependencies [22]) observing
differences in behavioral measures and brain activation. Such
studies provide deep insights into why—not only whether—
comprehension of certain language constructs can be difficult,
gaining insights into the inner processing of language cognition.

In the current work, we have conducted a study in which
19 participants comprehended 16 code snippets, which were
systematically selected to contrast different values of code com-
plexity metrics among four major classes of code complexity
metrics: code size, vocabulary size, control-flow complexity, and
data-flow complexity. For each, we picked a commonly used
representative metric as a baseline before exploring 37 further
metrics. The underlying idea is that, the more code lines (code
size, LOC as representative) or vocabulary (vocabulary size,
Halstead) to understand, or the more possible execution paths
(control flow, McCabe) or data dependencies to keep track
of (data flow, DepDegree), the more cognitive resources a
programmer needs. To this end, we explore the relation of
code complexity metrics to behavioral and cognitive correlates
of program comprehension. We investigate the reliability
of subjective perception of code complexity to include the
programmer’s perspective.

Based on their aim and definition, as well as prior neuro-
linguistic studies, we expect different outcomes for different
kinds of complexity metrics:

(a) a higher number of symbols (as measured by vocabulary-
size metrics) induces higher cognitive processing demands, as
seen when increasing the number of words in a sentence [23].
This is also supported by early studies on the relationship
of Halstead’s complexity and comprehensibility [7];

(b) an increased number of control paths (as measured by
control-flow metrics) increases activation of areas associated
with rule-guided conditional reasoning, such as reading con-
ditional propositions [24] and counterfactual [25] sentences:
“If Mike pressed the brake pedal, then the car would have
stopped”;

(c) a higher number of data-flow dependencies (as measured
by DepDegree) increases activation of Broca’s area (syntactic
working memory) [22], as seen with sentences where an
assignment of values must occur later in the sentence (i.e.,
filler-gap dependencies), “Which cowgirl did Mary expect
to have injured herself due to negligence?”.

In a nutshell, we found that changes in complexity metrics
can explain differences in programmer cognition to different
extents. Size-based and vocabulary-based metrics correlate with
the anticipation of work, whereas data-flow metrics correlate
with higher cognitive demands in a network of brain areas
activated during program comprehension. Simple control-flow
metrics (e.g., number of branches) predict cognitive load better
than more complex control-flow metrics (e.g., McCabe). In
general, not many code complexity metrics incorporate data
flow, which seem to capture a distinct aspect of cognition,
showing a promising avenue of further work.

In summary, we make the following contributions:
• We devise a multi-modal experiment framework that links

complexity metrics to cognitive processes of program com-
prehension.

• We provide empirical evidence for the relation of 41 code
complexity metrics, on the one hand, and neuronal and
behavioral correlates, on the other hand.

• We show that behavioral data are the best predictor for
subjective complexity.

• We present a non-exact, refined replication of our previous
fMRI study with a larger set of more varied and targeted
code snippets [26].

• We share an online replication package2 to share experiment
design, tasks, and analysis protocols.3

II. STUDY DESIGN

Our study of neuronal and behavioral correlates of code
complexity metrics builds on an observation that we made
in previous work: As a side product of studying another
research question (identifying neuronal correlates of program
comprehension), we found first indications of a measurable
correlation between neuronal activity and some code complexity
metrics [26]. However, this has not been explored further, so the
existence and kind of relationship between complexity metrics
and cognitive processes remained unclear. We specifically

2https://github.com/brains-on-code/fMRI-complexity-metrics-icse2021/
3Access to actual fMRI data is granted upon request.



designed our study to unveil this relationship, including a
multi-modal experiment setup tailored to this question, with
proper code snippets that vary across different metrics, and
by analyzing a total of 41 metrics regarding their predictive
power.

A. Research Goals

In this paper, we aim at answering the following research
questions:
RQ1: Do different (classes of) code complexity metrics corre-

late with programmers’ behavior during program compre-
hension?

RQ2: Do different (classes of) code complexity metrics cor-
relate with programmers’ cognitive load in terms of brain
(de)activation during program comprehension?

RQ3: Do different (classes of) code complexity metrics
correlate with programmers’ subjective perception of code
complexity?

B. Pilot Studies

To answer our research questions, we carefully designed
our experiment. First, we compiled a set of 50 Java code
snippets by obtaining snippets from previous studies on
program comprehension [27], [28], [29] and by augmenting
this set by searching for code snippets with similar complexity.
Second, from this pool of code snippets with a wide range
of complexities, we selected the most suitable snippets for
an fMRI study by running two pilot studies at the authors’
institutions. We asked 7 pilot-study participants (2 professional
programmers and 5 PhD students) to understand the snippets
as quickly and accurate as possible and to verbally share their
thoughts afterwards. Unlike in the fMRI scanner, we did not
set a time limit per snippet, because the actual comprehension
time is an important factor to select appropriate snippets for an
fMRI study. In the pilot studies, we also asked for a subjective
evaluation of each snippet’s complexity, but, unlike in the
subsequent fMRI study, we did not ask them to rank all
presented snippets. Third, we selected snippets for the fMRI
study that were associated with a range of complexity metrics
values balancing our final selection across the four classes of
complexity metrics.

