
A Scheduling Selection Process for Energy-efficient Task
Execution on DVFS Processors

Thomas Rauber
Computer Science Department,

Universität Bayreuth,
95440 Bayreuth, Germany
rauber[at]uni-bayreuth.de

Gudula Rünger
Computer Science Department,

Technische Universität Chemnitz,
09107 Chemnitz, Germany

ruenger[at]cs.tu-chemnitz.de

To cite this version:
Thomas Rauber, Gudula Rünger: A scheduling selection process for energy-efficient task

execution on DVFS processors. Concurr. Comput. Pract. Exp. 31(19) (2019), ISBN
1532-0626, DOI: 10.1002/cpe.5043 John Wiley & Sons

Abstract

The efficient execution of parallel programs with respect to execution time and energy consumption is a
major concern and often scheduling methods are used to achieve a good performance. In this article, we consider
the problem of scheduling a set of independent tasks on a parallel system with homogeneous execution units
providing frequency scaling. The set of tasks has the property that the tasks exhibit a task-specific inhomogeneous
and non-linear behavior of their specific time-energy relation. Also, it is assumed that the execution time as well
as the energy consumption behave in a non-linear manner with respect to frequency scaling. For the assignment
of these tasks to execution units, we propose a scheduling selection process combining scheduling algorithms,
which determine a task assignment, with a subsequent selection of frequency scaling, which we call schedule
execution modes. This process builds a rich set of alternative schedule execution modes from which efficient (or
Pareto-optimal) schedule execution modes can be selected. Experiments are done for the SPEC CPU benchmarks.
Experimental results illustrate that the enriched scheduling process leads to task assignments resulting in an
efficient execution on DVFS processors.

1 Introduction

The scheduling of tasks on a set of resources is an important area of parallel computing, and many algorithms
have been proposed in the past, using different objective functions, such as makespan, maximum lateness, total
weighted completion time, or total weighted tardiness, see [13] for a detailed overview. The tasks to be scheduled
may be independent from each other or may have different types of dependencies, for example represented by a
directed acyclic graph. Most scheduling algorithms considered in the past have focused on the execution time of
the tasks and objective functions derived from execution times. However, in recent years the energy consumption
of applications is considered to be of growing importance, and hardware manufacturers have developed a vari-
ety of power-aware system features, including multicore-on-a-chip processors, core-independent functional units,
dynamic voltage and frequency scaling (DVFS), or clock gating to support energy-efficient computing [26, 4, 6].

The modified focus of interest towards energy aspects has led to a re-investigation of scheduling algorithms and
the consideration of the resulting energy consumption as objective function [1, 33]. In this article, we follow this
research direction and investigate the impact of task scheduling algorithms on the performance and the energy
consumption for real applications. When considering the execution of tasks from real-world applications on recent
DVFS processors, it can be observed that the energy and the time consumed for the computations exhibit a complex
behavior with a potentially non-linear reaction to frequency scaling due to variations in the power consumption.
Furthermore, each task may react in a different individual way. The non-linear and in-homogeneous behavior has

1

to be taken into account when determining an assignment of tasks to DVFS processors. The efficient execution
with respect to energy and time may involve conflicting objectives leading to a multicriteria decision problem [3]
for choosing an optimal combination of task schedule and scaling factors of the operational frequency.

In this article, we consider the problem of scheduling a set of independent tasks on a homogeneous set of identical
DVFS processors. As objective function, the makespan or the energy consumption is taken, respectively. There
is no assumption about the behavior of the execution time and the energy consumption with respect to frequency
scaling, meaning that an in-homogeneous and non-linear behavior can be handled. We propose a schedule selection
process for finding an efficient mapping of a set of tasks representing real-world applications to DVFS processors.
In particular, we investigate scheduling algorithms using the makespan as well as the energy consumption as objec-
tive function. Of special interest is the question, whether the schedules derived by an energy-oriented scheduling
really lead to a smaller overall energy consumption or whether time-oriented scheduling can also lead to a good
energy usage. The choice of an optimal frequency of all or of individual execution units is intertwined with the
determination of schedules resulting in a multitude of possible execution alternatives of a given set of tasks.

The scheduling selection process consists of several steps. First, the proposed scheduling algorithms are applied
with different objective functions, i.e., energy or time, and with different operational frequencies. This yields a
candidate set of alternative schedules, each providing a task assignment and a frequency setting. The schedules
obtained for a specific frequency are applied to evaluate the makespan and the energy consumption for the other
frequencies. Thus, each of the schedule candidates is executed for several execution specifications of the opera-
tional frequency, which is called schedule execution modes to express that the schedule is executed in a special
mode of the operational frequency. The resulting set of schedule execution modes is further enriched by frequency
scaling of individual execution units which may potentially reduce the energy consumption without increasing the
execution time. In total, the scheduling process provides a rich set of alternatives each consisting of an assignment
of tasks to processors and a frequency setting for each processor. To find efficient schedules, the set of alternatives
is evaluated with respect to the objective function. A set of non-dominated alternatives, called set of efficient
alternatives, with respect to the multicriteria objective involving execution time and energy consumption is deter-
mined. A last step is to choose a final solution from the set of efficient alternatives due to the individual needs of
an execution run, e.g. minimum execution time or minimum energy consumption or a combination of both.

To test the scheduling algorithms and the frequency scaling, we use tasks that have been obtained from executing
the SPEC CPU benchmarks, see www.spec.org, on an Intel Core i7 Haswell processor. The experimental
results exhibits the inhomogeneous and non-linear behavior of real-world applications with respect to execution
time and energy consumption on DVFS processors.

The contribution of the article is an in-depth investigation of the schedules resulting from time-oriented and from
energy-oriented scheduling algorithm along with an analysis of the benefits resulting from individual DVFS set-
tings for the different processors. Also, a detailed comparison of the makespan and the energy consumption of
schedules is provided. The investigation reveals that a time-oriented scheduling may lead to even better results
than an energy-oriented scheduling for the makespan and also for the energy consumption, if the most appropriate
operational frequencies and schedules are used for DVFS. The scheduling selection process proposed takes this
into account and accompanying theoretical results explain the effects.

The article is structured in the following way: Section 2 considers the power and energy consumption of tasks
when using DVFS. Section 3 presents the scheduling algorithms considered. Section 4 describes the multicriteria
decision problem and the scheduling selection process proposed. Section 5 investigates the resulting makespans
and energy consumptions of schedules for SPEC benchmark tasks and the dependence on the frequency and the
number of execution units. Section 6 discusses related work and Section 7 concludes.

2 Power and energy behavior of application programs

2.1 Power and energy models

The energy E consumed for the execution of an application code depends on the execution time T on the given
hardware platform and the power drawing P during the execution. P may vary during the execution of the code
and may also depend on the specific execution behavior of the application considered. The application-specific

2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

G
e
m

sF
D

T
D

h
m

m
e
r

le
slie

3
d

g
o
b
m

k
ca

ctu
sA

D
M

b
w

a
ve

s
sp

e
cra

n
d

w
rf

g
cc

g
ro

m
a
cs

sje
n
g

ca
lcu

lix
a
sta

r
ze

u
sm

p
p
o
vra

y
m

ilc

b
zip

2

m
cf

p
e
rlb

e
n
ch

sp
h
in

x3
xa

la
n
cb

m
k

d
e
a
lII

n
a
m

d
lib

q
u
a
n
tu

m
g
a
m

e
ss

so
p
le

x

p
o

w
e

r
[W

]

measured power values for SPEC benchmarks on Intel Core i7 Haswell

0.8 GHz
1.7 GHz
2.5 GHz
3.4 GHz

Figure 1: Power consumption of the SPEC CPU benchmarks for four selected frequencies.

behavior may come from different sources, such as varying usages of internal functional units or caches, or memory
accesses. The resulting energy E is expressed as E =

∫ tend

t=0
P (t)dt, assuming that the program is executed from

time t = 0 to t = tend. The power P is measured in Watt (W), the time is measured in seconds (s), and the energy
is measured in Joule (J).

In the following, we consider DVFS systems with pmax cores and operational frequencies f ranging between
a minimum frequency fmin and a maximum frequency fmax. In the following, we only deal with frequency
scaling, not voltage scaling. The frequency can be changed only in discrete steps. Frequency scaling for DVFS
processors can be expressed by a dimensionless scaling factor s ≥ 1 which describes a smaller frequency f ≤ fmax

in relation to the maximum possible frequency fmax as f = fmax/s. The power drawing P (t) varies with
the operational frequency f chosen, which is expressed by the power being a function of s, i.e., P = P (s, t).
Analogously, the energy consumption also depends on s, which is expressed by an additional parameter, i.e.,
E(s) =

∫ tend(s)

t=0
P (s, t)dt.

Power models for DVFS processors often distinguish the dynamic power consumption Pdyn, which is related to the
computational activity of the processor, and the static power consumption Pstat, which is intended to capture the
leakage power consumption occurring also during idle times [20]. Pdyn depends on the frequency f and, thus, the
scaling factor s, and Pstat is often treated to be independent from s. The dependence of Pdyn on f is often assumed
to have the form Pdyn(f) = γ · f3 with a suitable constant γ, or when using the corresponding scaling factor s as
Pdyn(s) = s3 · Pdyn(1) where Pdyn(1) is the dynamic power consumption in the un-scaled case. The total power
consumption is the sum of both parts, i.e., P (s, t) = Pdyn(s, t) + Pstat. For simplicity, it is often assumed that
P (s, t) is constant during the execution of a specific application program, leading to: E(s) = P (s) · T (s), where
the overall execution time T (s) = tend(s) of the application program considered depends on the scaling factor s.
In practice, E is a discrete function in s, since the frequency cannot be changed continuously.

