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Abstract

Energy efficiency is considered to be a critical concern for modern hardware and a variety of hardware fea-
tures have been developed to improve the energy balance for executing applications. This article focuses on the
dynamic voltage and frequency scaling (DVFS) technique, which is available for many platforms. Analytical
models for capturing the energy efficiency are considered and it is investigated whether such an analytical model
is able to support an a priori selection of the operational frequency that leads to a near optimal energy consumption
for the application code to be executed. Furthermore, the possible influence of the number of threads executing
a multi-threaded application is taken into account. Models for the energy-delay product (EDP) weighting the
power against the square of execution time are also covered. The experimental evaluation is performed on the
basis of the multi-threaded PARSEC and SPLASH-2 benchmarks executed on four different recent multi-cores.
The investigations show that the operational frequency selected according to the analytical models leads to an
energy consumption that is near the minimum energy consumption over all frequencies available.

1 Introduction

A low energy consumption as well as a good performance are important properties of today‘s application codes.
These properties are influenced by the software structure and execution characteristics, such as the operational
frequency or the number of threads chosen, and the way in which the code exploits the hardware details of the exe-
cution platform. The internal organization of the processor architecture can have a large influence on the resulting
execution time and energy consumption, depending on how well the operations defined by the application code are
mapped onto the functional units of the processor. However, the influence of the multitude of different software
and hardware specifics as well as their interactions on the quantitative and qualitative behavior of performance
and energy consumption can hardly be captured in its entirety. In such cases, it is more worthwhile to develop an
abstract model based on observed data with which a priori estimations of performance and energy are possible. In
this article, we are concerned with the determination of such models for multi-threaded applications executed on
multi-cores with frequency scaling.
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The growing importance of energy concerns has encouraged hardware manufacturers to develop a variety of power-
aware system features, including multicore-on-a-chip processors, core-independent functional units, dynamic volt-
age and frequency scaling (DVFS), or clock gating [37, 13, 14]. This article concentrates on the DVFS technique
and the effect of frequency scaling on the energy consumption of application executions. It can be observed that
it is not a priori clear whether the use of a smaller operational frequency leads to a reduction or an increase of the
energy consumption. For multi-threaded applications, the number of threads used for an execution can also have
an effect on the time and energy consumed. Again, it is not a priori clear whether the use of more threads may
lead to a shorter execution time and/or a lower energy consumption or to the opposite effect. Instead, for a given
application there is typically an optimal number of threads beyond which the execution time cannot be reduced
further. Similarly, we have observed that there is often an optimal operational frequency beyond which a further
frequency reduction does not lead to a further energy reduction. In this article, we investigate the effect of an oper-
ational frequency chosen and/or a number of threads used on the performance of time and the energy consumption
for two popular multi-threaded benchmark suites, which are the PARSEC and the SPLASH-2 benchmarks.

To control the usage of the DVFS feature, the interactions between the operational frequency used and the resulting
energy consumption and runtime performance have to be known. An ideal situation would be to have an analytical
model that exactly captures the effect of all influencing parameters. However, no such model exists, and it is
even difficult to identify all influencing factors or their quantitative effects. The idea of this article is to take a
step towards the development of such an analytical model. In particular, we consider a power model that has been
proposed to capture the power consumption of CMOS chips and, based on this power model, further models for the
energy consumption and the energy-delay product (EDP) are proposed. The EDP has been introduced as a single
metric balancing the effects of execution time and energy consumption of applications and ,thus, it is often used as
a measure for energy efficiency. We investigate whether the models are able to a priori select a suitable operational
frequency that leads to a near-optimal energy consumption or EDP. We also address the question whether and how
the optimal frequencies for energy and EDP are correlated, which reflects the relation between energy consumption
and energy efficiency.

The investigation is based on the Princeton Application Repository for Shared-Memory Computers (PARSEC)[6]
and the Stanford Parallel Applications for Shared-Memory (SPLASH-2) [40], which are both collections of multi-
threaded benchmarks with different parallel workloads and execution characteristics. The PARSEC benchmark
suite provides programs from a wide range of applications based on the latest techniques in the specific domains
and with an emphasis on large workloads as well as multi-core parallelism. Thus, the PARSEC benchmarks are
ideal for demonstrating and testing the analytical energy models proposed for a large variety of applications. To
have a wider experimental basis, we also investigate the SPLASH-2 benchmarks, which cover applications from
several areas of scientific computing. As hardware platforms, four Intel processors with different architecture are
used for the experimental evaluation. Model-based power, energy and EDP values are calculated and are compared
with corresponding measurements on these processors.

In this article, two analytical models are proposed, which are a so-called local modeling providing an application-
specific model and a global modeling providing an application-independent modeling based on an independent
test set for determining the parameters for the energy model. Our investigations have shown that the frequencies
derived a priori with the energy models have the property to lead to a near-optimal energy consumption. The
resulting average deviation from real measured data is below 6 % for the energy consumption and below 11 % for
the EDP for almost all of the benchmarks. The results indicate that a quite accurate application-specific model-
based prediction of energy-efficient frequencies is possible for a wide range of multi-threaded applications.

The frequency investigation is combined with an investigation of the number of threads used for the execution.
This means that the determination of an optimal frequency depends on the number of threads used, providing a
whole range of optimal frequency values for the same application. An important result is that the development
of the application-specific energy models and the derivation of the energy-optimal frequency is independent from
knowledge about the internal coding of the application. Thus, the model-based prediction method of an energy-
optimal frequency can be applied to other multi-threaded applications.

The contributions of the article comprise:

• Models for power and energy from [31] are extended to the multi-threaded case resulting in power and
energy functions of two variables, which are the operational frequency and the number of executing threads.
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• The analytical energy model is used to a priori determine an energy-optimal frequency for varying numbers
of threads.

• The energy model is extended to the EDP to determine an energy-optimal frequency for the energy efficiency.

• The energy consumption for the PARSEC and SPLASH-2 benchmark suites is measured and documented.

• Application-specific optimal frequencies are determined with the analytical models for energy and for the
EDP, both for the PARSEC and the SPLASH-2 benchmarks and the good prediction quality of the models is
shown.

• Application-independent optimal frequencies are derived with a small test set of benchmarks and are vali-
dated for the remaining benchmarks.

• The dependence on the number of threads is is investigated and scalabilty results are presented.