For illustration, we show one of the snippets in Listing 1,
which computes the length of the last word in a string: The
code exhibits large values for some of the metrics, not being
trivial to solve (pilot participants took about 45 seconds), while
still staying within the 60 seconds limit allowed in the fMRI
study. Feedback from participants indicated that they needed
a high level of cognitive effort to understand the snippet, but
could still succeed. In particular, they noted that the snippet
did not allow them to take a “mental break”. That is, it was
difficult to analyze individual statements while keeping other
statements in mind, and that they were unable to match the
code to any known algorithm.

Finally, consistent with previous studies [27], [28], we
excluded all context information from snippets to enforce
bottom-up comprehension [30]. This way, we reduce the

influence of previous experience on cognitive load, because
employing a more efficient top-down approach [31] is impeded,
and because expertise can moderate the relationship between
complexity and performance [7]. In Table I, we provide
information on the code snippets and code complexity metrics
that we selected for the fMRI study (see the supplementary
Web site for all code snippets and all 41 metrics).

In Table II, we show the correlations among the four metrics
for all code snippets. Although we designed the snippets to
vary in complexity, we were restricted by the requirements
of the fMRI scanner (especially the limited screen size to
show a maximum of 30 lines of code and that each snippet is
comprehensible within 60 seconds). Thus, a certain correlation
among the metrics is unavoidable.

1 public static void main(){
2 String text = "The quick brown fox jumps";
3 System.out.print(compute(text));
4 }
5
6 static int compute(String text){
7 int result = 0;
8 boolean flag = false;
9 for (int i = text.length() - 1; i >= 0; i--){

10 char c = text.charAt(i);
11 if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')){
12 flag = true;
13 result++;
14 } else {
15 if (flag)
16 break;
17 }
18 }
19
20 return result;
21 }

Listing 1: Complex code snippet that computes the length of
the last word in a string. The output for this snippet is “5”.

C. fMRI Study

1) Research Context: When brain regions activate or deac-
tivate during program comprehension (or any other cognitive
process), their oxygenation levels change. This is reflected in
a change in the proportion of oxygenated and deoxygenated
blood (blood-oxygenation-level-dependent (BOLD) response),
both of which have different magnetic properties [32]. An fMRI
scanner measures these changes and localizes them to specific
brain areas [33], which are associated with different cognitive
processes. Thus, we can associate activated brain areas to how
participants proceeded in comprehending a snippet. In addition,
research on the brain’s default mode network (DMN) [34], [35]
suggests that cognitive load is linked to the level of deactivation
of the DMN during cognitively demanding tasks [36]. This way,
we can determine the cognitive load of program comprehension
during the tasks.

2) Participants: Participants were 19 (including one whose
fMRI data had to be excluded from analysis due to excessive
head movements) late undergraduate or graduate students at the
University Magdeburg (2 female, 17 male, 26.47 ±4 2.68 years
old). We determined their programming experience based on a
validated questionnaire [37]. We found that they had a medium

4m± s denotes a mean of m and standard deviation of s.



TABLE I: Code snippets used in the study with four selected complexity metric scores and experimental results: behavioral data
(correctness, time) and subjective complexity. A higher intensity of a cell’s background color indicates a higher complexity. The
histogram plots show the distribution of subjective complexity; skewness to the right represents higher subjective complexity.

Complexity Metrics Experiment Results

Snippet Code Size
(LOC)1

Vocabulary
(Halstead)1

Control Flow
(McCabe)1

Data Flow
(DepDegree)2

Correctness
(in %)

Time
(in sec.)

Subjective Complexity
Low → Medium → High

L
oo

p

Average of array 17 12.64 3 17 47% 49.0

Contains substring 26 25.50 7 29 32% 50.2

Count vowels in string 19 13.00 5 22 89% 30.4

Greatest common divisor 24 26.63 5 33 47% 50.0

h index 21 16.25 4 20 53% 46.0

Length of last word 22 18.58 8 17 58% 43.3

Palindrome check 17 16.72 4 17 79% 38.4

Square root of array 23 39.83 5 27 68% 40.1

R
ec

ur
si

on

Binary to decimal 17 16.75 4 10 68% 42.3

Cross sum 12 14.66 3 4 84% 27.6

Factorial 12 16.50 3 4 95% 22.3

Fibonacci variation 12 10.88 3 4 84% 35.6

Power 17 15.38 4 8 79% 33.3

If
/E

ls
e Contains yes or no 22 6.13 6 7 95% 23.4

Hurricane check 17 9.00 7 13 100% 21.5

Sort four elements 17 30.30 7 61 79% 41.4

1https://github.com/BasLeijdekkers/MetricsReloaded/ 2https://www.sosy-lab.org/∼dbeyer/DepDigger/

level of programming experience (6.79 ± 4.96 years) and
sufficient experience with object-oriented programming (self-
estimated level of 2.83 ± 0.53 on a Likert scale of 1 to 5) and
Java (self-estimated level of 3.47 ± 1.09 on a Likert scale of
1 to 5). Thus, the participants are intermediate programmers
according to Dreyfus’ taxonomy of skill acquisition [38], [39].
All participants had normal or corrected-to-normal vision and
were right-handed. They received monetary compensation and
could abort the experiment at any time. The study was approved
by the local ethics board.

3) Design and Tasks: Our study design builds on a previous
fMRI study [27]. We presented three tasks in the fMRI scanner.
First, participants should comprehend a code snippet. To this
end, they should determine what would be printed on the
screen if the snippet was executed. When they responded,
the experiment moved on, but there was an upper limit of
60 seconds for a comprehension task. A 10-second distractor
task5 followed to reduce reflective thoughts [41]. Finally, a
30-second rest condition followed. After three comprehension
snippets, a control condition followed, in which participants
saw another snippet and should click whenever they spotted an
opening bracket. This process was repeated until the participant
completed all 16 comprehension snippets. In Figure 1, we
illustrate one out of five experiment trials.