As an illustration of the power consumption behavior of applications, Fig. 1 shows the power consumption of the
SPEC CPU 2006 benchmarks for different frequencies (0.8 GHz, 1.7 GHz, 2.5 GHz, 3.4 GHz) on an Intel Core i7
Haswell processor. The figure shows that the power consumed for executing the individual benchmark programs
varies significantly among the benchmarks, reflecting the fact that the power consumed is strongly application-
specific. Also, the power consumption is different for different operational frequencies and increases with the
frequency. Moreover, different benchmark programs exhibit different power increase factors.

2.2 Energy consumption of task-based applications

In this article, we consider a task-based programming model in which the parallel program to be executed consists
of a set T of n independent tasks without ready times. Each task can be executed sequentially by any of the
processors or cores provided by the parallel execution platform. A homogeneous parallel platform with pmax

identical processing units (processors or cores) supporting DVFS is assumed. Several tasks can be executed in
parallel to each other, each one on a separate processor or core, and a processor can fetch the next task for execution

3

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3 3.5

ru
n

ti
m

e
 [

s
e

c
]

frequency [GHz]

runtime of SPEC CPU benchmarks on i7 Haswell

bwaves
cactusADM

calculix
dealII

gamess
GemsFDTD

gromacs
leslie3d

milc
namd

povray
soplex

sphinx3
wrf

zeusmp
gcc

perlbench
mcf

bzip2
gobmk

astar
hmmer

libquantum
sjeng

xalancbmk

Figure 2: Runtime behavior of the SPEC CPU benchmarks for varying frequencies.

as soon as it becomes idle. The assignment of the tasks to processors is done according to a schedule resulting
from a scheduling algorithm for sequential tasks; appropriate algorithms are proposed in Sect. 3. In the following,
we introduce the terminology and definitions used. The assignment function defining the mapping of tasks to
processing unit is denoted as:

A : T → {1, . . . , pmax}. (1)

The overall execution time of a task-based program is determined by the execution times of the individual tasks
x ∈ T and the coordination and idle times resulting from a specific schedule. Since we consider independent tasks
executed without delay, idle times can occur only after the last task on a processor has been finished. The execution
time of a task x ∈ T for a frequency scaling factor s is denoted by Tx(s). The execution time of a task can be given
in different ways, which can be a measured execution time on a specific hardware platform, a predicted time using
an analytical prediction technique, such as proposed in [12, 11], or relative values between the execution times of
the tasks. In this article, we use measured execution times. Experiments show that the execution times of the tasks
do not depend linearly on the operational frequency or the corresponding scaling factor. Instead, an application-
specific non-linear behavior can be observed, which is illustrated in Fig. 2 giving the measured execution times
of the SPEC CPU benchmarks on an Intel Core i7 Haswell processor for different operational frequencies. The
runtimes reported in Fig. 2 have been obtained by measuring the execution times of the different benchmarks in
isolation fixing the operational frequency with the cpu-freqset tool.

For a specific assignment functionA, the accumulated execution time TA
acc(p, s) for a processor p ∈ {1, . . . , pmax}

is calculated by summing up all execution times Tx(s) of the tasks x assigned to processor p, i.e. for which
A(x) = p, and using scaling factor s for execution. This results in:

TA
acc(p, s) =

∑
A(x)=p

Tx(s). (2)

The overall execution time TA
total(s) of the entire task-based parallel program is determined by the processor

having the longest execution time, which is calculated as the maximum of TA
acc(p, s) over all p according to:

TA
total(s) = max

p=1,...,pmax

TA
acc(p, s) (3)

4

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.5 1 1.5 2 2.5 3 3.5

e
n

e
rg

y
 c

o
n

u
m

p
ti
o

n
 [

J
o

u
le

]

frequency [GHz]

energy consumption of SPEC CPU benchmarks on i7 Haswell

bwaves
cactusADM

calculix
dealII

gamess
GemsFDTD

gromacs
leslie3d

milc
namd

povray
soplex

sphinx3
wrf

zeusmp
perlbench

mcf
bzip2

gobmk
astar

hmmer
libquantum

sjeng
xalancbmk

Figure 3: Behavior of the energy consumption of the SPEC CPU benchmarks for varying frequencies.

In the context of scheduling, TA
total(s) is often called the makespan of the assignment function A.

Analogously to the accumulated execution time, we define an accumulated energy consumption for processor p,
denoted as EA

acc(p, s), which is calculated from the energy values Ex(s) consumed by the tasks x using frequency
scaling factor s. Similarly to the execution time, the energy consumption of a task typically depends in a non-
linear way on the operational frequency, which is illustrated in Fig. 3. For the energy consumption, the non-linear
and application-specific dependence of the power consumption on the frequency also plays an important role,
see Fig. 1. The accumulated energy consumption EA

acc(p, s) of a processor p ∈ {1, . . . , pmax} for a specific
assignment function A is given by:

EA
acc(p, s) =

∑
A(x)=p

Ex(s). (4)

The overall energy consumption of the entire task-based program is denoted as EA
total(s) and is calculated by

summing up the energy consumption of all processors participating in the execution of the program. Since the
execution time is determined by the processor with the longest execution time defining the makespan, the makespan
has to be taken into account for all other processors even if the active execution time is shorter. The time between
the end of the active execution time of a processor p and the makespan defines the idle time of the processor p,
denoted as

TA
idle(p) = (TA

total(s)− TA
acc(p, s)), (5)

during which no calculations are contributed by p, but nevertheless static power is consumed. This assumes that a
processor is not switched off after it has executed its last task but remains active and consumes static power. An
alternative would be to switch off processors or cores during idle times. This could avoid the consumption of static
power, but requires time for a change of the processor power management state. In the following, we assume that
the processors are not switched off but remain active during idle times. The assumption can be justified by the
fact that the static power consumption is typically much smaller than the dynamic power consumption and that all
processors should be available as soon as possible for executing a following schedule. Thus, for calculating the
overall energy consumption it has to be taken into account that processors might have idle times during which they
consume static power. This results in the following formula for the overall energy consumption

EA
total(s) =

∑
p∈{1,...,pmax}

(
EA

acc(p, s) + (TA
total(s)− TA

acc(p, s)) · Pstat

)
. (6)

5

The formulas introduced here, i.e. the accumulated and the total execution time and energy consumption, are used
as cost measures in the scheduling algorithms presented in Sect.3.

3 Time-oriented and Energy-oriented Scheduling algorithms

3.1 Scheduling problem

We consider a set T of n =| T | independent sequential tasks without ready times, denoted as T = {x1, . . . , xn}.
The execution platform has pmax homogeneous processors or cores which can be independently set to an opera-
tional frequency f ∈ F where F is a finite set of discrete frequencies, which lie between a minimum frequency
fmin and a maximum frequency fmax. Each frequency f ∈ F has an associated scaling factor s = fmax/f . The
size of F is denoted as nF . Each task x ∈ T can be executed with any frequency f ∈ F resulting in execution
time Tx(s) and energy consumption Ex(s) where s is the corresponding scaling factor to f . We assume that the
frequency cannot be changed during the execution of x.

To be consistent with the measurements on real DVFS processors, see Figs. 2 and 3, no assumptions are made
about a functional relation between the operational frequency or scaling factor, respectively, and the resulting
execution time or energy consumption of a task. The only assumption that is made is a monotonicity behavior of
the execution time, i.e.:

Tx(s1) ≤ Tx(s2) for s1 < s2,

which means that an increase of the operational frequency leads to a reduction of the execution time, see Fig. 2.
Such a monotonicity behavior does not exist for the energy consumption, see Fig. 3, since the reduction of the
execution time is accompanied by an increase of the power consumption. Considering the povray application
as specific example, the execution time is reduced from 584.9 sec to 151.5 sec when increasing the operational
frequency from 0.8 GHz to 3.4 GHz, while the overall power consumption increases from 5.75 Watt to 16.76
Watt. As a result, the energy consumption decreases from 3365 Joule to 2539 Joule. For most of the applications,
the energy consumption is quite large for small frequencies and decreases until about 2 GHz. Then the energy
consumption rises again until the largest frequency available is reached. In total, this leads to an u-shape diagram
for the energy consumption of each application as observed in Fig. 3.

For the assignment of tasks to processors, we use a two-step approach. In the first step, we use the same fixed
frequency f with scaling factor s for all tasks and all processors and determine an assignment A with the goal to
either minimize the makespan

minimize TA
total(s) with TA

total(s) given according to Equ. (3)

or the overall energy consumption

minimize EA
total(s) with EA

total(s) given according to Equ. (6).

This scheduling step is described in Sections 3.2 and 3.3. In a second step, the frequencies of the processors are
modified and adjusted to reduce the overall energy consumption further. The second step will be addressed in
Section 4.