The rest of the article is structured as follows: Section 2 describes the energy model and derives optimal frequency
scaling factors for energy consumption and for the EDP. Section 3 describes the experimental environment and the
evaluation strategy used. Section 5 presents the experimental evaluation for the PARSEC and for the SPLASH-2
benchmarks. Section 6 discusses related work and Section 7 concludes the article.

2 Parallel energy models

This section is devoted to energy models for the parallel execution of multi-threaded application programs. In
particular, we consider the dependence of the energy consumption and the runtime performance from two pa-
rameters, which are the number of threads employed and the operational frequency chosen. Usually, the runtime
performance improves with an increasing number of threads but decreases with a down-scaling of the frequency.
Also the energy consumed for an application execution varies when varying the number of threads or when scaling
the frequencies. And although the energy consumed depends on the execution time, it can be observed that the
lowest execution time achieved for a specific setting of the number of threads and operational frequency does not
necessarily lead to the lowest energy consumption. This effect can be explained by an application-specific power
consumption. In this section, we investigate an energy model which captures the quantitative energy effects of
frequency scaling.

The energy E consumed for the execution of an application code depends on the execution time T and the power
drawing P during the execution. The execution time T varies with the number of threads p used for the execution
and the operational frequency f chosen, as does the power drawing P . To express the dependence of the energy
consumption on the number of threads and the operational frequency, we develop an analytical energy model which
involves the two variables p and f .

Section 2.1 revisits a power and energy model from [31] which had only the frequency as parameter. In Section
2.2, the models are extended to a second parameter, which is the number p of threads used for the execution. For
each p, an optimal frequency is determined analytically. In Section 2.3, the energy delay product depending on
the two parameters is considered and optimal frequencies are calculated as well. The notation used throughout the
section is compactly depicted in Table 1.

2.1 Power and energy model for frequency scaling

When considering the energy consumption of application programs for DVFS processors, it is useful to introduce
frequency scaling factors [31]: The frequency scaling for a DVFS processor is expressed by a dimensionless
scaling factor s ≥ 1 which describes a smaller frequency f̃ < fmax as f̃ = fmax/s where fmax is the maximum
frequency available.

Power models for DVFS processors distinguish the dynamic power consumption and the static power consumption
[42]. The dynamic power consumption Pdyn(f) is related to the supply voltage and the switching activity during
the computing activity of the processor and can be expressed by
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Table 1: Summary of Notation
Notation

SYMBOL UNIT MEANING

E Joule energy consumption
T seconds execution time
P Watt power consumption
p scalar number of threads
f 1/seconds operational frequency
fmax 1/seconds maximum processor specific frequency
s ≥ 1 dimensionless scaling factor with f = fmax/s
Pdyn(f) Watt dynamic power depending on f
Pdyn(s) Watt dynamic power depending on s
Pstat(f) Watt static power depending on f
Pstatic Watt static power for unscaled case s = 1
T (1) seconds unscaled sequential execution time, s = 1
T (s) seconds scaled sequential execution time

T (s) = s · T (1)
E(s) Joule energy for scaling factor s
E(p, s) Joule energy for parallel execution
sopt(p) dimensionless optimal scaling factor for parallel execution
Pdyn(p, 1) Watt dynamic power, unscaled parallel execution
Pstatic(p, 1) Watt static power, unscaled parallel execution
T (p, 1) seconds parallel execution for unscaled case
EDP (p, s) Joule · seconds energy-delay product EDP

parallel and scaled
sEDP
opt (p) dimensionless optimal scaling factor of EDP for

parallel execution
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Table 2: Comparison of the frequency scaling factor s and the performance factor s̃ = T (s)/T (1) for selected
SPLASH-2 benchmarks on Haswell.

frequencies barnes (p=1) cholesky (p=1) raytrace (p=8)
GHz s = fmax/f run[sec] s̃ Dev(s̃, s) run[sec] s̃ Dev(s̃, s) run[sec] s̃ Dev(s̃, s)
0.8 4.25 442.73 4.12 3.06% 1.53 4.21 0.88% 96.92 4.24 0.25%
1.0 3.40 354.31 3.30 3.02% 1.26 3.47 1.98% 77.07 3.37 0.86%
1.2 2.83 295.11 2.75 3.08% 1.04 2.88 1.56% 64.71 2.83 0.11%
1.4 2.43 253.93 2.36 2.70% 0.89 2.47 1.55% 55.33 2.43 0.36%
1.5 2.27 237.15 2.21 2.64% 0.84 2.30 1.63% 52.14 2.28 0.62%
1.7 2.00 210.57 1.96 2.02% 0.73 2.03 1.29% 45.47 1.99 0.55%
1.9 1.79 187.67 1.75 2.42% 0.66 1.82 1.97% 40.80 1.78 0.26%
2.1 1.62 170.23 1.58 2.16% 0.60 1.66 2.71% 36.85 1.61 0.45%
2.3 1.48 157.11 1.46 1.10% 0.55 1.52 3.15% 33.54 1.47 0.74%
2.5 1.36 143.42 1.33 1.87% 0.51 1.41 3.50% 30.85 1.35 0.78%
2.7 1.26 132.84 1.24 1.83% 0.46 1.27 0.53% 28.70 1.26 0.28%
2.8 1.21 128.99 1.20 1.15% 0.46 1.26 3.46% 27.76 1.21 0.01%
3.0 1.13 120.52 1.12 1.04% 0.43 1.17 3.55% 26.12 1.14 0.81%
3.2 1.06 114.09 1.06 0.07% 0.40 1.11 4.40% 24.54 1.07 1.02%
3.4 1.00 107.46 1.00 0.0% 0.36 1.00 0.0% 22.86 1.00 0.0%

Pdyn(f) = α · CL · V 2 · f,

where α is the switching probability, CL is the load capacitance, and V is the supply voltage. The frequency f
depends linearly on the supply voltage V , which means that V = β · f with some appropriate constant β. Thus,
the dependence of the dynamic power consumption on the frequency f can be expressed as Pdyn(f) = γ · f3 with
γ = α · CL · β2 or when using the corresponding scaling factor s as

Pdyn(s) = s−3 · Pdyn(1) (1)

where Pdyn(1) = γ · f3max is the dynamic power consumption in the unscaled case.