5We used the d2 task, a psychological test of attention in which participants
scan through a row of letters and decide for each letter whether it is a d with
two marks [40].

4) Data Collection: We carried out the imaging sessions,
which lasted around 45 minutes, on a 3-Tesla fMRI scanner6

equipped with a 32-channel head coil. The heads of participants
were fixed with a cushion with attached earmuffs containing
fMRI-compatible headphones.7 Participants wore earplugs for
further noise protection.

We obtained a T1-weighted anatomical scan of the partic-
ipants’ brain with 1 mm isotropic resolution. We captured a
whole-head fMRI using a continuous multi-band echo planar
imaging (EPI) sequence with a dynamic number of volumes,
as it depended on participant performance (echo time [TE]:
30 ms; repetition time [TR]: 1200 ms; flip angle [FA]: 60◦;
multi-band acceleration factor: 2; 36 slices of 3 mm thickness
with 0.3 mm gaps).

During the fMRI session, we collected behavioral data with
an fMRI-compatible two-button response device. Participants
indicated whether they could compute the result of a snippet.
We showed a warning after 58 seconds that the time was almost
up.

After the fMRI session, we conducted a semi-structured
interview with each participant, which was based on the
results of the pilot studies. In addition to open-ended questions
investigating the participants’ individual perception of snippet
complexity, we showed them the code snippets again and
asked them to order the snippets regarding complexity. Such
categorization tasks can produce insights into how participants

6Philips Achieva dStream, Best, The Netherlands
7MR Confon GmbH, Magdeburg, Germany
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Fig. 1: Illustration of one (out of five) experiment trials.

approach a task (e.g., physics novices and experts categorize
problems based on different aspects [42]). We allowed par-
ticipants to self-choose the number of categories because we
noticed in the pilot runs that participants had difficulties when
a fixed number of piles did not match their expectation of
different complexity levels. As in the pilot studies, this helps
us to understand what made a snippet difficult or easy to
comprehend. If participants made only two piles (“simple” and
“complex”), we encouraged them to distinguish it further, often
leading to three or four piles (see Section III-C).

5) Data Analysis: While our fMRI study of code complexity
is novel, the fMRI data analysis represents best practices
from neuroscience and follows previous studies in software
engineering [27], [28], [43], [44], [45]. To analyze the fMRI
data, we used BrainVoyager™ QX 2.8.4. We transformed
each participant’s anatomical scan into the standard Talairach
brain [46], which allows us to correct for differences between
the participants’ brain sizes. We preprocessed the fMRI data
with standard 3D-motion correction, slice-scan-time correction,
temporal filtering (high-pass GLM Fourier, 2 cycles), and
spatial smoothing (Gaussian filter, FWHM=4 mm).

We conducted a random-effects general linear model (GLM)
analysis, defining one predictor per condition: program com-
prehension, distraction, control, and rest. To identify brain
areas related to program comprehension, we filtered the data
to all voxels that showed a positive deflection of the BOLD
response during the comprehension condition. We computed the
contrast between program comprehension and control condition
(p < 0.05, false discovery rate (FDR) corrected [47], minimum
cluster size: 27 mm3). To identify deactivated brain areas, we
obtained all voxels that show a negative BOLD deflection
when contrasting comprehension and rest (p < 0.001, FDR
corrected, minimum cluster size: 27 mm3). For correlation
analysis, we computed the mean amplitude of positive or
negative BOLD deflection in percent for each cluster, task
snippet, and participant, and correlated with the complexity
metrics.

In addition to brain activation, we collected two further
dependent variables: First, we observed participant behavior

(response time, response correctness). This helped us to evaluate
whether participants actually worked on understanding the
snippets. We excluded snippets where participants (accidentally)
responded too fast (response time less than 3 seconds), which
happened in 3 out of 304 comprehension tasks. Second,
we recorded subjective complexity in a post-interview: We
converted the piles into equidistant values between 0 and 100.
For example, if a participant created 4 piles, we assigned
snippets of the first pile a complexity score of 0, the second
pile a score of 33, the third 66, and the fourth 100. 3 piles
translate to 0, 50, and 100, and 2 piles to 0 and 100.

To analyze the relationship between complexity metrics
and cognitive processes, we use Kendall’s τ to compare each
metric’s complexity value with the observed brain (de)activation
across all snippets. We use Kendall’s τ (rather than Pearson’s
correlation coefficient) because of its power with interval data
and robustness against outliers [48].

III. RESULTS

In this section, we present the results of our data analy-
sis, including behavioral, fMRI, and subjective complexity
data. We summarize the correlation results in Table II. We
separate results from discussion (see Section IV) to prevent
mixing interpretation with data. To streamline the presentation,
we concentrate here on the four representative metrics. In
Section IV-A3, we consider further metrics providing more
evidence on the link between complexity metrics and cognitive
processes.

A. Complexity Metrics and Behavioral data

On average, participants needed 32 seconds to solve a task,
and solved 72 % of the tasks correctly. All participants were
able to complete all tasks before the maximum experiment
time was reached.

Regarding the relationship to complexity metrics, McCabe
has no correlation to neither response time nor correctness.
LOC, Halstead, and DepDegree all show a small correlation
with response time and a medium correlation with correctness.



