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Abstract

Vectorization is a key technology to increase the performance and ef-
ficiency of computer systems, however the performance increase usually
strongly depends on the specific application program. In this article, we
introduce SIMD program versions of a Coulomb solver based on manual
vectorization as well as automatic vectorization using the Intel C Com-
piler. The implementation uses the latest Advanced Vector Extensions
with 512-bit vector size (AVX-512). The comparison of the performance
results visualizes the reduction of the execution time achieved by the man-
ual vectorization as well as the automatic vectorization compared to the
code without vectorization. The automatic vectorization achieves a good
speed up that should be sufficient for most use cases. However, we also
show that the manual vectorization is able to outperform the automatic
vectorization. The control over the instructions used by the manual vec-
torization can reduce the amount of expensive vector reduction operations
which are introduced by the automatic vectorization.

Code Optimization, SIMD, Vectorization, AVX-512, HPC, Intel Xeon Phi,
Intel C Compiler



1 Introduction

Vendors of Central Processing Units (CPUs) are constantly improving their de-
signs for higher compute performance and better energy efficiency. One method
to achieve this goal is to add and expand function units that are specialized
to perform certain tasks. To increase the computational throughput a function
unit called the Vector Processing Unit (VPU) has been introduced. A VPU en-
ables a CPU to perform a single instruction on multiple data elements (SIMD)
simultaneously.

The Advanced Vector Extensions (AVX) are a set of SIMD instructions that
allow the execution of operations utilizing a VPU. These SIMD instructions are
accessible as assembler instruction or as higher level functions, which are called
intrinsics. AVX is available in different versions; AVX-512 is the most recent
version and is used in this article. AVX-512 introduces a vector size of 512-
bit which enables the simultaneous execution of eight double precision floating
point calculations.

For the creation of a SIMD versions for a given scalar program, there are
two main approaches, which are a manual vectorization or an automatic vector-
ization. The problem with the manual vectorization using intrinsics is that it
can be quite time consuming, error prone and may produce a lot of code that is
hard to maintain. On the other hand, during the translation of program code
to machine code a compiler is able to perform optimizations based on heuris-
tics. The automatic vectorization is possible since modern compilers, such as
the Intel C Compiler (ICC), are able to determine areas of the code that can be
vectorized and to perform the vectorization automatically.

The goal of this article is to investigate for a real world application whether
the manual vectorization using intrinsics is necessary or if the automatic vector-
ization provided by the ICC achieves a similarly good speedup. The application
investigated in this article is a particle simulation using Coulomb forces based on
ScaFaCoS, which is a library of scalable fast Coulomb solvers, including a solver
to directly compute the particle-particle interaction as well as several other ap-
proximation solvers. The direct solver is particularly suited for the investigation
in this article, since its algorithmic structure requires complex computations but
its memory accesses are purely regular [1].

The original particle code of the ScaFaCos library had to be prepared in or-
der to make an automatic vectorization possible. The preparation step includes
program transformations, such as loop interchange, loop fusion and unswitching
to improve the code as well as data flow. All loops have been modified to avoid
any conditions that terminate the loops prematurely. Especially, the fusion of
loops has improved the compatibility to larger vector sizes. The starting ver-
sion of the investigation in this article is this implementation of the Direct solver
that is already optimized and improves the cache usage and branch prediction
of the original ScaFaCoS implementation. Additionally, a manually vectorized
implementation designed for Intel Xeon Phi coprocessor, a legacy expansion
card that was intended to increase the computation capabilities of workstations
and servers, is available.In this article, both implementations with and without



manual vectorization are used and executed on a newer architectures support-
ing AVX-512. The goal is to investigate how such a legacy manually vectorized
legacy program code performs compared to an automatically vectorized version
using modern compilers. Furthermore, it is described how the manually vector-
ized program code can be improved further by changing the implementation of
reduction operations.

The organization structure of the article is as follows: Related work is pre-
sented in Section [2] The direct solver is introduced in Section [3} including an
overview of implementation improvements performed in Section [3:2] Section [
describes a general approach to improve the performance when manual vec-
torization is combined with the parallel reduction provided by OpenMP. The
different vectorized implementations to be investigated are presented in Sec-
tion[B] Section [f] describes the hardware used as benchmark platform as well as
the compilation parameters. Section [7] compares different compiler versions as
well as the instructions sets for the automatically vectorized program version.
The comparison of the execution times of the automatically vectorized version
and the manually vectorized version using intrinsics is given in Section [§] with
an emphasis on the performance optimisation related to the reduction improve-
ments in Section [8:2] Section [9 provides concluding remarks.