3.2 Time-oriented scheduling

For the time-oriented scheduling algorithm, the execution time (or makespan) is chosen as objective function. At
the beginning, the tasks x ∈ T are sorted in descending order of their execution times. Since the operational
frequency f ∈ F has a considerable impact on the execution time, the sorting is done separately for the execution
times measured for each available frequency. For a selected frequency f and its corresponding scaling factor s,
the scheduling algorithm assigns the tasks from the task list one after another to a newly selected processor in
a stepwise way. In step j, j = 1, . . . , n, the newly selected processor is determined with respect to the partial
accumulated execution times T[1:j−1](p, s) which have been computed for all p after the previous step j − 1. The

6

Algorithm 1 Time-oriented scheduling algorithm to generate a T-schedule.
1: procedure T-SCHEDULE . using execution time as objective function
2: Select frequency f ∈ F with scaling factor s;
3: Sort tasks {x1, . . . , xn} such that Tx1(s) ≥ Tx2(s) ≥ . . . ≥ Txn(s);
4: for (j = 1, . . . , n) do
5: Assign xj to processor p with T[1:j−1](p, s) minimal, see Equ. (7);
6: end for
7: denote the resulting assignment function as A;
8: Compute makespan TA

total(s) = max1≤p≤pmax
T[1:n](p, s), see Equ. (3);

9: Compute total energy EA
total(s) according to Equ. (6);

10: end procedure

partial accumulated execution time for processor p sums up the execution times Txk
(s) of all tasks xk, 1 ≤ k ≤ j,

j ≤ n assigned to p so far, where n is the size of the task set T . The partial accumulated execution time is
defined as:

T[1:j−1](p, s) =
∑

1 ≤ k < j
A(xk) = p

Txk
(s) . (7)

The processor p selected in step j is the processor with the smallest partial accumulated execution time according
to Equ. (7). If more than one processor has this property, an arbitrary one of these processors is selected. The
assignment step for the first task is covered, since T[1:0](p, s) = 0 for all processors. The makespan of the final
schedule is determined by the processor with the highest accumulated execution time T[1:n](p, s) after step n. The
corresponding energy consumption for the resulting schedule has to take the idle time of all other processors into
account and is computed according to Equ. (6). The pseudocode of the scheduling algorithm is given in Algorithm
1. For a given task set and the same number of processors, the scheduling algorithm may lead to different schedules
when selecting different frequencies f ∈ F .

Algorithm 1 determines schedules under the assumption that all processors use the same operational frequency.
The processor for which the largest execution time results determines the makespan for the specific frequency
selected. The energy consumption may be reduced by adjusting the frequencies of the other processors in such a
way that their idle times are reduced but their execution times are still below the makespan. Since the processor
with the largest execution time is not scaled down, the makespan does not increase. The adaption of the frequencies
of all processors except the processor determining the makespan is described in Section 4.2.

3.3 Energy-oriented scheduling

The energy-oriented scheduling given in Algorithm 2 works in a similar manner as Algorithm 1, but instead
of using the execution times, it uses the energy values for sorting and assigning tasks to processors. For the
assignment, the partial accumulated energy E[1:j−1](p, s), j = 1, . . . , n for processor p is used:

E[1:j−1](p, s) =
∑

1 ≤ k < j
A(xk) = p

Exk
(s) . (8)

The computation of the makespan and the total energy of Algorithm 2 work analogously to Algorithm 1. After
the last task has been assigned, the total energy consumption EA

total(s) is obtained according to Equ. (6). The
execution time of each processor is now calculated by adding the execution times of all tasks assigned to this
processor according to the energy-oriented schedule. The maximum of these execution times is the makespan
given in Equ. (3). The schedules resulting from Algorithm 2 do not only differ for different frequencies, but can
also differ from the schedules resulting from a time-oriented scheduling for the same frequency, which is illustrated
by the experimental evaluation in Section 5. For the energy-oriented scheduling, the frequency adaptation for a
schedule can be especially beneficial, since typically larger variations of the execution times of the individual
processors result from Algorithm 2, giving a larger potential for frequency adjustments. This will be done in
Section 4.

7

Algorithm 2 Energy-oriented scheduling algorithm to generate an E-schedule.
1: procedure E-SCHEDULE . using energy consumption as objective function
2: Select frequency f ∈ F with scaling factor s;
3: Sort tasks {x1, . . . , xn} such that Ex1(s) ≥ Ex2(s) ≥ . . . ≥ Exn(s);
4: for (j = 1, . . . , n) do
5: Assign xj to processor p with E[1:j−1](p, s) minimal, see Equ. (8);
6: end for
7: denote the resulting assignment function as A;
8: Compute makespan TA

total(s) = max1≤p≤pmax
T[1:n](p, s), see Equ. (3);

9: Compute total energy EA
total(s) according to Equ. (6);

10: end procedure

Although the resulting makespan and overall energy consumption can be very different, the following observation
concerning the monotonicity can be shown when comparing two different assignment functions A1 and A2 for a
task set T :

Lemma 1 If TA1

total(s) < TA2

total(s) for a given number of identical processors and a fixed scaling factor s, then
EA1

total(s) < EA2

total(s).

Proof 1 For a fixed scaling factor s, we have:

EA1

total(s) =
∑
p

(
EA1

acc(p, s) +
(
TA1

total(s)− T
A1
acc(p, s)

)
· Pstat

)
according to Equ. (6). Moreover the equality∑

p

EA1
acc(p, s) =

∑
x∈T

Ex(s) =
∑
p

EA2
acc(p, s),

holds, which expresses that the sum of the energy consumptions of the active computation time of all processors
p ∈ {1, . . . , pmax} is identical for A1 and for A2, since the same tasks are used and all processors are identical.
Similarly, summing up the task execution times of all processors is identical for A1 and A2∑

p

TA1
acc(p, s) =

∑
x∈T

Tx(s) =
∑
p

TA2
acc(p, s).

From the two equations and the assumption TA1

total(s) < TA2

total(s), the following estimation can be derived:

EA1

total(s) =
∑

pEx(s) + pmax · TA1

total(s) · Pstat −
∑

p T
A1
acc(p, s) · Pstat

=
∑

pE
A2
acc(p, s) + pmax · TA1

total(s) · Pstat −
∑
TA2
acc(p, s) · Pstat

<
∑

pE
A2
acc(p, s) + pmax · TA2

total(s) · Pstat −
∑
TA2
acc(p, s) · Pstat

= EA2

total(s)

Thus, an assignment function with a smaller makespan also leads to a smaller energy consumption for a fixed
scaling factor. This result expresses that the larger idle times for schedules with a larger makespan induces more
static energy consumption for the idle times and therefore a larger overall energy consumption. However, this does
not take frequency adaptation into account, which could be employed to fill the idle times with active computations.
Moreover, the following lower bounds for the total execution time and the total energy consumption can be shown:

Lemma 2 For a fixed scaling factor s, the value

Tlow(s) =
∑
x∈T

Tx(s)/pmax (9)

8

Algorithm 3 Frequency adaptation for a given T-schedule or E-schedule.
1: procedure FREQUENCYADAPTATION . adaptation of frequency of individual processors
2: Let A be a given T-schedule or E-schedule generated by Algorithm 1 or 2 for scaling factor s;
3: Let TA

total(s) and EA
total(s) be the makespan and energy consumption of A;

4: Let pe be the makespan processor, i.e., T[1:n](pe, s) = TA
total(s);

5: for (each p 6= pe) do
6: Select frequency for p with (TA

total(s)− TA
acc(p, s)) minimal;

7: end for
8: end procedure

is a lower bound for the achievable makespan and

Elow(s) =
∑
x∈T

Ex(s) (10)

is a lower bound for the total energy consumption.

Proof 2 For a fixed scaling factor s, the total amount of sequential execution time is
∑

x∈T Tx(s), which can be
distributed to pmax processors. Thus, Tlow(s) is the lower bound for the makespan given in Equ. (3), which can
be achieved if the tasks can be perfectly distributed among the processors such that no idle times occur. Similarly,
Elow(s) is the minimum energy consumption which results if no idle times consuming static power consumption
occur. In this case, Equ. (6) simplifies to Equ. (10).

Both lemmas show that the idle times are a crucial issue for the makespan and the energy consumption of a
schedule.

4 Multicriteria decision problem

In this section, we broaden the optimization problem from Section 3 and consider a multicriteria decision problem
which addresses time and energy together and whose solution combines scheduling algorithms and different ways
of selecting the operational frequency, the result of which are called schedule execution modes.

4.1 Schedule execution modes

Algorithm 1 and Algorithm 2 are used to construct schedules AT
f and AE

f for all operational frequencies f ∈ F
available. Usually, for different operational frequencies f , different schedules AT

f as well as AE
f result due to

the non-linear dependence of the execution time of the tasks on the frequencies. The different schedules lead to
different makespans and different energy consumptions.

There is the possibility to execute a schedule AT
f or AE

f generated for a specific operational frequency f with
scaling factor s with a different operational frequency f̃ with scaling factor s̃. The usage of a different operational
frequency f̃ does not change the task assignment of AT

f or AE
f to the processors, but may lead to a different

makespan TAf

total(s̃) and a different energy consumption EAf

total(s̃). We denote the resulting task executions as
schedule execution modes. For each schedule AT

f or AE
f generated by Algorithm 1 or Algorithm 2, there exist

nF − 1 additional schedule execution modes, one for each f̃ ∈ F , f̃ 6= f . Additionally, frequency adaptation
of the individual processors can be applied as described in Subsection 4.2, again leading to additional schedule
execution modes.