TABLE II: Kendall’s τ and the explained variance (r2, in brackets) of the dependent variables. A darker cell shading indicates
a stronger correlation: none (τ < 0.1), small (0.1 < τ < 0.3), medium (0.3 < τ < 0.5), and strong (0.5 < τ ) [49].

Complexity Metrics Activation Deactivation Subjective
LOC Halstead McCabe DepDegree BA 6 BA 21 BA 39 BA 44/45 BA 31 BA 32 Complexity

LOC .16 (.04)
Halstead .32 .20 (.04)
McCabe .57 .25 −.07 (.01)

Complexity
Metrics

DepDegree .59 .50 .49 .16 (.01)
BA 6 .26 (.05) .38 (.20) .04 (.00) .32 (.11) .20 (.09)
BA 21 .43 (.39) .32 (.27) .09 (.04) .41 (.24) .18 (.09)Activation BA 39 .17 (.10) .40 (.18) .07 (.01) .36 (.21) .17 (.10)
BA 44/45 .15 (.04) .17 (.06) −.04 (.00) .22 (.09) .22 (.06)
BA 31 −.30 (.21) −.30 (.11) .05 (.00) −.24 (.04) −.44 (.44)Deactivation BA 32 −.39 (.24) −.42 (.22) .04 (.00) −.29 (.04) −.69 (.69)
Correctness −.46 (.29) −.45 (.26) −.09 (.02) −.41 (.22) −.63 (.53) −.63 (.67) −.58 (.47) −.34 (.13) .59 (.58) .71 (.62) −.77 (.71)Behavioral

Data Time .22 (.10) .24 (.09) .06 (.00) .26 (.07) .29 (.19) .22 (.10) .31 (.22) .24 (.13) −.22 (.11) −.21 (.10) .34 (.18)

LR
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LRA P

Fig. 2: Visualization of the activated brain areas (all in the
left hemisphere): BA 6 (4315 voxel, TAL: -35, 10, 47), BA 21
(3306 voxel, TAL: -57, -39, 1), BA 39 (3527 voxel, TAL: -37,
-65, 35), and BA 44/45 (Broca’s area) (1618 voxel, TAL: -49,
-22, 14). A: anterior, P: posterior, L: left, R: right.
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Fig. 3: Visualization of the deactivated brain areas: BA 32
(10’651 voxels, TAL: -1, 51, 14) and BA 31 (2672 voxels,
TAL: 3, -20, 40), which both are part of the default mode
network. A: anterior, P: posterior, L: left, R: right.

B. Complexity Metrics and fMRI Data

1) Brain Activation: In Fig. 2, we visualize the activated
brain clusters. In our study, four brain areas are significantly
activated during program comprehension: Brodmann area
(BA)8 6, BA 21, BA 39, and BA 44/45 (Broca’s area). Notably,
these activation clusters were found also in previous fMRI
studies of program comprehension [27], [28], [44], [51].

The relationship of the complexity metrics and activation
strength of the four areas corroborates the behavioral data,
but provides a stronger and more nuanced view (cf. Table II).
Again, McCabe shows no correlation. LOC has a medium
correlation with BA 21, and a small correlation with BA 6,
BA 39, and BA 44/45. Halstead and DepDegree show a small
correlation with BA 44/45 (cf. Fig. 4) and consistent medium
correlations across BA 6, BA 21, and BA 39.

2) Brain Deactivation: Fig. 3 visualizes the specific po-
sitions of the two clusters that we found in BA 31 and
BA 32, which belong to the default mode network. Regarding
the relationship with the metrics, McCabe again shows no
correlation with brain deactivation. DepDegree shows a small
correlation that explains almost none of the observed variance in
brain deactivation. LOC and Halstead have medium correlations
with both deactivated areas (cf. Table II).

8Brodmann areas serve as an anatomical classification system. The entire
brain is split into several areas on the basis of cytoarchitectonic differences,
which suggest to serve different functional brain processes [50].

3) Behavioral Data and fMRI Data: We analyzed the
relation of the behavioral data with the (de)activated areas:
We found strong correlations with the response correctness for
BA 6, BA 21, BA 39, and a medium correlation with BA 44/45.
For response time, we found mostly small correlations, and
one medium correlation (BA 39).

In summary, McCabe shows no correlation with the strength
of brain activation or generic cognitive load. LOC, Halstead,
and DepDegree show small to medium correlations with
brain activation and cognitive load.

C. Subjective Complexity

In addition to objective measures of brain activation, we
investigated the relationship between code complexity metrics
and subjective complexity based on the participants’ rating.
Two participants created two piles (cf. Section II-C5), nine
participants created three piles, and eight participants created
four piles of complexity. Participants generally balanced the size
of each pile. We transformed the piles into numerical values
(42.42 ± 40.92). Regarding the relationship to the metrics,
we observe only low correlations, with McCabe showing no
correlation and the other metrics a small correlation only.

1) Subjective Complexity and Behavioral Data: We observe
a medium correlation between response time and the subjective
complexity rating. With the number of correctly solved tasks,
the subjective rating shows the strongest correlation, in general.
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Fig. 4: Relationship of the four complexity metrics with Broca’s area (BA 44/45). Each dot represents the mean activation for a
single snippet. McCabe shows no correlation. LOC, Halstead, and DepDegree show small positive correlations, meaning that
higher complexity values increase load in Broca’s area. However, each metric only explains part of the observed variance in
activation.