2 related work

Vectorization is an important topic to improve the efficiency and reduce the
execution time of calculations. Especially AVX-512 provides new possibilities
and challenges for improvements. A introduction into Advanced Vector Ex-
tensions (AVX), including AVX-512, explaining the programming concepts as
well as optimization strategies and techniques is given [2]. Also, the Intel 64
and TA-32 Architectures Optimization Reference Manual [3] is a good source for
optimization strategies as well as a comparisons between the older AVX2 and
more recent AVX-512.

The scalability of AVX-512 has been investigated in [4]. Several SIMD bench-
marks have been executed using different vectorization instruction sets to com-
pare the speedup and energy reduction. It was shown that not all applications
achieved a linear speedup when being vectorized. It was also shown that even
without a speedup, the energy efficiency can be improved by the vectorization.

Several investigations have studied specific applications in the context of
vectorization. In [5], it is shown that the sparse matrix-vector product can
be calculated efficiently using AVX-512 instructions also covering block-based
sparse matrix formats as well as optimization routines for block sizes. A quick-
sort algorithm vectorized using AVX-512 is described in [6]. The work shows
that the SIMD quicksort algorithm outperforms two reference implementations
by GNU and Intel.

The effect of irregular memory accesses on vectorization was investigated
in [7]. A comparable investigation on similar hardware based on a lattice Quan-
tum Chromodynamics simulation using AVX-512 is investigated in [§].



The advantage of AVX-512 over AVX2 for shallow water solvers can be seen
in [9]. That AVX-512 vector instructions do not always provide the best perfor-
mance over older instruction sets is shown in [10]. The work evaluates different
SIMD versions for the local sequence alignment using the Smith-Waterman al-
gorithm which enables a faster identification of genetic variants associated with
diseases. To find the best vectorization method for this use case, AVX-512 in
two different sub-variants are compared against the AVX2 as well as SSE4.1.
The result for this use case is that the older AVX2 instruction set is the best
choice with respect to performance.

3 Direct summation solver

3.1 Basic version of the direct solver

ScaFaCoS is a library of scalable fast Coulomb solvers [1]. One of the solvers in-
cluded in the library is the so-called ” Direct summation” solver, in the following
referred to as direct solver. The direct solver is based on the calculation of pair-
wise interactions between all given particles. The part of this direct solver that
requires most of the execution time is the evaluation on fully periodic systems.
To perform these evaluations, the direct solver implements the calculation of
the electrostatic potential ¢ and the electrostatic field E as lattice summations:
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The M charged particles given as input are stored in a cubic simulation box
with edge length B. For each particle, a charge ¢; € R as well as its location at
x € [0, B)? is stored, see [11-13].

The direct solver provided by the ScaFaCoS is a parallel implementation
for distributed memory using the Message Passing Interface (MPI), which has
been developed by experts in the application field of particle simulation. The
algorithmic structure of this program version is the starting point of our inves-
tigation.

3.2 Shared memory implementation of the direct solver

Vectorization for multi- or many-cores requires a mixed programming model ex-
ploiting the different cores by multi-threaded programs and additionally exploit-
ing the vectorization units on each core. To perform an efficient vectorization
an optimal parallel code base is crucial. First, the code needs to be parallelized
to enable the usage of all vector units, since the vectorization is limited to one



vector unit per thread. For a vectorization, a code base can be considered op-
timal if the CPU is able to incrementally read from continuous memory while
minimizing the memory access and synchronization operations.

In case of the ScaFaCoS library a parallelization using message passing on
distributed memory via the Message Passing Interface (MPI) exists. The prob-
lem with using distributed memory implementations for shared memory systems
are memory transactions related to the message passing, which are unnecessary
for shared memory systems and usually lead to an unnecessary overhead es-
pecially for additional vectorization. Thus, the direct solver implementation
from the ScaFaCos library is ported to a shared memory parallelization without
changing the algorithmic and numerical properties.