The static power consumption Pstat(f) is intended to capture the leakage power consumption and can be expressed
by Pstat(f) = V ·N · kdesign · Ileak, where N is the number of transistors, kdesign is a design dependent parameter,
and Ileak is a technology-dependent parameter [7]. Using V = β · f again leads to a linear dependence of the static
power on f , i.e., Pstat(f) = δ · f with δ = N · kdesign · Ileak · β or Pstat(s) = s−1 · Pstat(1) where Pstat(1)
is the static power consumption in the unscaled case. Other authors have also proposed to make the simplified
assumption that Pstatic is independent of the voltage or frequency scaling [42], which means that

Pstat(s) = Pstat(1) = Pstatic. (2)

In the following, we use Equ.(2). The total power consumption adds up both power components:

Ptotal(s) = s−3Pdyn(1) + Pstatic. (3)

Reducing the operational frequency of a processor by a scaling factor of s usually decreases the power consump-
tion. However, it increases the execution time T (1) of an application program by about the same factor compared to
an unscaled execution. This has been confirmed by runtime measurements on DVFS architectures [32]. As exam-
ple, Table 2 shows the performance scaling factors s̃ = T (s)/T (1) and the frequency scaling factors s = fmax/f
for three selected SPLASH-2 benchmarks on the Haswell processor along with the deviation between s and s̃,
denoted as Dev(s̃, s). It can be observed that the deviations between the two factors are quite small. Similar devi-
ations can be observed for other PARSEC or SPLASH-2 benchmarks and other processors. There is no significant
difference of the deviations between a sequential execution and a parallel execution. For the energy model, we
therefore assume s = s̃ and T (s) = s · T (1). This leads to a simple energy model that facilitates an analytical
treatment.
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Figure 1: Power consumption of the PARSEC benchmarks executed with one thread (top) and eight threads (bot-
tom) on an Intel Core i7 Haswell architecture.

Using the power and the execution time depending on the scaling factor used for the execution of the application
program as given above leads to the following energy model for E(s) depending on the scaling factor s:

E(s) = (Pdyn(s) + Pstatic) · T (s)
= (s−3 · Pdyn(1) + Pstatic) · s · T (1)
= (s−2 · Pdyn(1) + s · Pstatic) · T (1), (4)

which describes the energy consumption as a product of the execution time in the unscaled case and the power
consumption, containing the values for the dynamic power consumption in the unscaled case, the static power
consumption and the scaling parameter.

2.2 Energy model for parallel execution

The execution of multi-threaded programs introduces a further variable into the model which is the number p
of threads used for a specific code execution. The execution time usually decreases with an increasing number of
threads (typically in a non-linear way) until a saturation point is reached, which strongly depends on the application.
On the other hand, also the power drawing varies with the number of threads, usually in a way that the power
drawing increases with an increasing number of threads. Taking the dependence of the execution time and power
drawing on the number of threads and the frequency scaling into consideration results in an energy model with two
parameters. More precisely, Equ. (4) is extended to take varying numbers p of executing threads into consideration
in addition to the scaling factor s, yielding

E(p, s) = (s−2 · Pdyn(p, 1) + s · Pstat(p, 1)) · Tpar(p, 1) (5)

where Tpar(p, 1) denotes the parallel execution time with p threads for scaling factor s = 1 and Pdyn(p, 1) and
Pstat(p, 1) denote the dynamic and the static power consumption when using p threads.

The energy model (5) is a continuously differentiable function in s, which makes it possible to analytically derive
an optimal value for the scaling factor s, when p is set to a fixed value. The optimal scaling factor sopt(p) which
minimizesE(p, s) can be determined by building the derivative ofE(p, s) and looking for the root of the derivative.
The derivative of E(p, s) is

∂E(p, s)

∂s
=

(
−2s−3Pdyn(p, 1) + Pstatic(p, 1)

)
· Tpar(p, 1).

The function forE(p, s) in Equ. (5) is convex, since the second derivative ∂2E(p, s)/∂2s exists and ∂2E(p, s)/∂2s ≥
0. Thus, the optimal scaling factor can be obtained by setting ∂E(p, s)/∂s to zero. The resulting optimum scaling
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Figure 2: Power consumption of the SPLASH-2 benchmarks executed with one thread (left) and eight threads (right)
on an Intel Core i7 Skylake (top) and Haswell (bottom) architecture using different frequencies.
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Figure 3: Energy consumption of the PARSEC benchmarks corresponding to Fig. 1.
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factor is

sopt(p) =

(
2 · Pdyn(p, 1)

Pstatic(p, 1)

)1/3

, (6)

assuming that this scaling factor is kept fixed during the execution of the application program. According to
Equ. (6), the value of sopt(p) is independent of the actual execution time of the application considered and at first
glance seems to be fixed. However, different applications may have different values Pdyn(p, 1) and Pstatic(p, 1)
for a fixed p due to a different usage of the hardware resources of the processor employed. Moreover, using a
different number of threads may lead to different values for Pdyn(p, 1) and Pstatic(p, 1) due to the exploitation of
parallelism. Thus, different applications may have different values for sopt(p) when p is fixed and different values
for sopt(p) may result for different values of p, even for the same application.

2.3 Energy model for the energy-delay product

In this subsection, we extend the parallel energy model from the previous subsection to the energy-delay product
(EDP). The EDP is defined as the energy consumed by an application program multiplied by its execution time
[34]. Since the energy consumption also contains the execution time as multiplicative factor, see Equ. (5), the
EDP is actually the product of the power consumption and the square of the execution time. When considering the
scaling factor s explicitly, the EDP can be expressed as

EDP (p, s)=E(p, s) · (T (p, 1) · s) [Watt · s2] (7)
=(s−1·Pdyn(p, 1) + s2 ·Pstatic(p))·T 2(p, 1) (8)

The EDP is a metric that combines effects of execution time and energy consumption and captures the translation
of energy into useful work. Using the derivative

∂EDP (p, s)

∂s
=

(
−s−2Pdyn(p, 1) + 2·s ·Pstatic(p, 1)

)
· T (p, 1)2

and applying the same approach as for the energy consumption yields the optimum scaling factor

sEDP
opt (p) =

(
Pdyn(p, 1)

2 · Pstatic(p, 1)

)1/3

(9)

for the EDP for a given p. The optimum scaling factors from Equs. (6) and (9) have the property that sEDP
opt (p) <

sopt(p), since (1/2)1/3 < 21/3. This means that the scaling factor minimizing the EDP is smaller than the scaling
factor minimizing the energy consumption. In particular, it is 1.58 · sEDP

opt (p) ≈ 41/3 · sEDP
opt (p) = sopt(p).