2) Subjective Complexity and fMRI Data: All (de)activated
areas show mostly stronger correlations with the subjective
complexity ratings than with the code complexity metrics. The
deactivated areas of BA 31 and BA 32 show a medium and
strong correlation, respectively. The four activated brain areas
show only small correlations with subjective complexity.

In summary, while subjective complexity has small correla-
tions with complexity metrics, it accurately depicts whether
participants could solve a task. Subjective complexity also
correlates with our measure of cognitive load.

IV. DISCUSSION

We start the discussion by answering our overarching
research question, followed by a detailed discussion of the
relationship of code complexity metrics with cognitive pro-
cesses. We conclude by formulating a set of hypotheses and
outlining perspectives that arise from our study.

A. Overarching Research Question

Are complexity metrics connected to how programmers
process code? Yes, and no. Based on plausibility and prior
neuro-linguistic studies, we hypothesized some definitive rela-
tionships between code complexity metrics and programmers’
cognition. For example, we expected that code with more
data flow shows a direct positive correlation with BA 44/45
due to increased memory load [22]. While we indeed observe
a positive correlation between DepDegree (as an indicator
for data-flow complexity) and BA 44/45, we also observe
small to medium-strength correlations with all other cognitive
processing measures (i.e., all activated and deactivated brain
areas and their levels) as well as behavioral data (i.e., response
time and correctness). Similarly, LOC and Halstead exhibit
small to medium-strength correlations with all behavioral and
cognitive processing measures. McCabe, however, consistently
lacked any significant correlation with our observed measures.

All of the observed relationships between complexity metrics
and cognitive processing measures are nuanced and contextual,
into which we delve next in more detail.

1) Deactivated Areas: Cognitive Load: When we must
allocate attention to a task with perceived difficulty, areas of the
brain associated with wandering and reflective thinking (default
mode network) [36] are deactivated. The level of deactivation is
an indicator for cognitive load [36]. Two classes of complexity
metrics exhibited medium correlations with this deactivation:

code size (LOC) and vocabulary (Halstead). In other words,
the size of code, either as pure textual length or in terms of
vocabulary size, drives cognitive load. We also observed a
small correlation of data flow (DepDegree) but no correlation
of control flow (McCabe) with deactivation. Perhaps, size-
based metrics naturally interact with a programmer’s sense of
gestalt [52], and thus induce stronger anticipation for a higher
cognitive load.

Our study results on complexity metrics substantiate our
possibly spurious findings [26], but differ in a few key ways: We
previously also observed a default mode network deactivation
relationship with vocabulary size, but not code size. In contrast,
now, with more varied snippets and complexity values, we
found that code size also exhibits a medium correlation, in the
same range as vocabulary size.

2) Activated Areas: Link to Cognitive Processes: When
faced with solving a complex task, we perform additional
cognitive operations (e.g., extracting the meaning of identifiers)
and recruit additional cognitive resources and processes to
fulfill the task’s extra demands. The brain areas that are
stronger activated in a complex task (as compared to a simple
task) indicate increased demands for cognitive processes and
resources hosted by these particular areas.

The LOC metric hints at an increased demand on a single
area (as indicated by a medium-strength correlation), the
middle temporal gyrus (BA 21). BA 21 is typically associated
with semantic processing during language comprehension [53],
[54] and program comprehension [27]. Its role for program
comprehension is interpreted as extracting the meaning of
individual identifiers and symbols from code [27], [28], [45],
[44]. When processing complex sentences, increased activation
of BA 21 indicates a higher grammatical processing load [55].
So, we conclude that merely increasing LOC increases the
cognitive processing of identifiers and symbols, but otherwise
does not necessarily pose a strong demand on other cognitive
resources.

Halstead and DepDegree hint at increased demands (as
indicated by medium-strength correlations) across three areas
(BA 21, BA 6, and BA 39). The middle frontal gyrus
(BA 6) is activated when attention and working memory are
required [56]. Several fMRI studies on program comprehension
found strong activation, albeit with slightly changing location
in the brain [27], [28], [44]. The angular gyrus (BA 39) is a part
of the brain that is associated with complex cognitive processes;



it acts as a hub for integrating incoming information. Like a
reservoir, as processing areas are filled to capacity, other areas
are recruited to share the load. Collectively, this result indicates
that increasing the number of symbols and the number of data
dependencies requires a broader network of processing than
with increases in other factors. McCabe showed no relationship
with an increased demand in any brain area.

Our results align well with the study by Schuster et al. [23],
who found that an increasing number of words in a sentence
leads to higher activation in BA 21. Furthermore, we found
support for the early results of Curtis et al. [7] that program
size relates to whether programmers successfully comprehend
a piece of code. However, we did not find a link to McCabe,
as Curtis et al. did.

3) Exploration of Further Complexity Metrics: So far, our
analysis concentrated on commonly used representatives of each
complexity metric class. However, while in widespread use,
some of the selected representatives exhibit alleged limitations
regarding human cognition. For example, McCabe’s control-
flow metric fails to consider the added complexity of nested
structures, such as nested loops or recursion with complex
break conditions. More recent control-flow metrics, such as
“cognitive complexity” [57], take code repetition, layout, and
modern program constructs into account and promise relief of
such weaknesses.