The direct solver described above has a large potential of shared memory
parallelization. With the exception of the summation itself, which can be per-
formed via a parallel reduction operations, all iterations within the summations
are independent from each other. Thus, all iterations can be performed in paral-
lel to each other and synchronizations are limited to the reduction operation. A
shared memory implementation using OpenMP is possible though the #pragma
omp parallel for. All temporary variables can be defined as private and all
input data have only read accesses and can therefore be defined as shared with-
out any access protection. The results calculated for the electrostatic potential
¢ and the electrostatic field E are reduced by reduction(+:¢,E)

In terms of the requirement for a continuous memory access, the OpenMP
direct solver is already well suited and no further changes are required. However,
to minimize the memory accesses the temporal locality has been improved by
altering the order of the loops. By calculating the boundary conditions for each
particle before continuing with the calculation for the next particle, the data
already loaded from the memory can be reused.

To support the CPU in the decision finding for branch predictions and mem-
ory preloading, the spatial locality of the direct solver has also been improved.
The original implementation of the direct solver has two situations in which the
CPU performs a branch prediction that can be avoided. The first situation is
the [ # jforr = 0 condition in Formula [3.I] which can be avoided by precal-
culating the rB values. Due to the precalculation the values are provided as
continuous memory over which the solver iterates and, thus, the need for this
check is removed. The second situation in which a branch prediction is required
is unrelated to the algorithm but related to a debug feature introduced to ease
the comparison of other solvers to the direct solver. To keep the debug feature
available, the solver was split into a fallback code including this debug and the
actual direct solver without this debug feature.

4 Reduction Optimization

The direct solver requires several reduction operations since the influence of a
particle system on a single particle is expressed by four values: the potential as
well the force in three dimension. The assembler output of the compiler shows



that most intrinsics, such as .mm512_add_pd used to add two 512-bit vectors,
provide their functionality as one single machine operation. However, some
intrinsics, such as mm512 reduce_add pd used to reduce a 512-bit vector to
one scalar, require multiple machine operations to provide their functionality.
In the case of mm512 reduce_add_pd, the compiler implements the reduction
using one shuffle, two permutations and three vector additions. As the vector
reduction operation is six times as expensive as the other operations required
for the calculation, the efficiency can be improved by minimizing the amount of
vector reductions.

As explained in Section the algorithm performs the calculation of the
boundary condition without the usage of those intermediate results. Therefore,
it is possible to use a vector to store the intermediate results. This however is
prevented by the OpenMP summation used in the shared memory parallelization
which is only defined for scalars. By declaring a custom reduction operation
using #pragma omp declare reduction, a support for the reduction of two
vectors to one can be added to the OpenMP parallelisation. As the ScaFaCos
library expects the direct solver to return scalars, a final vector reduction is
required to be performed. This reduction can happen outside the boundary
condition loop as shown in the following example:

1 #pragma omp declare reduction (mmb5l2_add_pd : --m512d : omp-_out
= _mmb512_add_pd (omp-out, omp_in))

2 #pragma omp for reduction(mmb512_add_pd:p)

3 for (...) p= _mmbl2_add_pd(p, partial_value);

4 posum += _mmb512_reduce_add_pd(p);

This improvement reduces the amount of vector reductions from n to 1 for
each particle-particle interaction. This reduces the complexity of the reduction
from O(n*6) for the original reduction down to O(n+6) operations. For a three
dimensional dataset with a boundary condition of one boundary box in each
direction, the number of iterations per particle-particle interaction is computed
3% — 1 times. For double precision float values, this equals n = [26/8] = 4
iterations with four such reductions for the potential as well as the force in
three dimensions. The optimization of the reduction improves the amount of
machine operations from 64 down to 22. The amount of operations to calculate
the boundary condition, excluding the reduction, is 26 per iteration. In total
this optimization reduces the amount of machine operations for the boundary
condition calculation from 200 down to 126, an improvement of 37%.

5 Vectorization variants

All vectorization variants given in Fig. [I] are based on the source code prepara-
tion described in Section without any debug features.

The Auto-vectorization variant includes no manual vectorization and is used
to investigate the influence of the automatic vectorization. Without any AVX
instruction set optimization, this code provides the scalar base variant. The



Label | Description

Auto Source code variant with-
out manual vectorization
Direct | Source code variant with
a manual vectorization
of the original imple-
mentation through in-
trinsics without further
code changes

IRED | Source code  variant
with a manual vector-
ization that minimizes
the amount of machine
operations  for  each
particle

Figure 1: Code variant names used in the Figures and
manual vectorization is split into two variants. The Direct-vectorization vari-
ant, represents the approach to directly translate all performed computations
into the corresponding intrinsics equivalent. Despite this translation no further
changes to the algorithm where performed. The IRED-vectorization variant is
an advancement of the Direct-vectorization variant as described in Section [l