The significance of the energy delay product can be seen when looking at the energy efficiency (EE). The energy
efficiency of an application is defined as performance (flop/s) per energy unit (Ws) and is measured as flop/Ws2.
The reciprocal value 1/EDP1 has the unit 1/Ws2. Given two EDP values EDP1 and EDP2 with EDP1 <
EDP2 yields 1/EDP1 > 1/EDP2, both sides measured in 1/Ws2. This means that a smaller EDP value EDP1

indicates a better energy efficiency, i.e., a larger performance per energy unit. Therefore, the EDP is a good
measure for the energy efficiency of an application, and sEDP

opt optimizes the energy efficiency of an application
program for a given execution platform.

3 Experimental environment

In this section, we describe the experimental setting used for the experimental evaluation and the benchmarks that
are investigated.
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Table 3: Characteristics of the Intel processors used for the experimental evaluation.
Haswell Skylake Haswell-EP Broadwell-E

Model i7-6700 i7-4770 2 × E5-2630 v3 i7-6950X
Cores 4 (8) 4 (8) 2 × 8 (16) 10 (20)
min. fequ. 0.8 GHz 0.8 GHz 1.2 GHz 1.2 GHz
max. fequ. 3.4 GHz 3.4 GHz 2.4 GHz 3.0 GHz
step size 100/200 MHz 100/200 MHz 100 MHz 100/200 MHz
Hyperthreading Yes Yes Yes Yes
TPD 84 W 65 W 85 W 140 W
L1d Cache 32 KB 32 KB 32 KB 64 KB
L1i Cache 32 KB 32 KB 32 KB 64 KB
L2 Cache 256 KB 256 KB 256 KB 256 KB
L3 Cache 8 MB 8 MB 20 MB 25 MB
RAM 16 GB 16 GB 64 GB 32 GB
OS Suse Leap 42.2 Suse Leap 42.2 SLES 13 Ubuntu 16.04
Drive SSD SSD HDD SSD

3.1 The PARSEC and SPLASH-2 Benchmark Suite

The SPLASH-2 benchmark suite is a mature but still very popular benchmark suite released in 1995 and mainly
comprises applications from scientific computing and graphics, including Cholesky and LU factorization or ray-
tracing and radiosity algorithms. Due to the architectures at that time, the codes have been optimized for multi-
nodes with high latencies between nodes, so that communication between them had been avoided when possible.

The PARSEC Benchmark Suite is a collection of benchmarks aiming at the investigation of thread parallelism
on recent chip multiprocessors. The PARSEC benchmarks emphasize on larger workloads typical for today’s
application programs. Also, while the SPLASH-2 benchmarks primarily come from scientific computing, the
PARSEC benchmarks comprise a wider range of applications, including financial analysis, animation, data mining,
or enterprise storage. The computational characteristics of the PARSEC benchmarks are intensively studied in
[6, 5] where properties concerning the instructions and shared data are investigated.

The experiments described in the following have been performed with the native input sets of the PARSEC
and SPLASH-2 benchmarks, which are the largest input sets available and which are intended for performance
measurements on real machines [6].

3.2 Experimental setting

The experimental evaluation has been performed on four Intel multicore processors with different architectures,
including three desktop processors (Haswell, Skylake, Broadwell-E) and a server processor (Haswell-EP). Infor-
mation about the processors used are given in Table 3. All these processors support DVFS. The usage of Intel
Turbo Boost has been disabled on all systems due to the usage of cpufreq-set to set the DVFS frequencies. The
Haswell-EP is a server system containing two Intel Xeon E5-2630 v3 processors, each providing eight physical
cores and supporting hyperthreading. This system has a smaller range of frequency selection than the desktop
processors. The three desktop Intel Core i7 systems used have the operating system as well as the benchmarks
installed on an solid state drive (SSD). Therefore, network and writing limitations are negligible. The Haswell-EP
uses a normal hard disk drive (HDD), so the access times are expected to be longer. For the experimental evalu-
ation, the systems were used as stand-alone system with no other users on the system. The number of processes
were reduced as far as possible to reduce influences on the measurements as much as possible.

The time and energy measurements have been performed by using the Running Average Power Limit (RAPL)
interface and sensors of the Intel architecture [35, 21]. RAPL sensors can be accessed by control registers, known
as Model Specific Registers (MSRs), which are updated in intervals of about 1 ms [21]. In particular, we have
used the likwid tool-set, especially the likwid-powermeter (Version 4.0) [39], which provides access to the MSRs
from user space using the Linux MSR module. The likwid tool provides pre-configured event sets with selected
performance counters and derived metrics. To unlock the MSR registers, modprobe msr has been used. All
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Figure 4: Energy consumption of the SPLASH-2 benchmarks executed with one thread (left) and eight threads
(right) on an Intel Core i7 Skylake (top) and Haswell (bottom) architecture using different frequencies.

measurements have been performed as end-to-end measurements of the entire application selected. The energy
measurements have been performed for the package power plane. An exception is the Broadwell-E, where only
the core power plane could be accessed, capturing only the energy of the CPU cores. The accuracy of the RAPL
measurements has been shown in [35].

4 Power and energy measurements

The power and energy consumption for executing application programs depends both on the number of threads
used and the operational frequency. The diagrams and tables presented in the following mainly show the results
for one and eight threads. The dependence on a larger range of the number of threads is investigated in Section
4.4.

4.1 Measured power consumption

Table 4 gives the power consumption values for the freqmine program from the PARSEC benchmark suite as
example, which shows that the power draw increases with the frequency for a fixed number of threads. For a fixed
frequency, the power drawing increases with the number of threads. Figure 1 shows the power consumption of all
PARSEC applications on the Haswell architecture for p = 1 (top) and p = 8 (bottom). Figure 2 shows the power
consumption of all SPLASH-2 applications on the Haswell and Skylake architectures for p = 1 and p = 8. Both
figures show that all application programs have the same qualitative power consumption behavior: The power
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Table 4: Power Consumption in Watt of the PARSEC benchmark freqmine on Skylake for different frequencies
and different numbers of threads

power consumption
Freq p = 1 p = 2 p = 4 p = 8

0.8 GHz 3.73 3.59 4.56 5.57
1.0 GHz 3.69 3.60 5.71 6.10
1.2 GHz 3.70 4.25 5.91 7.34
1.4 GHz 4.04 4.95 7.96 8.69
1.5 GHz 4.33 5.28 8.48 9.38
1.7 GHz 4.83 5.99 10.21 11.06
1.9 GHz 5.43 6.94 11.94 12.96
2.1 GHz 5.91 8.03 13.78 15.05
2.3 GHz 6.65 9.23 13.51 17.42
2.5 GHz 7.49 10.59 18.40 20.01
2.7 GHz 8.42 12.31 17.72 23.20
2.8 GHz 9.03 13.18 19.20 25.18
3.0 GHz 10.42 15.21 22.20 29.22
3.2 GHz 11.74 11.93 30.95 33.64
3.4 GHz 13.00 13.26 28.63 38.49
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Figure 5: Energy surface plot for the PARSEC benchmark freqmine with different frequencies and different numbers
of threads on an Intel Core i7 Skylake.