To understand whether a more advanced (or any) metric
predicts cognitive load better, we computed our snippets’
complexity values of 43 further metrics provided by our
analysis tools (i.e., MetricsReloaded and SONARQUBE). We
included metrics that target the method level. Then, we excluded
all complexity metrics that were unable to differentiate between
our snippets (e.g., a metric counting the number of TODOs
would yield 0 for all snippets and have no differentiating
value for our analysis), which left 37 metrics, partially shown
in Table III. We categorized the metrics into: 2 size metrics,
8 vocabulary metrics, 12 control-flow metrics, 0 data-flow
metrics, and 15 others.

Overall, the 37 complexity metrics show a wide range of cor-
relations with the observed brain activation. Interestingly, some
simple control-flow metrics, such as the number of branching
statements or the maximum loop depth, correlate more strongly
than McCabe. SONARQUBE’s “cognitive complexity” shows
an improvement over McCabe, but only a small correlation, at
best. This corroborates a prior meta-analysis on the limitations
of the cognitive complexity regarding physiological data [58].
In addition to Halstead, the number of parameters is a second
vocabulary-based metric that shows a strong correlation with
brain activation in BA 44/45.

These findings corroborate that program comprehension is a
complex cognitive process. While some simple metrics are well-
suited to predict cognitive load in some brain areas, there is no
single metric that predicts the overall cognitive effort. Advanced
methods that try to capture all aspects are not an accurate
predictor for cognitive load. Rather than trying to devise
complex metrics with sophisticated and all-encompassing views
on complexity, it may instead be worthwhile to use a basket of

simple, but targeted metrics, with well-understood relationships
with code and cognitive effort. For example, a continuous
integration process could check simple metrics with well-
understood cognitive relationships: maximum loop depth for
constraints on programmers’ working memory or the number
of parameters as an indicator for load on semantic processing.

4) Summary: Considering the four representative complexity
metrics, the vocabulary-size-based metric Halstead’s complex-
ity, followed by the data-flow-based metric DepDegree, has
shown the most consistent relationship with the various cogni-
tive effort measures. Control-flow complexity, as measured by
McCabe, consistently lacked any relationship with cognitive
effort. An exploration of other method-level metrics did not
reveal any individual metric that accurately predicts cognitive
load. However, besides DepDegree, none considered data-flow
despite promising results. Future research shall consider data
flow as a predictor for cognitive effort. While no single metric
of complexity is sufficient for comprehensively explaining all
observed data, we conclude that programmers should minimize
the number of variables, branching depth, and amount of
data flow within methods to reduce cognitive load when
comprehending code.

Size-based metrics (Halstead and LOC) align well with the
anticipation of work, and therefore with the amount of attention
needed to allocate toward a task. Data-flow-based metrics
(DepDegree) were less likely to capture this anticipation, yet
demonstrated increased cognitive demands during program
comprehension. These results imply that complexity estimates
that use an assessment of the appearance of code, as is
common in readability studies, rather than requiring actual
comprehension of code, could misrepresent complexity.

Finally, a useful metric may involve the subjective complexity
rating after the completion of a comprehension task. In other
words, when participants struggled in grasping the meaning of
a code snippet, they find it the most complex, and they seem to
be well aware of their struggle. They are likely to predict their
correctness (τ = −.77), and their rating often matches their
level of concentration (τ = −.69), and relates to increases in
cognitive effort.

B. Hypotheses

During the analysis and interviews, we found some further
interesting insights that we formulate in terms of hypotheses
to be addressed in future studies.

1) Size is a Preattentive Indicator for Cognitive Load:
We found that, when a snippets consisted of more lines of
code, the deactivation of the default mode network was rather
strong. Thus, participants might simply use the amount of
material to comprehend as a heuristic of how much cognitive
load they expect. This is an easy to assess property, which
might not even require attention and might be a feature of
perception [52]. However, this could also lead to overestimation
as the comprehension process progresses.

2) Data Flow versus Control Flow: Although DepDegree
builds on McCabe, McCabe shows no relationship to cogni-
tive effort, whereas DepDegree does. Thus, everything that



TABLE III: Kendall’s τ correlation between brain activation and the unique, differentiating top 26 of the 37 explored complexity
metrics. The metric’s text color indicates its class (size, vocabulary, control flow, data flow, other). The cell shading highlights
strong correlations (cf. Table II). All metrics, raw data, and results are available on our supplementary Web site.
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distinguishes DepDegree from McCabe might be responsible
for the small to medium correlations. Thus, a metric capturing
only the part that differs between DepDegree and McCabe
might be a good predictor for cognitive load. Thus, our results
let us conclude that the delta between control flow measured
by McCabe and data-flow measured by DepDegree may be a
promising, novel metric that resembles programmers’ cognition
and shall be explored in future research.

C. Perspectives

1) Mental Shortcuts during Program Comprehension: Pro-
grammers tend to minimize efforts for program comprehension
by actively looking for efficient ways to solve a task [59]. In
the context of our experiment, this means that participants will
try to find the simplest path to solve the task. For example, a
participant reported, upon recognizing a list of square numbers,
they expected an algorithm dealing with square roots (see top-
down comprehension [60], [28]). Complexity metrics seem to
neglect that programmers try to take such mental shortcuts. For
example, McCabe counts the number of all possible execution
paths, but programmers often do not have to consider all
paths; just enough to solve the current task. For example, in
our “hurricane check” snippet, participants could skip some if
statements after they have found the solution. Further work shall
investigate this phenomenon by carefully controlling which
mental shortcuts during comprehension are available. This
would produce further insights into the context sensitivity of
complexity metrics.