6 Benchmark platform and structure

As benchmark platform to collect measurement data about the execution time,
two machines bought in 2018 with support for AVX-512 have been used. The
technical specifications of these two machines are given in Fig. 2] The two ma-
chines represent different system requirements. The Intel Xeon Phi based on
the Intel Many Integrated Core (MIC) Architecture provides a ”high degree of
parallelism in smaller, lower-power performance Intel processor cores” [14]. This
system fulfills the requirement to be as fast as possible for parallel workloads.
The down side of this system is that the performance for less or non-parallel
tasks is low. The Intel Xeon Gold is designed as server processor to fulfill a
compromise between parallel and sequential workloads. As a result, this pro-
cessor provides less CPU cores, which however provide a higher base frequency
of 2,10 GHz [15].

Both processors reduce their base frequency depending on the kind of work-
load that is being executed to remain within their terminal design power. The
technical specification of the Intel Xeon Gold 6130 server processor states that
the AVX-512 base core frequency is 1.3 G H z while the AVX2 base core frequency
is 1.7 GHz. The Intel Xeon Phi 7250 may throttle the base core frequency by
200 MHz if an application utilizes a high amount of AVX instructions. Both sys-
tems have the Intel Turbo Mode disabled which limits the maximum frequency
to the base core frequency [15}/16].



Label | Processor(s)

Server | 2x Intel Xeon Gold 6130
each with 16 Cores,
32 Threads at 2.10 GHz
Intel Xeon Processor
Scalable Family, Intel
Skylake Architecture

Phi 1x Intel Xeon Phi
7250 with 68 Cores,
272 Threads at 1.40 GHz
Intel Xeon Phi processor
x200 product family,
Intel Many Integrated
Core Architecture

Figure 2: Overview over the benchmarked machines

Every compilation was performed using the -03 optimization including one
of the instruction set targets as given in Fig. To be able to observe the
changes of the Intel C Compiler multiple generations have been chosen. The
three generations chosen for the observation are the ICC from 2017, 2018 and
2019. The selection starts with the ICC 2017 as this is the first generation to
provide support for the —xCORE-AVX512 as well as the —xMIC-AVX512 instruction
set selection, see [17,/1§].

Different program variants have been compiled with the ICC 17, ICC 18 and
ICC 19 using the code variants from Fig. [I] in combination with all instruction
set parameters from Fig. [3] Those program variants have been executed on the
machines from Fig. 2| with one to the maximum number of threads supported
by their CPUs. All program variants have processed the same input dataset
containing six particle systems, which were taken from the example Cloud Wall
dataset provided by ScaFaCoS with 300, 2400, 8100, 19200, 102900 and 153600
particles.

The execution times are measured over the actual execution of the solver; this
excludes any preparation steps as well as any post processing. Each computation
was performed ten times, where the first two iterations are used as heat up phase
to exclude results which are influenced by low CPU temperatures. The measured
execution times are stored in a SQL database indexed by their combination of
code, compiler version, instruction set and particle system. The stored execution
time for each computation is based on the mean value of the remaining eight
measured execution times.
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Figure 4: Comparison of the Auto-vectorization using the Architecture specific opti-
mization between the Intel C Compiler 2017, 2018 and 2019 on the Server processor
system and the MIC processor system

7 Benchmark evaluation regarding the automatic
vectorization

To allow a clear overview for the comparison between the automatic vector-
ization and the manual vectorizations, it is required to reduce the data to be
presented. As the center of all comparison is the automatic vectorization, this
section targets to evaluate the system parameter that achieve the best execution
time. All tests were performed using three different compilers; in Subsection
one compiler is then chosen to be used in the remainder of this article. To in-
vestigate the scalability of the automatic vectorization, Subsection [7.2] evaluates
the amount of threads for each system leading to the best execution time. To
verify that AVX-512 is the best instruction set for the automatic vectorization
of the direct solver, Subsection [7.3| provides an overview that AVX-512 achieves
overall better execution times then AVX2.

7.1 Comparison of different versions of the Intel C Com-
piler

To determine the best compiler version, the execution times of the program
versions created using the architecture specific instruction set executed with
the highest amount of threads where used. By comparing the execution times
in Fig. 4l a difference between the compilers on each platform becomes visible.