11



consumption increases with the operational frequency and there is also an increase of the power consumption
with the number of threads. However, it can also be observed that the quantitative amount of power consumption
strongly varies between the different applications. For the highest frequency of 3.4 GHz, the following intervals of
power consumption can be observed from Figure 1 for the PARSEC benchmarks: for p = 1 roughly between 15
and 24 Watt and for p = 8 roughly between 20 and 52 Watt. For the SPLASH-2 benchmarks, the following power
consumption intervals can be seen from Figure 2 for 3.4 GHz:

• Skylake (upper left): for p = 1: between 10 and 15 Watt

• Haswell (lower left): for p = 1: between 16 and 23 Watt

• Skylake (upper right) for p = 8: between 15 and 43 Watt

• Haswell (lower right) for p = 8: between 22 and 60 Watt.

Interestingly, different applications change their power consumption behavior in different quantitative ways: E.g.
the PARSEC benchmark facesim has a slightly lower power consumption on eight threads than on one thread
with the effect that facesim has the highest power consumption on one thread compared to the other applications
but has the lowest power consumption on eight threads compared to the other applications, see Figure 1. Another
example is the PARSEC benchmark ferret, which has a higher power consumption on the Haswell architecture
than almost every other benchmark when using only one thread. It can also be observed that there is a larger
variation between the power consumption of the different applications when the number of threads is increased,
see Figures 1 and 2.

4.2 Measured energy consumption

Figures 3 and 4 present the corresponding energy consumption of the application programs from Fig. 1 and 2. The
diagrams show that for most of the programs, there is an operational frequency for which the energy consumption
is at a minimum. The U-shape of the energy curves is especially present for the Haswell processor. The energy
curves confirm the energy model described in Subsection 2.1, which predicts such a frequency with minimum
energy consumption in Formula (6).
Figure 5 shows the energy consumption surface depicting how the energy consumption depends on the use of
multi-threading and frequency scaling for the PARSEC program freqmine. Most other applications show a similar
qualitative behavior.

4.3 Measured EDP values

The EDP combines the qualitative effects of power and energy, which results in decreasing EDP values for in-
creasing frequency. As an example, Table 5 gives the EDP for the PARSEC benchmark freqmine on Skylake as
example. The minimum EDP values for the different number of threads are highlighted. It can be seen that the
operational frequency for the minimum EDP value decreases with the number of threads employed. All other
applications show a similar behavior.

4.4 Dependence on the number of threads

The energy model presented in Subsection 2.1 mainly emphasizes on the minimization of the energy by choosing
the appropriate frequency fmax/sopt. In Subsection 2.2 we have extended the energy model by including the
number of threads as an independent variable. However, so far, the number of threads is set to a fixed value so
that a family of curves, each curve for a fixed number of threads having its own minimum, is considered. We now
consider the dependence on the number of threads for a fixed frequency value.
Figure 6 (left) shows the dependence of the power consumption (top), the execution time (middle) and the energy
consumption (bottom) of the different PARSEC programs on the number of threads for the maximum operational
frequency f =3.4 GHz. The Skylake processor has been used. Figure 6 (right) shows the same information for
the Haswell-EP processor for the maximum operational frequency f =2.4 GHz. The following observations can
be made for most of the benchmarks:
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Figure 6: Dependence of the power consumption (top), execution time (middle) and energy consumption (bottom)
on the number of threads for the PARSEC benchmarks on Skylake (left) and Haswell-EP (right).
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Table 5: EDP for the freqmine benchmark on Skylake.
energy-delay product

Freq p = 1 p = 2 p = 4 p = 8
0.8 GHz 3723095.16 1373633.25 824922.42 441310.04
1.0 GHz 3777602.27 1371858.56 557796.35 390715.00
1.2 GHz 3757455.40 1128545.10 604685.25 331431.44
1.4 GHz 3144239.67 966765.90 417609.50 284399.55
1.5 GHz 2918132.72 897168.38 400445.90 268099.84
1.7 GHz 2548585.34 799809.38 350197.07 247316.78
1.9 GHz 2295347.88 740150.73 329960.00 231725.31
2.1 GHz 2028699.78 698448.61 311274.87 221811.76
2.3 GHz 1909394.77 669977.56 377899.42 214698.15
2.5 GHz 1821256.42 653056.97 293312.49 207365.11
2.7 GHz 1755470.91 649779.96 360036.75 208173.11
2.8 GHz 1751893.85 647770.16 364071.61 212228.70
3.0 GHz 1764447.10 650671.30 369381.94 211446.83
3.2 GHz 1751533.01 1143415.82 300938.57 213749.20
3.4 GHz 1717953.01 1115712.35 372650.08 218278.50

• The power consumption increases with the number of threads. However, different applications show quite
different increase rates, which vary from a slight increase to a sharp increase. A sharp power increase may
be caused by an intensive usage of the physical cores by the additional threads, whereas a slight increase
indicates a less intensive usage. The power increase effect is especially significant for up to four threads
on the Skylake and up to 16 threads on the Haswell-EP, which corresponds to the number of physical cores
of these processors. For more than four or 16 threads, respectively, the power increase slows down and for
some of the benchmarks, it even drops slightly.

• The execution time decreases with the number of threads, which can be expected for a parallel execution.
The speedup for the PARSEC benchmarks on the Haswell and Skylake architecture using eight threads on
four cores is about 4 or larger for many of the benchmarks, see Table 7. This is also true for the SPLASH
benchmarks, see Table 8. Thus, most of the applications show a quite good scalability behavior.

• The energy consumption decreases when the number of threads is increased, especially as long as the number
of threads is smaller than the number of physical cores available. Most of the applications show a quite
similar decrease rate for the energy. For some of the benchmarks the energy consumption slightly increases
again when increasing the number of threads beyond the number of physical cores.