2) The Effects of Extreme Complexity: Some metrics may
not have a relationship with human cognition, until the values
exceed some extreme threshold. Although a higher number of
possible execution paths did not increase the cognitive load of
participants, there are only 6 different values for McCabe, and
the largest (i.e., 8) might not even be considered sufficiently
complex. Still, we selected them for their widespread use in
practice. Some static analysis tools, such as SONARQUBE,
consider a McCabe value of 10 to be so complex, that it
should not even be checked into a repository. Unfortunately,
it is almost impossible to vary the code along all 4 classes
of metrics while also adhering to presenting the full code on
one screen within the fMRI scanner. Thus, future studies could
either use longer code, which would require the participants
to scroll up and down, or could focus more on control flow to

have more extreme ranges so that the relationship of complexity
and cognitive load can be observed in more depth.

3) Activation of Broca for High Performers: We confirmed
the activation of the BA 44/45 (Broca’s area), which is
crucially involved in establishing a unified understanding
between alternatives (e.g., combining the meaning of words
to a sentence) [61] and which was consistently activated in
previous fMRI studies on program comprehension [26], [28],
[51] and sentence complexity [55].

Correlations between our complexity metrics and the ob-
served activation in Broca’s area are mostly small. One reason
could be that activation of Broca’s area was modulated by indi-
vidual performance. That is, some participants, finding the code
too complex, fail to activate later stages of language processing.
Another possibility could be that the code snippets were more
mentally challenging than in previous studies, and as a result,
some participants needed to recruit Broca’s area as syntactic
working memory [22]. Both explanations are consistent with
our data, as we found stronger activation in Broca’s area among
the high-performing participants (i.e., who correctly solved,
at least, 13 of the 16 comprehension tasks, n = 9). Studies
examining complex sentence comprehension of individuals have
also observed activation differences between high-performing
individuals with good comprehension (increased activation of
Broca’s area) and poor comprehension (decreased activation
of Broca’s area) [62].

Future experiments shall examine when and why Broca’s area
is activated by high performers, increasing our understanding
of expertise. Furthermore, if we want code to be understandable
by everyone, then we can use these methods to design metrics
that predict truly simple code, code that does not require the
brain circuity associated with complexity.

4) Overcoming Shortcomings of Complexity Metrics: Based
on the participants’ feedback and the observed relationships
to various measures of programmer cognition, we found that
popular complexity metrics fail to capture some comprehension
aspects that participants used in their subjective rating:
• Long, diffuse code lines can cause particular difficulties. For

example, Line 11 of Listing 1 obfuscates the intention (is it
a non-letter?), which needs to be extracted from the code.

• Identifiers with similar names lead to confusion (e.g.,
number1, number2, numbers in one snippet), likely
because participants have to pay specific attention not



to confuse these. Thus, code readability may be just as
important as structural complexity, as suggested in previous
studies [63], [64], [65].

• DepDegree fails to consider the “distance” or the locality of
data-flow relationships. For example, in the sort example
in the prelude of the paper, the swap operations are localized
to each line and can be abstracted away once a line has been
processed. Incorporating other factors, such as the variable
lifetime or lexical distance, would be worthwhile to explore.

These and other aspects shall be considered when using code
complexity metrics to describe human cognition (e.g., Jbara and
Feitelson consider repeated statements [18]). Our experiment
design provides a structured way to test and refine code
complexity metrics to make them a more accurate proxy for
program comprehension and elevate them beyond simple code
size predictors [66].

V. THREATS TO VALIDITY

A. Construct Validity

We carefully designed our experiment to limit threats to
validity. With regard to construct validity, we operationalized
code complexity with four widely used metrics covering
different concepts of code complexity (e.g., control-flow or data-
flow complexity). An exploration into 37 further metrics did
not reveal any candidates with consistently strong correlations.
The four selected metrics correlate with each other even with
a carefully designed experiment. Nevertheless, in addition to
our conceptual insights, our study outlined how to investigate
a possible cognitive complexity metric with a multi-modal
experiment.

Another threat arises from our operationalization of program
comprehension, which is a multi-faceted phenomenon in which
the chosen experiment task is decisive for observed cognitive
processes [67]. In our study, we asked programmers to evaluate
snippets regarding input and output, and we found, at most,
a medium correlation with code complexity metrics. An
experiment with another type of task (e.g., deriving program
invariants) may emphasize a different facet of program com-
prehension and thus may show stronger or weaker correlations
with complexity metrics. However, our task operationalization
is typical to specify program behavior and in line with previous
fMRI studies on program comprehension [27], [28], [45], [43],
[44]. While no single metric of complexity is sufficient for
comprehensively explaining all observed data, we can conclude
that programmers should minimize the number of variables,
branching depth, and amount of data flow within methods to
reduce cognitive load when comprehending the code.

B. Internal and External Validity

Several threats to validity arise from our participant sample.
Participants: First, we have a skewed gender distribution,

which, however, is close to the population in computer
science for most universities. Second, participants may have
encountered algorithms used in our snippets before. However,
we mitigated this threat by enforcing bottom-up comprehension.

Code Snippet Selection: Due to the nature of controlled
fMRI experiments, we intentionally focused on high internal
validity to control for confounding parameters as much as
possible. Our snippets are rather small, in one programming
language, and we selected a homogeneous sample in terms
of programming experience. Thus, our results apply only to
similar circumstances and cannot easily be generalized, for
example, to expert programmers or large code bases. This is
an unavoidable trade-off between targeting either high internal
or high external validity [68].