4.2 Frequency adaptation

After a schedule has been computed by Algorithm 1 or 2 using frequencies f and f̃ as described above, the
frequencies of the individual processors can be adjusted to reduce the resulting energy consumption. Let pe be the

9

makespan processor, which has the largest accumulated execution time, i.e., T[1:n](pe, s) = TAtotal(s) for scaling
factor s with corresponding operational frequency f . The processors p 6= pe exhibit idle times T[1:n](pe, s) −
T[1:n](p, s) during which static power is consumed. The idle time of a processor p 6= pe may be reduced by using a
smaller operational frequency f̃ < f for p and by executing the tasks assigned to p with this frequency. However,
f̃ should not be too small, since the overall makespan should not be increased, i.e., f̃ should be selected such
that T[1:n](pe, s) ≥ T[1:n](p, s̃) and that f̃ minimizes T[1:n](pe, s) − T[1:n](p, s̃) among all frequencies available.
Algorithm 3 shows the pseudocode of the frequency adaptation.

Since the usage of a smaller operational frequency usually leads to a smaller energy consumption, the frequency
adaptation may lead to a reduction of the energy consumption without increasing the makespan. The potential of
frequency adaptation increases with the operational frequency f selected by Algorithm 1. If f is the smallest oper-
ational frequency available, there is no potential for frequency adaptation. However, if f is large, more frequencies
f̃ are available and for each processor p it can be tested whether a smaller energy consumption may result. The
potential for savings of energy consumption is indicated by the modified lower bounds shown in the following
lemma:

Lemma 3 For the scheduling with frequency adaptation of the individual processors with available scaling factors
S = {s1, . . . , snF

}, the value
Escal

low =
∑
x∈T

min
s∈S

Ex(s) (11)

is a lower bound for the overall energy consumption.

Proof 3 The minimum energy consumption of a single task x ∈ T under frequency scaling is mins∈SEx(s),
Thus,

∑
s∈T mins∈SEx(s) is the minimum total energy consumption under frequency scaling, if every task can be

executed with an idividual frequency setting.

The Lemma 3 hints at a potential energy improvement for schedule execution modes due to frequency scaling.
Algorithm 3 systematically improves the energy values resulting in additional schedule execution modes. The
different schedule execution modes can be represented in the criterion space introduced in the next Subsection 4.3
according to their makespan and energy consumption There is one entry for each f̃ ∈ F , f̃ 6= f .

4.3 Decision problem and criterion space

The problem of finding an optimal schedule execution mode in the sense defined in Subsection 3.1 can be consid-
ered as a multicriteria decision problem considering both execution time and energy consumption together. For
this problem, a decision space and a criterion space are defined as follows:

• The decision space represents all possible executions of the set of tasks T on pmax processors with individ-
ual frequency scaling.

• The feasible setA is a set of solutions which is a subset of the decision space that contains the task executions
represented by a schedule execution mode AT

f or AE
f . The provision of schedule execution modes has been

described in Subsections 4.4 and 4.5.

• The criterion (or objective) space is the image of the decision space under the objective function mapping,
which are the makespan T and the energy consumption E. The criterion space can be represented by a
diagram in which the x-axis denotes the makespan and the y-axis denotes the energy consumption. Each
feasible schedule execution mode AT

f or AE
f is represented by a criterion value according to its makespan

and its energy consumption.

• The image ofA under the mappings T : A → R and E : A → R form the feasible set in the criterion space.

The set of feasible solutions A is built up according to Section 4.1 and 4.2 and its image in the criterion space
is determined, such that a set of efficient solutions with respect to the makespan and the energy consumption can

10

A
en

er
g
y
 e

ff
o
rt

 [
J
]

execution time [sec]
B

B: minimum execution time

A: minimum energy consumption

Figure 4: Illustration of the two-dimensional criterion space with the criterion values execution time and energy
effort of schedule execution modes. There is a separate point for each schedule execution mode. The red points
represent Pareto optimal points as defined in Definition 1.

be extracted. The definition of efficient solutions in the decision space and the related definition of nondominated
points in the criteria space is given in Subsection 4.4.

An illustration of the two-dimensional criterion space (TA, EA) is given in Fig. 4, in which the horizontal axis
corresponds to the execution time TA and the vertical axis corresponds to the energy consumption EA. Points
in the criterion space (TA, EA) represent the criterion value for the specific schedule execution modes appraised
with the criterion. The points to the left are better, since they correspond to a lower execution time. Lower points
are better, since they correspond to the schedule execution modes with a lower energy consumption. Efficient
alternatives, see Definition 1 in Section 4.4, are in the lower left corner and are depicted as red points. However,
there is typically no best solution, since there may exist solutions with a lower execution time but a higher energy
consumption and vice versa. The next Subsection 4.4 describes the multicriteria decision problem for time and
energy and defines the notion of efficient (also called Pareto optimal) schedule execution modes.

4.4 Selection process

From the set of all schedule execution modes of all schedules AT
f or AE

f , we want to select those modes that lead
to a best solution defined according to some optimization criterion, such as a minimum makespan or energy con-
sumption or a combination of these. Not all schedule execution modes are candidates for the best solution. In fact,
we can eliminate some of the schedule execution modes, since there are other modes that have a lower execution
time and/or a smaller energy consumption in the criterion space. Next, we define efficient and nondominated
schedule execution modes according to the general definition given in [3].

Definition 1 A schedule execution mode A is called efficient (also called Pareto optimal), if there is no other
schedule execution mode Ã such that T Ã

total < TA
total andEÃ

total < EA
total. IfA is efficient, its entry (TA

total, E
A
total) ∈

R × R in the criterion space is called nondominated point. The set of efficient schedule execution modes is de-
noted by Aeff. The set of all nondominated points is called the nondominated set. A schedule execution mode A1

dominates a schedule execution mode A2, if TA1

total ≤ T
A2

total and EA1

total ≤ E
A2

total.

Thus, for the elements inAeff there exists no alternative that has both a smaller execution time and a smaller energy
consumption. The set of efficient solutions is sometimes also called Pareto set [3]. In Figure 4, the nondominated
points are depicted in red, while the black points are points that are dominated by other points and therefore do not
need to be considered further. All red points together represent the Parato set. All schedule execution modes that
are not efficient can be excluded from the search for an optimal solution. For the computation of nondominated
points and, thus, efficient schedule execution modes, we propose Algorithm 4.

The Algorithm 4 computes the set of efficient schedule execution modes, i.e., schedule execution modes with
nondominated points in the criterion space, by first sorting all schedule execution modes according to increasing

11

Algorithm 4 Computation of the set of efficient schedule execution modes Aeff.
1: procedure SELECTSCHEDULE . Select nondominated schedule execution modes
2: Let A with | A |= m be the set of feasible schedule execution modes generated;
3: Sort A according to increasing execution time such that TA1

total ≤ . . . ≤ T
Am

total;
4: Aeff = {A1};
5: Emin = EA1

total;
6: for (i = 2, . . . ,m) do
7: if (EAi

total ≤ Emin) then
8: Aeff = Aeff ∪ {Ai};
9: Emin = EAi

total;
10: end if
11: end for
12: end procedure

execution time and then traversing all schedule execution modes in the order of increasing execution time and
deciding whether the next schedule execution mode is dominated by any of the schedule execution modes already
visited. The runtime of this algorithm is 0(m · logm). The following lemma shows that Algorithm 4 is correct in
the sense that it produces the efficient solutions.

Lemma 4 If Ai is not included in Aeff by Algorithm 4, then Ai is dominated by some Aj ∈ Aeff with j < i.

Proof 4 If Ai is not included in Aeff, it is EAi

total > Emin. Emin is caused by some Aj , j < i, i.e., Emin =

E
Aj

total, Aj ∈ Aeff. Since j < i, it is TAj

total ≤ TAi

total due to the sorting of the schedule execution modes. Thus it is
T

Aj

total ≤ T
Ai

total and EAj

total < EAi

total, i.e., Aj dominates Ai.

Thus, Aeff contains only solutions that are efficient. Moreover, all efficient schedule execution modes are included
in Aeff, since a schedule execution mode Ai is only excluded if another schedule execution mode Aj dominates
Ai, i.e., if Ai is not efficient.

4.5 Schedule selection workflow

The procedure for determining efficient solutions for the multicriteria decision problem given in Section 4.4 is now
formulated as schedule selection workflow. The workflow consists of several steps, including input specification,
cost calculation, schedule construction and adaptation, and schedule selection according to a given objective func-
tion. The workflow is meant to provide a guideline for selecting an optimal schedule according to a given objective
function. The steps to be executed are the following:

(1) Input specification: The specific scheduling problem is defined by a specific set T of tasks to be scheduled
and the hardware specification including the maximum number pmax of processors and the set F of nF
frequencies supported by DVFS. The task set fulfills the property given in Section 3.1.

(2) Cost determination: For each task x ∈ T , the cost information for the specific scheduling problem is
determined. For x ∈ T , the cost for frequency scaling factor s is the execution time Tx(s) and/or the energy
consumption Ex(s). The way of determining the costs can be different, including the use of a theoretical
computational model, physical measurements, model-based prediction, or source code analysis [11]. The
cost information is stored in a table, giving the execution time Tx(s) and the energy consumption Ex(s) for
all x ∈ T and f ∈ F with corresponding scaling factor s.

(3) Schedule construction: For each available frequency f ∈ F and each number p of processors, the schedul-
ing algorithms Algorithm 1 and Algorithm 2 from Section 3 are used to construct schedules AT

f,p for time
(T-schedule) resulting from Algorithm 1 and AE

f,p for energy (E-schedule) resulting from Algorithm 2. The
total number of schedules constructed is N1 = pmax · nF · 2. For each of these schedules A, a makespan
TA
total(s) and an overall energy consumption EA

total(s) is computed according to Equs. (3) and (6) where s
is the corresponding scaling factor to the frequency f used.