A similar behavior can be observed for other frequencies than 3.4 GHz, not shown in a figure.

4.5 Summarizing data observations

The measurements performed show a diverse behavior for power, energy and performance with respect to varying
frequency and number of threads. However, we can extract the following patterns of behavior:

• power: For all benchmarks, the power consumption increases with the operational frequency for each spe-
cific number of threads, see Figs. 1 and 2. All power curves show the same qualitative behavior, which is
linear or slightly convex, however the quantitative power values vary between the different applications up
to a factor of three.

• energy: The energy consumption diagrams exhibit a convex behavior, which has a U-shape for the Haswell
processor and a slightly increasing shape for the Skylake processor with respect to the frequency, see Figs. 3
and 4. Again, the qualitative behavior is similar for all benchmarks, but the quantitative behavior can differ
significantly.
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• parallelism and scalability: The number of threads employed have an impact on power, energy, and EDP as
follows: For each frequency, the power consumption increases for an increasing number of threads, however
with different increase rates, see Table 4 for a specific benchmark and Fig. 6 and ?? (top) for all PARSEC
benchmarks. Most applications have a good scalability behavior, see Fig. 6 and ?? (middle), which leads to
a decreasing energy consumption with the number of threads despite the increasing power, see Fig. 6 and ??
(bottom) and Fig. 5 for a specific benchmark (freqmine).

• processor architecture: The measurements on the Haswell and Skylake processor show a similar qualitative
behavior. However there are quantitative differences due to the more recent design of the Skylake processor.
Especially, the Skylake has a smaller energy consumption in all cases, see Fig. 4, a lower power consumption
with a higher increase rate with respect to the frequency, see Fig. 2, and a smaller execution time, not shown
in a figure.

• applications: Although the PARSEC and the SPLASH-2 benchmarks exhibit a similar behavior in all as-
pects, it can be observed that the SPLASH-2 benchmarks have generally a slightly higher power consump-
tion than the PARSEC benchmarks for all number of threads, which might be caused by a larger number of
numerical computations, leading to a larger computational load.

5 Modeling and validation

In this section, we investigate whether the optimal frequencies derived with the analytical model from Section
2.2, see Equ. (6) for the energy consumption and the EDP, see Equ. (9), correspond to the optimal frequencies
measured on different platforms using different numbers of threads. We analyze how well the energy and EDP
models from Section 2 are able to capture the effects observed for the performance and energy measurements.

5.1 Modeling methodology

The application-specific power modeling has the purpose to provide application-specific values for the parameters
Pdyn(1) and Pstatic from Equ. (3). This is done by the least-squares method and the power model from Equ.
(3), for which the values for Pdyn(1) and Pstatic are calculated based on the measured data from Subsection
4.1. In the following, we pursue two approaches: The first approach is an application-dependent local modeling
that derives an individual model for each of the PARSEC and SPLASH benchmarks. We consider how well
the model is suitable to describe the observed energy behavior of the corresponding application. In particular, we
consider how well the models are able to capture the optimal operational frequency that leads to a minimum energy
consumption. The second approach is an application-independent global modeling based on an independent test
set of applications that is used for determining the parameters Pdyn(1) and Pstatic. For this modeling, we use the
first three applications of the PARSEC suite (blackscholes, bodytrack, canneal) and the SPLASH-2 suite (barnes,
cholesky, fmm) as test set. Experiments have shown that the usage of a different test set leads to quite similar
results. Using the model derived with the test set, we investigate how well the corresponding model is able to
describe the energy behavior of the remaining applications (verification set), whose measured power and energy
consumption have not been taken into consideration for the derivation of the model, thus exploring the predictive
quality of the energy model. Again, the emphasis lies on the question how well the optimal frequency derived with
the model fit to the optimal frequencies obtained with the measurements.

The modeling is done for both the energy consumption and the EDP. Since different functions are used for the
energy consumption and the EDP, different optimal frequencies result for both approaches. The optimal frequency
computed for the energy consumption should be used, if the goal is a reduction of the overall energy consumption.
If the runtime of the application should also be taken into consideration, the optimal frequency computed for the
EDP should be used, since the EDP balances the execution time and the energy consumption of applications.

5.2 Determination of application-specific power parameters

For the SPLASH-2 benchmarks, the use of the least-squares method results in the power parameter values given in
Table 6 for p = 1 and p = 8. The data in Table 6 show the following characteristics: For a specific processor, the
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Figure 7: Measured and modeled power consumption of the SPLASH-2 benchmark barnes for one thread (p = 1)
and eight threads (p = 8) on Skylake.

static power values Pstatic are quite similar for all benchmarks on this processor. Comparing different processors,
the static power values on the Skylake are much smaller than those on the Haswell processor. On the other hand,
larger variations can be observed for the application-specific Pdyn(1) values, which can be attributed to a different
usage of the hardware resources by these application benchmarks. For each selected benchmark, the values for
Pdyn(1) are often quite similar for the Haswell and Skylake processors. Thus, the variations observed for the
measured overall power consumption on the different processors have to be mainly caused by differences in the
values of Pstatic.

For eight threads, there is a slightly larger variation in the static power consumption for the different benchmarks,
but again the main difference is caused by the dynamic power consumption Pdyn(1). As already observed in Fig. 1,
there is a large dependence of Pdyn(f) on the operational frequency. A dependence on the runtime speedup of the
benchmarks can also be observed. More precisely, benchmarks with a large speedup have a larger dynamic power
consumption than benchmarks with a small speedup. Nevertheless, there are significant variations also between
benchmarks with a good scalability.

The general observations are illustrated by the example in Figure 7, which shows the power modeling for the
SPLASH-2 benchmark barnes for varying operational frequencies using one thread (p = 1) and eight threads
(p = 8) on the Skylake processor. The diagram exhibits the horizontal lines of Pstatic with a parallel shift to a
higher level for a higher number of threads (p = 8), the slightly increasing convex curve for Pdyn(1) and the total
power for p = 1 and the more strongly increasing curve for Pdyn(1) and the total power for p = 8.