For the Xeon server processors, the ICC 18 achieved the best execution
time with the ICC 17 providing the worst execution time. For the Xeon Phi
processor, the ICC 17 provided the best execution time, whereas the ICC 18
achieves the second best execution time. Comparing the average difference
between all execution times, the ICC 18 provided the smallest overall execution

10
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Figure 5: Speedup for varying thread counts based on the dataset with 153600 par-
ticles simulated by the Auto vectorization variant with the Architecture specific opti-
mization

time, while the ICC 19 provided the largest execution time. The most likely
reason, why the ICC 19 is the slowest in our test, is the introduction [20] of
new mitigations to speculative execution side-channel issues. Based on those
findings, the Intel C Compiler 2018 (ICC 18) was chosen as it provided the
best overall execution times in all tests.

7.2 Execution times in relation to the number of threads

To determine the efficiency of the OpenMP parallelization in conjunction with
the automatic vectorization, the computations have been performed using differ-
ent numbers of thread. The program version compiled by the ICC 18 using the
architecture specific instruction set optimization was used. The largest dataset
with 153600 particles was chosen as those execution times were the least fluctu-
ating. The thread count was increased by the power of two, starting with one
up to the maximum number of threads supported by the machine.

As seen in Fig. [5] the speedup for both machines is almost linear. For the
Xeon server processors, the efficiency of 0.99 is only inhibited by the change from
16 threads to 32 threads. The reason is that the operating system schedules the
additional 16 tasks to the hyperthreads provided by the first CPU instead of
using the second CPU. However, for 64 threads the operating system utilized
both CPUs, which results in a speedup similar to the first 16 threads. Based on
the result for the highest thread count the efficiency is 0.53. The same result
related to the core count achieves an efficiency of 1.06. For the Intel Xeon Phi,
the speedup is also linear with an efficiency of 0.95 until all cores are occupied
with one thread. Starting with 68 threads the efficiency is reduced for every
additional thread. However, despite the decreased efficiency, the speedup is still
increased. Based on the result for the highest thread count the efficiency is 0.38.
The same result related to the core count achieves an efficiency of 1.54. The

11
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Figure 6: Comparison of the Auto-vectorization using AVX2 against the Auto-
vectorization using AVX-512 with architecture specific optimization on the Server and
MIC processor system

results show that the implemented parallelization and vectorization scales well
with the numbers of cores. As the efficiency for the scaling based on the core
count is very high with 0.95 to 0.99, the gains by the usage of the hardware
threads is minimal. However, as the efficiency based on the core count is larger
than 1 when all hardware threads are used, all subsequent comparisons will be
performed using all those threads.

7.3 Comparison of the automatic vectorization utilizing
AVX2 against the automatic vectorization utilizing
AVX-512

As mentioned in the related work Section [2] there are studies for other use
cases that have shown that a vectorization utilizing AVX2 might be faster than
one utilizing AVX-512. To evaluate if those findings also apply to the use
case of this paper, the Auto-vectorization was compiled with AVX2 as target
instruction set for the automatic vectorization. The execution times of the
automatic vectorization using AVX2 as well as AVX-512 can be seen in Fig. [6]
A comparison of both variants shows that for the Intel Xeon Server there is just a
minor difference between AVX2 and AVX-512 with 78 in contrast to 76 seconds.
As AVX-512 with 512-bit vectors is able to process twice as much data at the
same time as AVX2 with 256-bit vectors, the expected difference would be larger.
The measurements show that the processor adjusts its core frequency based on
the function units used as explained in Section [6] For the Intel Xeon Phi, the
advantage of AVX-512 with its doubled vector size results in almost twice as
much speed with an execution time of 54 seconds compared to 106 seconds for
AVX2. This outcome confirms the expectation in Section [6] that the Intel Xeon
Phi benefits more from AVX-512 then the Intel Xeon Server. For the Coulomb

12
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Figure 7: ICC18 Comparison of the Auto-vectorization using the optimization levels
NoAVX, BASE and ARCH-iecture specific to the addition of the Direct-vectorization
on the Server processor system

solver, the AVX-512-vectorizations achieved an overall better execution time
compared to the AVX2-vectorization. Therefore, all AVX2-vectorizations are
omitted in the subsequent evaluations.

8 Benchmark evaluation regarding the manual
vectorization

This Section compares the execution times of all variants that purely rely on
automatic vectorization against the manually vectorized SIMD variants. In
this comparison, only variants built with the same compiler flags are directly
comparable, as the effects of the AVX instruction set optimization influence the
execution time beyond the automatic vectorization.