12

(4) Schedule execution modes: Each scheduleA = AT
f,p orA = AE

f,p constructed is executed with frequency f
and with any other frequency f̃ 6= f . This results in makespan TA

total(s̃) and energy consumption EA
total(s̃)

where s̃ is the corresponding scaling factor to f̃ . The resulting schedules executed with frequency f̃ are
called schedule execution modes and are denoted as Af,p(f̃) in the following. For each of the N1 schedules
constructed, nF different costs result, which are stored in a table, i.e., N2 = N1 · nF schedule execution
modes are obtained.

(5) Frequency adaptation: For each schedule Af,p constructed in step (3) and each schedule execution mode
Af,p(f̃) from step (4), frequency adaptation is applied to the individual processors such that the overall
makespan is not increased and the energy consumption of the individual processors is decreased as far as
possible. The resulting adapted schedule execution mode for Af,p(f̃) is denoted as Aadapt

f,p (f̃). By the
adaptation, additional N2 schedule execution modes are generated, resulting in N3 = N2 · nF schedule
execution modes, each represented by one dot in the criterion space diagram.

(6) Determination of nondominated elements: Steps (3), (4), (5) provide a set of schedule execution modes

A = {Af,p(f̃)| for all p, f, f̃} ∪ {Aadapt
f,p (f̃)| for all p, f, f̃}.

The set A is the set of alternatives from which efficient solutions are to be chosen. The criteria for selecting
an efficient solution are the cost information for time TA

total and for energyEA
total for eachA ∈ A. The subset

Aeff ⊆ A denotes the set of efficient schedule execution modes, which are defined to be all nondominated
A ∈ A with respect to the criterion space {(TA

total, E
A
total)|A ∈ A}. Only the schedules in Aeff need to

be considered for the following final schedule selection, since for each schedule A /∈ Aeff there exists a
schedule A′ ∈ Aeff which provides a better solution than A.

(7) Schedule selection: Given a specific optimization problem, such as minimum makespan or minimum en-
ergy consumption, the optimal schedule execution modes are selected from the set of efficient schedule
execution modes Aeff by reducing the set to the specific optimization criteria. The result are several sets
Aopt

1 , . . . ,Aopt
m ⊂ Aeff ⊂ A of optimal solutions each one for a specific optimization criterion. When con-

sidering the makespan in isolation, the schedule A ∈ Aeff with the minimum makespan is selected. When
considering the energy consumption in isolation, the schedule A ∈ Aeff with the minimum energy con-
sumption is selected. In these two cases, a single schedule remains to be considered. When considering a
combination of makespan and energy consumption, several schedules A ∈ Aeff may need to be selected to
avoid missing the optimal solution.

(8) Schedule execution: For a given scheduling problem defined in steps (1) and (2), the task program is
executed according to the scheduling solutions pre-selected in step (7). If more than one schedule remains
from step (7), the resulting makespans and energy consumptions are compared and the optimal solution is
selected. Since the number of potential processors is included in every step (2)-(7), the optimal scheduling
solution can be chosen for a specific number of processors.

Given the set of input tasks and the cost information from steps (1) and (2), the steps (3) – (6) provide the data basis
for the selection of a solution of a specific optimization problem. Once the data is provided, step (7) can be applied
several times with different optimization goals, which can be minimum execution time or energy consumption, but
also a combination of the two. Several efficient solutions in the sense of Definition 1 may exist, which will be
illustrated by the experimental evaluation in Section 5. The experimental evaluation includes an investigation of
the dependence of solutions on the operational frequency and the number of processors used, see Section 5.3.

5 Experimental evaluation

In this section, we investigate the performance and energy behavior of T- and E-schedules resulting from Algorithm
1 and 2 and compare different schedule execution modes with respect to their energy-time behavior. For the
experimental evaluation, we use runtime and energy measurements that have been obtained by executing the SPEC
benchmark programs on an Intel Core i7-4770 with Haswell architecture.

13

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

sj
en

g

pe
rlb

en
ch

gr
om

ac
s

go
bm

k

m
ilc

hm
m

er

na
m

d

ca
lc

ul
ix

bz
ip

2

sp
hi

nx
3

de
al

II

lib
qu

an
tu

m

w
rf

as
ta

r

le
sl

ie
3d

po
vr

ay

ca
ct

us
A

D
M

ga
m

es
s

xa
la

nc
bm

k

G
em

sF
D

T
D

so
pl

ex

m
cf

bw
av

es

gc
c

ze
us

m
p

sp
ec

ra
nd

processors

ex
ec

ut
io

n
tim

e
[s

ec
]

Time of time−oriented schedule (SPEC for 8 processors)

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

sj
en

g

w
rf

bw
av

es pe
rlb

en
ch

sp
hi

nx
3

G
em

sF
D

T
D

gr
om

ac
s

m
ilc

ca
lc

ul
ix

na
m

d

po
vr

ay

lib
qu

an
tu

m

de
al

II

ca
ct

us
A

D
M

hm
m

er

go
bm

k

sp
ec

ra
nd

xa
la

nc
bm

k

m
cf

so
pl

ex

as
ta

r

le
sl

ie
3d

bz
ip

2

gc
c

ga
m

es
s

ze
us

m
p

processors

ex
ec

ut
io

n
tim

e
[s

ec
]

Time for energy−oriented schedule (SPEC for 8 processors)

Figure 5: Execution time: Schedules from time-oriented scheduling (left) and energy-oriented scheduling (right)
for SPEC benchmarks with Haswell timings for 3.4 GHz.

5.1 Experimental setting

For the experiments, we consider a set of basic tasks for which real measured data are taken as costs. As basic
tasks we use the SPEC CPU2006 benchmarks consisting of integer and floating-point benchmarks, which are real
programs covering a large variety of application areas. The suite has been developed with the goal to assess the
performance of desktop systems and single-processor servers. The programs are sequential C, C++, or Fortran pro-
grams. The integer benchmarks include a compression program (bzip2), a C compiler (gcc), a video compression
program, a chess game, or an XML parser. The floating point benchmarks include several simulation programs
from physics, a speech recognition program, a ray-tracing program (povray), as well as programs from numerical
analysis and a linear programming algorithm (soplex). More information about SPEC CPU2006 can be found in
[7] and www.spec.org.

The performance data have been measured on an Intel Core i7-4770 with the Haswell architecture, which supports
DVFS with 15 different operational frequenciesF = {0.8, 1.0, 1.2, 1.4, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7, 2.8, 3.0, 3.2, 3.4},
given in GHz. The benchmarks have been compiled with gcc 4.7.2. The programs from the SPEC benchmarks
have been chosen, since they reflect, by design, the performance, energy, and execution time behavior of real-world
programs. For the energy measurements, the likwid tool-set [30] has been used, see [22] for a detailed descrip-
tion of the measurement technique and a validation of the energy consumption data obtained. Based on these
measurements, Pstat = 5.5W has been determined using the model from [20] with linear regression.

14

1 2 3 4 5 6 7 8
 0

 5000

10000

15000

20000

sj
en

g

pe
rlb

en
ch

gr
om

ac
s

go
bm

k

m
ilc

hm
m

er

na
m

d

ca
lc

ul
ix

bz
ip

2

sp
hi

nx
3

de
al

II

lib
qu

an
tu

m w
rf

as
ta

r

le
sl

ie
3d

po
vr

ay

ca
ct

us
A

D
M

ga
m

es
s

xa
la

nc
bm

k

G
em

sF
D

T
D

so
pl

ex

m
cf bw

av
es

gc
c

ze
us

m
p

sp
ec

ra
nd

processors

en
er

gy
 [J

]

Energy of time−oriented schedule (SPEC for 8 processors)

1 2 3 4 5 6 7 8
 0

 5000

10000

15000

20000

sj
en

g

w
rf

bw
av

es

pe
rlb

en
ch

sp
hi

nx
3

G
em

sF
D

T
D

gr
om

ac
s

m
ilc

ca
lc

ul
ix

na
m

d

po
vr

ay

lib
qu

an
tu

m

de
al

II

ca
ct

us
A

D
M

hm
m

er

go
bm

k

sp
ec

ra
nd

xa
la

nc
bm

k

m
cf

so
pl

ex

as
ta

r

le
sl

ie
3d

bz
ip

2

gc
c

ga
m

es
s

ze
us

m
p

processors

en
er

gy
 [J

]

Energy of energy−oriented schedule (SPEC for 8 processors)

Figure 6: Energy consumption: Schedules from time-oriented scheduling (left) and energy-oriented scheduling
(right) for SPEC benchmarks with Haswell timings using frequency 3.4 GHz.

5.2 Scheduling experiments

First, we show two example schedules and their time and energy behavior. Figure 5 shows two bar diagrams
of schedules with execution times resulting from assigning the SPEC benchmark programs to eight processors
operating at the largest frequency fmax = 3.4 GHz using a T-schedule from Algorithm 1 (left) and an E-schedule
from Algorithm 2 (right). Figure 6 shows the corresponding energy consumption of the individual processors
for the same schedules as in Fig. 5. From the figures it can be seen that the time-oriented scheduling leads to
a quite even distribution of the execution times, whereas the energy-oriented scheduling is directed towards an
even distribution of the energy values. It can be observed from Fig. 5 (right) that the energy-oriented scheduling
yields a more uneven distribution of the execution times resulting in differently large idle times of the processors.
Similarly, the time-oriented scheduling yields a more uneven distribution of the energy values Fig. 6 (left)).