5.3 Application-specific modeling of optimal scaling factors

The values of Pdyn(p, 1) and Pstatic(p, 1) derived for each of the benchmarks are used to compute application-
specific values for sopt(p). Table 7 shows the sopt(p) values for each of the PARSEC benchmarks on the Haswell
(top) and the Skylake (bottom) architecture and summarizes measured and modeled performance and energy char-
acteristics. The measured data are the minimum and maximum measured execution time (in seconds) resulting
for different frequencies and different numbers of threads (columns 1 and 2), the runtime speedup obtained for
the minimum (f=0.8 GHz) and maximum (f=3.4 GHz) frequency using different numbers of threads (columns 3
and 4), the minimum and maximum measured energy consumption (in Joule) over all frequencies and numbers of
threads (columns 5 and 6), and the frequency for which the energy consumption is at a minimum for p=1 and p=8
threads (columns 7 and 8). The modeled data are the optimal scaling factors derived with Equ. (6) from Section 2.2
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Table 6: Measured and modeled Power Consumption of the SPLASH-2 Benchmarks on Haswell (first half) and
Skylake (second half)

Power Pdyn(1) Pstatic

Benchmark Freq p=1 p=8 p=1 p=8 p=1 p=8
barnes 0.8 9.18 15.40 0.13 0.40 10.66 20.30
cholesky 0.8 9.21 10.53 0.15 0.17 10.69 12.28
fmm 0.8 8.54 14.09 0.13 0.26 10.49 17.96
lu cb 0.8 8.40 15.38 0.15 0.51 9.99 19.81
lu ncb 0.8 9.14 15.62 0.14 0.50 10.42 20.38
ocean cp 0.8 9.89 15.84 0.15 0.37 11.52 19.19
ocean ncp 0.8 9.43 15.62 0.15 0.35 10.94 19.33
radiosity 0.8 8.82 9.80 0.14 0.20 10.31 11.82
radix 0.8 8.38 13.33 0.10 0.30 9.87 16.69
raytrace 0.8 9.16 16.33 0.16 0.56 10.93 22.77
volrend 0.8 8.75 14.57 0.13 0.45 10.41 19.73
water nsquared 0.8 9.29 16.07 0.16 0.54 10.96 20.26
water spatial 0.8 9.09 14.55 0.14 0.44 10.55 19.21
barnes 3.4 19.66 47.17 10.08 30.82 10.66 20.30
cholesky 3.4 20.59 23.86 11.19 12.70 10.69 12.28
fmm 3.4 19.61 36.36 9.99 19.74 10.49 17.96
lu cb 3.4 20.69 53.79 11.74 39.09 9.99 19.81
lu ncb 3.4 20.39 53.52 11.13 38.17 10.42 20.38
ocean cp 3.4 21.79 44.74 11.31 28.71 11.52 19.19
ocean ncp 3.4 21.02 42.80 11.17 26.64 10.94 19.33
radiosity 3.4 19.59 25.05 10.42 15.01 10.31 11.82
radix 3.4 16.69 36.86 7.73 22.69 9.87 16.69
raytrace 3.4 22.12 60.09 12.26 42.70 10.93 22.77
volrend 3.4 19.69 49.72 10.35 34.82 10.41 19.73
water nsquared 3.4 22.03 57.88 12.53 41.33 10.96 20.26
water spatial 3.4 19.92 48.66 10.42 33.56 10.55 19.21

barnes 0.8 3.70 5.63 0.13 0.40 3.61 6.43
cholesky 0.8 2.98 3.40 0.14 0.16 3.28 3.67
fmm 0.8 3.41 5.24 0.12 0.36 3.47 6.05
lu cb 0.8 3.74 5.49 0.13 0.40 3.58 6.24
lu ncb 0.8 3.58 5.69 0.13 0.41 3.49 6.69
ocean cp 0.8 4.25 6.32 0.13 0.27 4.13 7.48
ocean ncp 0.8 4.07 6.28 0.14 0.27 4.10 7.46
radiosity 0.8 3.53 3.88 0.12 0.17 3.36 3.76
radix 0.8 3.19 4.20 0.09 0.24 3.07 4.79
raytrace 0.8 4.01 6.21 0.14 0.47 3.79 7.19
volrend 0.8 3.66 5.47 0.12 0.42 3.49 6.22
water nsquared 0.8 3.94 6.19 0.14 0.46 3.79 7.19
water spatial 0.8 3.65 5.66 0.13 0.41 3.54 6.27
barnes 3.4 12.99 36.19 9.72 30.40 3.61 6.43
cholesky 3.4 13.73 15.96 10.68 12.48 3.28 3.67
fmm 3.4 12.80 33.09 9.58 27.66 3.47 6.05
lu cb 3.4 12.96 36.58 9.64 30.92 3.58 6.24
lu ncb 3.4 13.02 37.51 9.83 31.52 3.49 6.69
ocean cp 3.4 14.00 27.30 10.31 20.63 4.13 7.48
ocean ncp 3.4 14.47 27.56 10.75 20.89 4.10 7.46
radiosity 3.4 12.45 16.30 9.27 12.73 3.36 3.76
radix 3.4 9.69 22.84 6.75 18.57 3.07 4.79
raytrace 3.4 14.40 42.90 10.78 36.36 3.79 7.19
volrend 3.4 12.64 37.66 9.39 31.90 3.49 6.22
water nsquared 3.4 14.37 41.97 11.03 35.49 3.79 7.19
water spatial 3.4 12.82 36.74 9.60 31.12 3.54 6.27

measured measured modeled modeled modeled modeled
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Table 7: Evaluation of different PARSEC Benchmarks on Haswell (first half) and Skylake (second half) using
runtime in seconds, energy in Joule and frequency in GHz. E-Diff and E-Diff-glob denote percentage differences
in energy for application-dependent and application-independent modeling