Code Complexity Granularity: We need to be aware that,
in our experiment, we studied program comprehension at the
method level, but software systems consist of many methods
and higher-level components. Nevertheless, our results still have
practical impact: When we know that intermediate programmers
work at the method level, code complexity metrics can help to
predict their cognitive effort and that they might need longer
than expected. Furthermore, different complexity metrics have
been devised beyond the method level (e.g., Weighted Methods
per Class [69], Lack of Cohesion in Methods [6], [70]), which
shall be addressed in future research. Our study provides
a starting point for dedicated follow-up studies that shall
investigate these metrics and associated cognitive processes.

VI. RELATED WORK

Besides the work that evaluates how software metrics are
related to human cognition (cf. Section I), several neuroimaging
studies exist that shed light on how programmers work with
code. Closest to our study are studies on cognitive load and
neural efficiency. Siegmund et al. conducted an fMRI study and
found that the strength of activation depends on expertise [28].
Specifically, top-down comprehension resulted in a lower
BOLD signal change than bottom-up comprehension. Crk and
Kluthe found different strengths in electroencephalography
(EEG) alpha and theta power depending on the expertise
of participants [71]. Yeh et al. also observed a difference
in alpha and theta waves, linked to the cognitive load of
participants [72]. Both results suggest that cognitive load and
expertise are directly linked (i.e., with lower expertise, the
same tasks require higher cognitive load). Nakagawa et al.
found an increased blood flow with functional near-infrared
spectroscopy (fNIRS) in the prefrontal cortex depending on
task difficulty [73]. Fakhoury et al. combined fNIRS and eye
tracking to show that unsuitable identifier names increase
cognitive load [74]. Kosti et al. replicated the seminal fMRI
study of Siegmund et al. [27] with EEG and confirmed its
capability as a mental load measure by correlating the EEG
functional connectivity with subjective rating of difficulty [75].
Fritz et al. used EEG, heart rate, and electrodermal activity
to successfully predict task difficulty [76]. Ikutani et al. used
fMRI to contrast different levels of programmer expertise with a
program categorization task. Their classifier achieved a higher
accuracy of distinguishing different program categories on
expert programmers’ brain activation patterns than for novices,
indicating that expertise leads to a fine-tuning of programmers’
brains [51]. The results of these studies motivated us to keep



the level of programming experience constant and to focus on
bottom-up comprehension.

Siegmund et al. have brought this line of research into
software engineering with a study to unraveling the neuronal
correlates of program comprehension [27]. A follow-up paper,
which includes a protocol to link software metrics to cognitive
load, has directly inspired this work [26]. Peitek et al. suggested
that neuronal correlates can be interpreted in more detail by
simultaneously observing eye gaze [41]. Floyd et al. conducted
a study to predict the tasks that participants completed based
on the observed brain activation [45]. They could successfully
predict whether participants comprehended code, reviewed a
code change, or reviewed a prose change. Follow-up studies
investigated mental rotations tasks and contrasted the use of
fMRI with fNIRS [77]; they found that brain activation is much
different when writing code, rather than comprehending it [78].
Lee et al. also built on the first fMRI study, but used EEG
and eye tracking to describe neuronal correlates of program
comprehension in two studies [79], [80]. Duraes et al. and
Castelhano et al. used fMRI to observe the neuronal activation
during the location of defects, finding an activation in the right
anterior insula when a bug was spotted and confirmed [43],
[44]. Ikutani and Uwano used fNIRS and found an increased
activation in the frontal pole when participants memorized
variable names, as compared to mental arithmetic [81]. Two
recent studies by Liu et al. and Ivanovo et al. contrasted
program comprehension with language and memory tasks and
found activation in brain areas involved in formal logic as
well as domain-general executive resources [82], [83]. While
all these studies considered neuronal correlates of processes
related to program comprehension, none establishes a link to
software metrics.

VII. CONCLUSION

Code complexity metrics are relevant for researchers and
practitioners alike, especially as a proxy for difficulty during
comprehending code. Despite their widespread use, the validity
of code complexity metrics is debated and, despite substantial
research, the big picture is still unclear. To shed light on
this issue, in an fMRI study, we investigated 41 complexity
metrics and their behavioral and neuronal correlates during
program comprehension. We found corroborating evidence
with mostly weak to medium correlations with programmers’
correctness and response time. More importantly, since we
observed participants’ brain activation with fMRI, we enriched
previous research by offering a novel perspective and explaining
why code and certain aspects of it are difficult to comprehend.
In particular, we found that the code’s textual size drives
cognitive load due to programmers’ expected attention and
that vocabulary size of code particularly burdens programmers’
working memory. The data-flow metric DepDegree showed
the strongest correlations to our observed brain activation. We
also observed that subjective complexity accurately mirrors the
participants’ need for concentration.

Despite these encouraging results, further studies shall dig
deeper to better understand the suitability of code complexity

metrics as a proxy for programmers’ cognition. Data-flow-based
metrics, such as DepDegree, showed promise and need further
investigation. Future work shall also address the gap on how
individual programmer behavior and knowledge enables mental
shortcuts and thus reducing generic precision of complexity
metrics.
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[27] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding Understanding Source
Code with Functional Magnetic Resonance Imaging,” in Proc. Int’l Conf.
Software Engineering (ICSE). ACM, 2014, pp. 378–389.

[28] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner,
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