Scheduling without adaptation Algorithm 1 and 2 provide 15 schedules each, one for each f ∈ F selected. The
experiments have shown that the assignment functionsA are actually different for different f . In our tests, we have
then used all 15 schedules A each calculated for one f with different operational frequencies f̄ 6= f according to
Section 4.1. This results in 225 schedule execution modes with possibly different values for the makespan and the
energy consumption for a fixed number of processors and a fixed task set. Figure 7 depicts the pairs of makespan
and total energy resulting from the execution of the SPEC tasks on eight processors according to the 15 different
schedules (T- schedule left, E-schedule right), each with 15 different operational frequencies f̄ . The horizontal
axis gives the makespan of the schedule execution modes computed and the vertical axis shows the corresponding

15

energy consumption. Each schedule execution mode contributes one dot in the criterion space. The corresponding
operational frequencies are given as numbers in the diagrams next to the dots. It can be observed that the overall
shape of the diagrams exhibits a u-shape, where each cluster of dots forms a line (from lower left upwards to the
right) which belongs to one of the operational frequencies. In both diagrams, the frequencies between 1.5 and
2.1 GHz form a cluster with similar makespan and energy consumption. When comparing the left and the right
diagram, the makespan as well as the energy consumption are higher when executing the tasks according to the
energy-oriented schedules, which is indicated by dots with positions that are higher and more to the right. Thus,
when looking for the schedule with the smallest makespan or the lowest energy consumption, these can be found
in the left diagram. The following minimum values are obtained:

• The smallest makespan of 1008.7 seconds results for a T-schedule from Algorithm 1 with f = 2.3 GHz
selected and using operational frequency f̄ = 3.4 GHz. The corresponding energy consumption is 149253
Joule.

• The smallest energy consumption of 120155 Joule results for a T-schedule from Algorithm 1 with f = 0.8
GHz selected and using operational frequency f̄ = 1.5 GHz. The corresponding makespan is 1542.6 seconds.

In contrast for the energy-oriented schedules (right diagram):

• The smallest makespan of 1028.7 seconds results for an E-schedule from Algorithm 2 with f = 1.4 GHz
selected and using operational frequency f̄ = 3.4 GHz.

• The smallest energy consumption of 122566 Joule results for an E-schedule from Algorithm 2 with f = 1.4
GHz selected and using operational frequency f̄ = 1.5 GHz.

These numbers show that the schedule with the lowest makespan results for the highest operational frequency 3.4
GHz and the lowest energy consumption results for a medium frequency 1.4 GHz for both classes of schedules.
Interestingly, the best solutions do not stem from the schedules obtained for an f ∈ F selected and using the
same frequency f = f̄ as operational frequency for the execution of the task program. Also it is interesting that
the energy-oriented schedules lead to higher energy consumptions than the time-oriented schedules. This can be
explained by the fact that idle times in the schedule contribute to the overall energy consumption proportionally
to the value of Pstat, see Equ. (6), and that the energy-oriented schedules exhibit higher idle times, as it was
illustrated by the examples in Figure 6.

Scheduling with adaptation Next we study the effect of frequency scaling described in Algorithm 3, see Sub-
section 4.2, which corresponds to step (5) in the schedule selection process, see Subsection 4.5. The diagrams in
Fig. 7 depict the makespan-energy pairs for the schedules without adaptation, i.e., all processors use the same fre-
quency. By applying the frequency adaptation for the individual processors to hide idle times as much as possible
without increasing the overall makespan, a significant further reduction in the energy consumption can be obtained.
This can be seen in Fig. 8, which zooms into the lower left rectangle of Fig. 7, where the efficient solutions can
be found, and additionally depicts the makespan and the energy consumption of the schedules with individual
frequency scaling (brown dots). The decrease in the energy consumption is especially large for the E-schedules.
This is due to the fact that the energy-oriented scheduling leads to larger variations in the execution times of the
individual processors, leaving more potential for the scaling. The following observations can be made for schedule
execution modes with adaptation according to Algorithm 3.

• For the T-schedules generated by Algorithm 1 with frequency adaptation, the smallest energy consumption
of 117555 Joule is obtained for a schedule with f = 2.3 GHz selected using operational frequency f̄ = 2.3
GHz. The corresponding makespan is 1438.9 seconds.

• For the E-schedules generated by Algorithm 2 with frequency adaptation, the smallest energy consumption
of 119038 Joule results for a schedule with f = 1.0 GHz using operational frequency f̄ = 2.3 GHz. The
corresponding makespan is 1517.1 seconds.

16

1000 1500 2000 2500 3000 3500 4000 4500

makespan [sec]

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

to
ta

l e
ne

rg
y

[J
]

time scheduling (makespan,total energy)

0.8

1.0

1.21.4

1.5/1.7/1.9/2.1
2.3

2.5

2.7

2.8

3.0
3.2

3.4

1000 1500 2000 2500 3000 3500 4000 4500

makespan [sec]

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

to
ta

l e
ne

rg
y

[J
]

energy schedule (makespan,total energy)

0.8

1.0

1.21.4

1.5/1.7/1.9/2.12.3

2.5
2.7

2.8

3.0

3.2

3.4

Figure 7: Pairs of (makespan, energy consumption) resulting from different schedules using different frequencies
for time-oriented scheduling (left) and energy-oriented scheduling (right) for SPEC benchmarks on eight proces-
sors.

The results show that the time-oriented scheduling still leads to schedule execution modes with smaller energy con-
sumption, although the difference between T-schedules and E-schedules has been reduced. When the optimization
of both, the makespan and the energy consumption, is the goal of scheduling, then the dots depicted in the left
lower rectangle of Fig. 8 left or right are the efficient solutions serving as good candidates.

The preceding experiments have used eight processors. Similar results have been obtained for other numbers of
processors and other numbers of tasks. In general, it can be observed that the resulting idle times are smaller if the
number of tasks is large compared to the number of processors, leaving less room for the frequency scaling of the
individual processors, especially for the time-oriented scheduling.

5.3 Dependence on the frequency

In this subsection, we investigate and compare the makespan and energy consumption of schedules in dependence
of the operational frequency. Figure 9 compares schedules that have been obtained by Algorithm 1 (T-schedule)
and Algorithm 2 (E-schedule) for the SPEC benchmarks on 12 processors. The SPEC benchmark timings for
3.4 GHz have been used and the schedules resulting from Algorithm 1 and Algorithm 2 are tested for different
operational frequencies. The left diagram shows the resulting makespan for the different frequencies. Fig. 10
shows the same information for 8 processors.

In Figures 9 and 10, it can be observed, that Algorithm 1 produces a schedule which has a smaller makespan than
the schedule from Algorithm 2 for all frequencies. This could be expected, since Algorithm 1 uses the makespan

17

1000 1100 1200 1300 1400 1500 1600 1700

makespan [sec]

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

to
ta

l e
ne

rg
y

[J
]

10 5 time-oriented with adaptation

1.5/1.7/1.9/2.1

2.3

2.5

2.7

2.8

3.0

3.2

3.4

1000 1100 1200 1300 1400 1500 1600 1700

makespan [sec]

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

to
ta

l e
ne

rg
y

[J
]

10 5 energy-oriented with adaptation

1.5/1.7/1.9/2.1

2.3

2.5

2.7
2.8

3.0

3.2

3.4

Figure 8: Energy improvement by frequency adaptation for time-oriented (left) and energy-oriented (right) schedul-
ing for the most relevant operational frequencies.

as objective function, whereas Algorithm 2 used the overall energy consumption as objective function. The same
makespans result if frequency adaptation is used for the individual processors, since the frequency adaptation
performed by the two algorithms does not effect the makespan processor. The right diagrams of Figures 9 and 10
show the resulting energy consumption of the schedules with and without frequency adaptation.
Without frequency adaptation, the schedule produced by Algorithm 1 always has a smaller energy consumption
than the corresponding schedule produced by Algorithm 2 with the same frequency selected. This could be ex-
pected according to Lemma 1, which states that a smaller makespan leads to a smaller energy consumption if no
frequency adaptation is used and since Algorithm 1 produces schedules with smaller makespans than Algorithm
2. However, taking frequency adaptation into account, the schedule produced by Algorithm 2 leads to a smaller
energy consumption than the schedule produced by Algorithm 1 for larger operational frequencies. This can be ex-
plained by the fact that larger frequencies lead to more potential for frequency adaptation of the different processors
and thus more energy saving.
For smaller operational frequencies the schedule produced by Algorithm 1 has a slightly smaller energy consump-
tion than the schedule produced by Algorithm 2. For f = 0.8 GHz, the schedule with and without adaptation have
the same energy consumption, since there is no possibility for reducing the frequency any further.