8.1 Comparison of the Auto-vectorization against the Direct-
vectorization

Starting with the Intel Xeon Gold 6130 platform, Fig. [7] shows how the Direct-
vectorization variant with no additional vectorization optimizations outperforms
the scalar execution. The execution time is reduced from 131 seconds to 98 sec-
onds, which correspond to a speedup of 1.33. By activating the BASE AVX
optimizations, the execution time of the Auto-vectorization went down to 94
seconds while the execution time for Direct-vectorization is 91 seconds. For
the BASE AVX optimization the speedup achieved through manual vectoriza-
tion is 1.03. By enabling the architecture specific optimization ARCH, the
execution time of the Auto-vectorization went down to 77 seconds, while the
Direct-vectorization needs 82 seconds. This results in a disadvantage for the

13
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Figure 8: ICC18 Comparison of the Auto-vectorization using the optimization levels
NoAVX, BASE and ARCH-iecture specific to the addition of the Direct-vectorization
on the MIC processor system

usage of the Direct-vectorization, which is almost 7% slower. For the Intel Xeon
Phi 7250, the result is similar to the Xeon Gold. As seen in Fig. [8|the advantage
of the Auto-vectorization over the Direct-vectorization is already noticeable at
the BASE AVX optimization, with 73 seconds compared to 76 seconds.

The reason for the reduced performance of the Direct variant can be seen
by comparing the assembler code of the architecture specific optimized Auto-
vectorization to the Direct-vectorization. Both variants result in a similar vec-
torization but the pure automatic vectorization performs the calculations in a
slightly different order. Due to the changed order, the register usage for the
vectorization is improved which results in less memory interactions.

8.2 Comparison of the Auto-vectorization against the IRED-
vectorization with reduction optimization

The comparisons in the previous subsection have shown that for our use case the
pure automatic vectorization can outperform a SIMD implementation. However,
as described in Section [4] there is an additional optimization potential to the
reduction operations.

As seen in Fig. [0 even without any further AVX-512 instruction set opti-
mizations, the IRED-vectorization is clearly ahead of all variants exclusively
relying on the automatic vectorization. Comparing the variants with the archi-
tecture specific AVX-512 instruction set optimizations, for the highest amount
of particles the execution time is sped up by 1.67, this is a reduction from 77
seconds to 46 seconds. The percentage of this time saving corresponds to the
calculated amount of reduced operations.

Fig. shows a similar improvement on the Intel Xeon Phi. The execution
time for the highest amount of particles is reduced from 54 seconds down to

14
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Figure 9: ICC18 Comparison of the Auto-vectorization using the optimization levels
NoAVX, BASE and ARCH-iecture specific to the addition of the IRED-vectorization
on the Server processor system

39 seconds, which correspond to a speedup of 1.38. The reduced speedup over
the Intel Xeon Gold can be explained by unvectorizable parts of the solver that
have a larger influence on the Intel Xeon Phi processor due to the lower core
frequency.

The comparison of the scalar execution time on the Intel Xeon Gold with
130 seconds against its best execution time with 46 seconds shows a significant
speedup of 2.82. The same comparison for the Intel Xeon Phi processor shows
a difference from 183 seconds to 39 seconds, which is a speedup of 4.69.

9 conclusion

In this article, we have investigated whether a manual vectorization is still
required to achieve a good performance or if an automatic vectorization can
achieve the same performance as a manual one. For the examination, a real
world application for particle interactions with a Coulomb solver has been cho-
sen and manually vectorized utilizing the Advanced Vector Extensions with
512-bit vector size (AVX-512). The SIMD code has been benchmarked against
an automatic vectorization utilizing AVX-512 as target instruction set.

The insight gained from this investigation is that if the source code of an ap-
plication can be vectorized then the automatic vectorization using the suitable
compiler options delivers good results. In the case of the parallelized Coulomb
solver, the automatic vectorization achieved a speedup of 1.67 when executed
with 64 threads on the Intel Xeon Server system and a speedup of 3.4 using
272 threads on an Intel Xeon Phi system. However, because of the limitations
of the compiler heuristics, the manual vectorization can outperform the auto-
matic vectorization. By reorganizing the solver algorithm, a minimization of
the amount of vector machine operations was possible. Compared to the par-

15
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Figure 10: ICC18 Comparison of the Auto-vectorization using the optimization levels
NoAVX, BASE and ARCH-iecture specific to the addition of the IRED-vectorization
on the MIC processor system

allel non-vectorized execution, this improvement leads to a speedup of 2.88 for
the Intel Xeon Server system using 64 threads and 4.71 for the Intel Xeon Phi
system using 272 threads.
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