5.4 Dependence on the number of processors

We now consider the dependence of the makespan and the energy consumption of schedules generated by Algo-
rithms 1 (T-schedule) and Algorithm 2 (E-schedule) on the number of processors employed, assuming that at most

18

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.5 1 1.5 2 2.5 3 3.5

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
e

c
]

frequency [GHz]

Makespan resulting from T-schedule and E-schedule, 12 processors

TIME scheduling
ENERGY scheduling

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 0.5 1 1.5 2 2.5 3 3.5

e
n

e
rg

y
 [

J
o

u
le

]

frequency [GHz]

Energy consumption resulting from T-schedule and E-schedule, 12 processors

T-schedule no adaptation
T-schedule with adaptation

E-schedule no adaptation
E-schedule with adaptation

Figure 9: Comparison of time-oriented (T-schedule) and energy-oriented (E-schedule) scheduling with and without
frequency adaptation for 12 processors: Left: resulting makespan for different frequencies. Right: resulting energy
consumption for different frequencies.

pmax processors are available. Typically, the execution time decreases with the number of processors employed,
but also there usually exists a saturation point of the number of processors for which the lowest possible execution
time is provided, such that for a larger number than the saturation point a higher execution time results. For the
energy consumption the growth behavior is different. For a growing number of processors, there is usually a higher
overall power consumption. If the savings in execution time due to parallelism are large enough, then there is also
a saving in energy. But if the savings of execution time is too small to compensate the higher power consumption,
then the energy consumption might increase with the number of processors. Thus, there can also be an energy sat-
uration point of the number of processors at which the decreasing behavior of the energy consumption is changed
into an increasing behavior. However, this saturation points for the energy consumption can be different from the
saturation points for the execution time.

Figure 11 illustrates the described behavior using the 26 SPEC benchmarks as tasks with measured execution
times for 3.4 GHz for the makespan (left) and for the energy consumption (right), both for T-schedules and E-
schedules without and with frequency adaptation. For the makespan, the results are similar as for the dependence
on the frequency: T-schedules produced by Algorithm 1 lead to smaller makespans than E-schedules produced by
Algorithm 2, until the saturation point at 14 processors is reached. In Figure 11 (left), it can be seen that for more
than 14 processors, no further reduction in execution time will be achieved if more processors are employed and
that T-schedules and E-schedules lead to the same makespan. In Figure 11 (right), it can be seen that for the energy
consumption without frequency adaptation, T-schedules are better than the corresponding E-schedules for up to
16 processors. Beyond 16 processors, T-schedules and E-schedules cause the same energy consumption and the
energy consumption increases if the number of processors is increased, that means the saturation point of the energy
consumption is reached. With frequency adaptation, E-schedules have a smaller energy consumption than the
corresponding T-schedules between 2 and 12 processors and T-schedules have a smaller energy consumption than

19

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.5 1 1.5 2 2.5 3 3.5

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
e

c
]

frequency [GHz]

Makespan resulting from T-schedule and E-schedule, 8 processors

TIME scheduling
ENERGY scheduling

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 190000

 200000

 0.5 1 1.5 2 2.5 3 3.5

e
n

e
rg

y
 [

J
o

u
le

]

frequency [GHz]

Energy consumption resulting from T-schedule and E-schedule, 8 processors

T-schedule no adaptation
T-schedule with adaptation

E-schedule no adaptation
E-schedule with adaptation

Figure 10: Comparison of time-oriented (T-schedule) and energy-oriented (E-schedule) scheduling with and with-
out frequency adaptation for 8 processors: Left: resulting makespan for different frequencies. Right: resulting
energy consumption for different frequencies.

E-schedules between 14 and 18 processors. For more than 18 processors, T-schedules and E-schedules produce
very similar energy consumption.

Similar qualitative observations can be made for a larger number of tasks. Figure 12 shows the same information
as Figure 11, now using 260 tasks with different numbers of processors. The tasks are obtained by generating 10
identical tasks for each of the 26 SPEC benchmarks. It can be observed that T-schedules lead to smaller makespans
than the corresponding E-schedules for up to 160 processors. Beyond 160 processors, T-schedules and E-schedules
have the same makespan, and the makespan is not reduced further if more processors are employed, showing that
160 processors is the saturation point for the makespan. Accordingly, without frequency adaptation, the energy
consumption of T-schedules is smaller than the energy consumption of the corresponding E-schedules for up to 160
processors. Again, frequency adaptation has a larger effect for E-schedules than for T-schedules and for up to 128
processors, the resulting overall energy consumption for E-schedules is smaller than the energy consumption of
the corresponding T-schedules. Then the situation changes and between 144 and 192 processors T-schedules with
frequency adaptation have a slightly smaller energy consumption than the corresponding E-schedules. Beyond 192
processors, T-schedules and E-schedules lead to very similar energy consumption with adaptation, and the energy
consumption increases with the number of processors, showing an energy saturation point at 192 processors.
Comparing Figures 11 and 12, it can be observed that the different T-schedules and E-schedules with and without
frequency adaptation show a very similar qualitative behavior. This can also be observed for other numbers of
tasks. Especially, if the number of tasks per processor is very small, the makespan and energy consumption of
T-schedules and E-schedules with and without frequency are very similar.

These observations show that the dependence of the schedule execution modes on the diverse parameters are
quite complex. Thus, our approach to produce a large variety of schedule execution modes and compare their
makespan and energy consumption in the criterion space for finding efficient solutions is a suitable way to handle

20

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
e

c
]

processors

Makespan resulting from T-schedule and E-schedule

T-schedule
E-schedule

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 190000

 200000

 0 5 10 15 20 25 30

e
n

e
rg

y
 [

J
o

u
le

]

processors

Energy consumption resulting from T-schedule and E-schedule

T-schedule no adaptation
T-schedule with adaptation

E-schedule no adaptation
E-schedule with adaptation

Figure 11: Execution time (left) and energy consumption (right) with different number of processors for 26 SPEC
tasks.

this complexity.

6 Related Work

Energy saving is an important topic for HPC system, Cloud infrastructures, and data centers, see [10, 18] for a
review of the state of the art in this area. Efficient architectures and scheduling frameworks have been proposed [32,
31]. Several online scheduling algorithms and resource provisioning techniques have been investigated especially
for a usage in data centers [27, 19]. A survey of energy-cognizant techniques within the scheduler of the operating
system (OS) is given in [33], with an emphasis on DVFS and Dynamic Power Management (DPM), thermal
management and asymmetric multicore designs. However for DVFS, the techniques considered are meant for a
dynamic adjustment of the frequency level during the execution of the applications by the OS. Energy measurement
techniques, energy models and implications for scheduling algorithms have been considered in [22, 20], using
randomly generated task sets for illustration. In this article, extended scheduling algorithms are used and the
performance investigation is based on measured data for execution time and energy consumption.

Energy-efficient scheduling algorithms for sequential tasks have been proposed in [14, 15, 16], assuming different
task dependencies and considering both continuous and discrete speed levels. In particular, the scheduling is
investigated as combinatorial optimization problems, considering the problem of minimizing the makespan with
energy consumption constraint and the problem of minimizing energy consumption with makespan constraint.
Task scheduling and power allocation to tasks are done one after another, assuming that the power assignment can
be done independently from the processor to which a task has been assigned; this is different from our approach,
which assumes that the frequency of an individual processor is not changed during the execution of the task.
Moreover, the focus of the works mentioned above lies on theoretical aspects of the scheduling algorithms, whereas
our results concentrate on the practical implementation using time and energy measurements of real applications.

21

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250 300

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
e

c
]

processors

Makespan resulting from T-schedule and E-schedule

T-schedule
E-schedule

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 1.9e+06

 2e+06

 0 50 100 150 200 250 300

e
n

e
rg

y
 [

J
o

u
le

]

processors

Energy consumption resulting from T-schedule and E-schedule

T-schedule no adaptation
T-schedule with adaptation

E-schedule no adaptation
E-schedule with adaptation

Figure 12: Execution time (left) and energy consumption (right) with the different number of processors for 260
SPEC tasks.

A detailed survey of theoretical aspects of the scheduling of task graphs using different energy models is given
in [1]. The issue of selecting an optimal frequency for DVFS processors to reduce the energy consumption is
addressed in [23]. In particular, it is assumed that the frequency for each task can be changed during its execution.
Based on this assumption, the optimal frequency for each task is determined by a DVFS scheduling algorithm. In
contrast, our approach makes the assumption that each task is executed with a fixed frequency, but different tasks
may use different frequencies when executed on different processors. Two energy-aware scheduling algorithms
for independent tasks have been proposed in [24]. The algorithms schedule tasks to the processors based on
weighted aggregation cost function and then a task migration phase follows. Many other scheduling algorithms for
DVFS environments have been proposed in the literature, see [5, 25, 29, 28]. An earlier version of this article has
concentrated on an experimental evaluation of T-schedules and E-schedules [21].

When executing different tasks simultaneously on different cores of a multi-core system, inferences may occur
due to simultaneous accesses to shared resources, such as shared caches or DRAM memory. The interference
might be quite complex and are therefore difficult to capture by a static scheduling approach as the one proposed
in this article. However, the interference may have an impact on the resulting makespan and energy consumption
measured when executing a schedule on multi-core system and the resulting makespan and energy consumption
measured at runtime could differ from the makespan and the energy consumption assumed by the static scheduling
method. An in-depth analysis of the energy consumption of applications on multi-core systems exploiting the
cache-aware roofline model [8] and using extensions for capturing the energy consumption and energy efficiency
has been presented in [9]. Several power and energy consumption models for the core and the uncore domain of a
multi-core system, also considering DVFS, are derived and are evaluated for matrix multiplication. Models for the
performance, the power consumption and the energy efficiency on GPUs are provided in [17].

The task sets investigated in this article are independent tasks without ready times. Therefore idle times of proces-
sors can occur only after a processor has executed all tasks assigned to it. The situation would be more complex,

22

if ready times for tasks were included. Then other scheduling algorithms would need to be employed to take the
ready times into consideration, see e.g. [2]. If tasks had ready times, idle times could also occur between the exe-
cution of tasks assigned to a processor, in case that the next task to be executed by this processor, is not yet ready.
These additional idle times might offer another possibility for frequency adaptation of the individual processors.

7 Conclusions

This article has considered time-oriented and energy-oriented scheduling algorithms which assign independent
tasks to execution units in a list-scheduling like fashion exploiting a list of tasks sorted according to their execution
time or their energy consumption, respectively. The experiments have shown that the same scheduling algorithms
produces different schedules, when using the same number of execution units and the same set of tasks but different
operational frequencies for measuring the task execution time and energy consumption. Also the T-schedules
resulting from time-oriented scheduling and the E-schedules resulting from energy-oriented scheduling differ from
each other even for the same frequency used for the measurements. Further investigations have concentrated on
the effect when executing the schedules determined with different settings of the operational frequency. First, all
schedules have been executed with all operational frequencies available. Then, the frequency of the individual
processors are adapted to reduce idle times. The resulting execution time and energy consumption of the schedule
executions, called schedule execution modes, have been used as criterion space for a multicriteria decision problem
to optimize both execution time and energy consumption.

The variety of schedule execution modes provide a multitude of different values for the indicators makespan and
energy consumption, even for a fixed set of tasks and a fixed set of processors. The experiments have shown
that there exists a large variation for these indicators, which is best seen in the two-dimensional diagrams of the
criterion space depicting the indicator makespan in the horizontal direction and the indicator energy consumption
in the vertical direction. In the criterion space, the time-optimal solution is the leftmost dot, the energy-optimal
solution is the lowest dot, and the solution having a good but not the optimal values for both indicators can be
found in the leftmost lower rectangle. An interesting result is that the most efficient solutions concerning time and
energy often come from the time-oriented scheduling rather than from the energy-oriented scheduling.

Acknowledgment

This work was performed within the Federal Cluster of Excellence EXC 1075 MERGE Technologies for Multifunc-
tional Lightweight Structures supported by the German Research Foundation (DFG). This work is also supported
by the German Ministry of Science and Education (BMBF), project Self-Adaptation of Time-step-based Simulation
Techniques on Heterogeneous HPC Systems (SeASiTe), number 01IH16012A/B.

References

[1] G. Aupy, A. Benoit, P. Renaud-Goud, and Y. Robert. Energy-Aware Algorithms for Task Graph Scheduling,
Replica Placement and Checkpoint Strategies. In S. U. Khan and A. Y. Zomaya, editors, Handbook on Data
Centers, pages 37–80. Springer, 2015.

[2] J. Blazewicz. Deadline Scheduling of Tasks with Ready Times and Resource Constraints. Inf. Process. Lett.,
8(2):60–63, 1979.

[3] M. Ehrgott. Multicriteria Optimization. Springer-Verlag, 2005.

[4] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and D. Burger. Power challenges may end the
multicore era. Commun. ACM, 56(2):93–102, February 2013.

[5] A. Fanfakh, J.-C. Charr, R. Couturier, and A. Giersch. Energy Consumption Reduction for Asynchronous
Message-passing Applications. J. Supercomput., 73(6):2369–2401, June 2017.

23

[6] A. Fedorova, J.C. Saez, D. Shelepov, and M. Prietol. Maximizing Power Efficiency with Asymmetric Multi-
core Systems. Commun. ACM, 52(12):48–57, December 2009.

[7] J.L. Hennessy and D.A. Patterson. Computer Architecture - A Quantitative Approach (5. ed.). Morgan
Kaufmann, 2012.

[8] A. Ilic, F. Pratas, and L. Sousa. Cache-aware Roofline Model: Upgrading the Loft. IEEE Comput. Archit.
Lett., 13(1):21–24, January 2014.

[9] A. Ilic, F. Pratas, and L. Sousa. Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling
for Multi-Cores. IEEE Transactions on Computers, 66(1):1–1, 01 2017.

[10] S.U. Khan and A.Y. Zomaya, editors. Handbook on Data Centers. Springer-Verlag, 2015.

[11] M. Kühnemann, T. Rauber, and G. Rünger. A Source Code Analyzer for Performance Prediction. In Proc. of
18th IPDPS, Workshop on Massively Parallel Processing (CDROM). IEEE, 2004.

[12] M. Kühnemann, T. Rauber, and G. Rünger. Performance Modelling for Task-Parallel Programs. In M. Gerndt,
V. Getov, A. Hoisie, A. Malony, and B. Miller, editors, Performance Analysis and Grid Computing, pages
77–91. Kluwer, 2004.

[13] J. Leung, L. Kelly, and J.H. Anderson. Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, Inc., Boca Raton, FL, USA, 2004.

[14] K. Li. Scheduling Precedence Constrained Tasks with Reduced Processor Energy on Multiprocessor Com-
puters. IEEE Transactions on Computers, 61(12):1668–1681, Dec 2012.

[15] K. Li. Energy and Time Constrained Task Scheduling on Multiprocessor Computers with Discrete Speed
Levels. J. Parallel Distrib. Comput., 95(C):15–28, September 2016.

[16] K. Li. Energy-Efficient Task Scheduling on Multiple Heterogeneous Computers: Algorithms, Analysis, and
Performance Evaluation. IEEE Transactions on Sustainable Computing, 1(1):7–19, Jan 2016.

[17] A. Lopes, F. Pratas, L. Sousa, and A. Ilic. Exploring GPU performance, power and energy-efficiency bounds
with Cache-aware Roofline Modeling. 2017 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2017.

[18] A.-C. Orgerie, M.D. de Assuncao, and Lurent Lefevre. A Survey on Techniques for Improving the Energy
Efficiency of Large-scale Distributed Systems. ACM Computing Surveys, 46(4):47:1–47:31, 2014.

[19] H. Qian, F. Li, R. Ravindran, and D. Medhi. Optimal Resource Provisioning and the Impact of Energy-Aware
Load Aggregation for Dynamic Temporal Workloads in Data Centers. IEEE Transactions on Network and
Service Management, 11(4):486–503, Dec 2014.

[20] T. Rauber and G. Rünger. Modeling and Analyzing the Energy Consumption of Fork-Join-based Task Parallel
Programs. Concurrency and Computation: Practice and Experience, 27(1):211–236, 2015.

[21] T. Rauber and G. Rünger. Comparison of Time and Energy Oriented Scheduling for Task-based programs. In
Proc. of the 12th Int. Conf. on Parallel Processing and Applied Mathematics (PPAM), LNCS 10777. Springer,
2018.

[22] T. Rauber, G. Rünger, M. Schwind, H. Xu, and S. Melzner. Energy Measurement, Modeling, and Prediction
for Processors with Frequency Scaling. The Journal of Supercomputing, 2014.

[23] N.B. Rizvandi, J. Taheri, and A.Y. Zomaya. Some Observations on Optimal Frequency Selection in DVFS-
based Energy Consumption Minimization. J. Parallel Distrib. Comput., 71(8):1154–1164, August 2011.

[24] M. Sajid, Z. Raza, and M. Shahid. Energy-efficient scheduling algorithms for batch-of-tasks (BoT) appli-
cations on heterogeneous computing systems. Concurrency and Computation: Practice and Experience,
28(9):2644–2669, 2016.

24

[25] P. Sanjeevi and P. Viswanathan. NUTS Scheduling Approach for Cloud Data Centers to Optimize Energy
Consumption. Computing, 99(12):1179–1205, December 2017.

[26] E. Saxe. Power-efficient software. Commun. ACM, 53(2):44–48, 2010.

[27] M. Shojafar, C. Canali, R. Lancellotti, and S. Abolfazli. An Energy-aware Scheduling Algorithm in DVFS-
enabled Networked Data Centers. In Proceedings of the 6th International Conference on Cloud Computing
and Services Science - Volume 1 and 2, CLOSER 2016, pages 387–397, Portugal, 2016. SCITEPRESS -
Science and Technology Publications, Lda.

[28] X. Tang and W. Tan. Energy-Efficient Reliability-Aware Scheduling Algorithm on Heterogeneous Systems.
Sci. Program., 2016:14–, March 2016.

[29] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li. An Energy-Efficient Task Scheduling Algorithm in
DVFS-enabled Cloud Environment. J. Grid Comput., 14(1):55–74, March 2016.

[30] J. Treibig, G. Hager, and G. Wellein. LIKWID: A Lightweight Performance-Oriented Tool Suite for x86
Multicore Environments. In Proc. of 39th International Conference on Parallel Processing Workshops, ICPP
’10, pages 207–216. IEEE Computer Society, 2010.

[31] V. Villebonnet, G. Da Costa, L. Lefevre, J. M. Pierson, and P. Stolf. Energy Aware Dynamic Provisioning
for Heterogeneous Data Centers. In 28th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 206–213, Oct 2016.

[32] V. Villebonnet, G. Da Costa, L. Lefvre, J.-M. Pierson, and P. Stolf. Big, Medium, Little: Reaching Energy
Proportionality with Heterogeneous Computing Scheduler. Parallel Processing Letters, 25, 09 2015.

[33] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Survey of Energy-Cognizant Scheduling
Techniques. IEEE Transactions on Parallel and Distributed Systems, 24(7):1447–1464, July 2013.

25