Runtime Speedup Energy Consumed Best Freq sopt (f) E-Diff [%] E-Diff-glob [%]
Benchmark min max f=0.8 f=3.4 min max p=1 p=8 p=1 p=8 p=1 p=8 p=1 p=8
blackscholes 37.12 558.67 3.60 3.54 948.56 2323.36 2.3 1.2 1.83 (1.9) 2.13 (1.5) 2.3 6.2 2.3 3.0
bodytrack 31.52 463.37 3.72 3.47 868.69 2134.53 2.3 1.2 1.80 (1.9) 2.15 (1.5) 3.5 7.2 3.5 3.8
canneal 71.00 527.51 2.59 2.66 1209.09 2851.98 1.5 1.2 1.68 (2.1) 1.86 (1.9) 6.3 6.9 1.6 7.0
facesim 81.05 1136.57 3.43 3.95 2958.25 6071.95 2.1 2.1 1.36 (2.5) 1.64 (2.1) 6.3 0 0.9 1.8
ferret 60.91 1080.28 1.00 0.94 2482.52 5357.96 2.1 1.7 1.50 (2.3) 1.57 (2.1) 0.3 2.5 2.1 0
fluidanimate 63.30 1054.09 4.32 4.02 1949.83 5077.73 2.3 1.2 1.80 (1.9) 2.20 (1.5) 2.9 7.3 2.9 6.4
freqmine 80.63 1581.32 4.67 4.65 2742.39 7700.87 2.1 1.2 1.81 (1.9) 2.29 (1.5) 2.1 5.1 2.1 6.9
streamcluster 71.25 918.56 5.19 4.99 1564.56 5222.48 1.7 1.2 1.55 (2.1) 1.89 (1.9) 3.0 12.4 1.1 7.8
swaptions 39.46 867.48 5.18 5.18 1411.24 4313.39 2.3 1.2 1.78 (1.9) 2.35 (1.4) 1.7 4.0 1.7 3.8
vips 21.63 341.41 4.30 3.76 648.34 1703.58 2.1 1.2 1.78 (1.9) 2.03 (1.7) 1.8 6.9 1.7 6.8
x264 16.87 396.76 5.95 5.75 560.11 2155.81 2.1 1.2 1.73 (1.9) 2.18 (1.5) 1.0 5.0 0.9 6.5

blackscholes 34.02 333.86 2.97 3.70 539.53 1546.02 2.1 1.2 1.97 (1.7) 2.53 (1.4) 2.3 1.3 2.3 1.3
bodytrack 27.15 294.10 2.91 3.91 490.99 1314.92 1.7 1.2 1.97 (1.7) 2.85 (1.2) 0 0 0 0.5
canneal 67.94 456.88 2.80 2.77 650.01 2015.27 1.5 0.8 1.92 (1.7) 2.28 (1.5) 2.8 2.8 2.8 1.9
facesim 76.79 1043.79 3.70 4.84 1686.56 5837.58 1.7 1.4 1.80 (1.9) 2.23 (1.5) 0.7 1.5 0 0
ferret 58.79 746.15 3.55 4.13 1262.20 4129.74 1.9 1.2 1.18 (1.9) 2.01 (1.7) 0 4.3 1.2 0.3
fluidanimate 60.51 636.68 2.97 3.95 1151.72 3151.76 1.9 1.0 2.02 (1.7) 2.79 (1.2) 0.4 0 0.4 1.1
freqmine 75.31 1011.15 3.55 4.83 1543.42 4726.40 2.1 1.0 2.02 (1.7) 2.97 (1.2) 1.3 1.0 1.3 1.8
streamcluster 70.36 878.20 5.29 4.77 878.56 3851.71 1.5 0.8 1.96 (1.7) 2.31 (1.4) 3.5 4.1 3.5 1.8
swaptions 35.91 516.00 3.68 5.31 779.57 2529.71 1.9 1.0 1.98 (1.7) 2.96 (1.2) 6.3 1.6 6.3 2.0
vips 18.54 221.89 3.28 4.27 367.38 1067.31 2.1 1.0 2.03 (1.7) 2.86 (1.2) 0.2 0.1 0.2 0.4
x264 14.61 255.89 4.92 6.20 304.57 1197.61 1.7 1.0 2.01 (1.7) 2.86 (1.2) 0 0.1 0 1.5

measured measured measured measured modeled modeled modeled modeled

for p=1 and p=8 threads (columns 9 and 10, corresponding frequencies shown in parentheses), and the percentage
difference between the minimum energy consumption measured and the energy consumption for the frequency
for which the minimum energy consumption is expected according to the analytical energy model (columns 11
and 12). Columns 13 and 14 present results for an application-independent modeling, which will be addressed in
Subsection 5.5.

From Table 7 it can be seen that for each application there is a large variation of the runtime and energy consump-
tion when using different frequencies and different numbers of threads, i.e., varying the operational frequency and
the number of executing threads has a significant impact and provides a good source for saving energy. For the
different benchmarks, there is a large difference in the frequencies at which the minimum energy consumption
results (between 1.0 GHz and 2.3 GHz). Moreover, for p=8 threads a smaller frequency is required to obtain the
minimum energy consumption than for p=1, see columns 7 and 8. This corresponds to a larger scaling factor in
columns 9 and 10.

An important result is shown in columns 11 and 12 containing the percentage difference between the measured and
predicted energy values. An entry 0 indicates an exact fit. The percentage deviation lies well below 10% except for
one case. The maximum percentage deviations are 12.4% on the Haswell architecture (streamcluster application
for p = 8) and 6.3% on the Skylake (swaptions application for p = 1). The average percentage deviation is
3.4% and 6.2% for p=1 and p=8, respectively, for the Haswell processor. For the Skylake, these deviations are
1.9% and 1.0%, respectively, meaning that the model fits significantly better for the Skylake than for the Haswell
architecture.

Comparing the Haswell and the Skylake architecture, the best frequencies are typically smaller for Skylake than
for Haswell. The smallest energy consumptions typically result for frequencies that are larger than the minimum
frequency provided. For the Haswell, the frequency for which the minimum energy consumption results lies
between 1.2 GHz and 2.3 GHz, with smaller frequencies for a larger number of threads. For the Skylake, these
frequencies lie between 0.8 GHz and 2.1 GHz, again with smaller frequencies for a larger number of threads.

Table 8 contains the corresponding information as Table 7 for the SPLASH-2 benchmarks. The application-
specific modeling (columns 11 and 12) is usually very accurate both for p = 1 and p = 8, except for the two
ocean benchmarks for p = 8. This effect is caused by an irregular behavior of the parallel execution time of these
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Table 8: Evaluation of the SPLASH-2 benchmarks on Haswell (first half) and Skylake (second half) using runtime
in seconds, energy in Joule and frequency in GHz

Runtime Speedup Energy Consumed Best Freq sopt (f) E-Diff[%] E-Diff-glob[%]
Benchmark min max f=0.8 f=3.4 min max p=1 p=8 p=1 p=8 p=1 p=8 p=1 p=8
barnes 25.436 442.727 3.975 4.224 1199.80 4063.08 3.2 3.4 1.23 (2.7) 1.44 (2.3) 4.4 4.7 0.2 2.0
cholesky 0.3567 1.52708 1.111 1.850 7.71460 14.4705 3.2 3.0 1.14 (3.0) 1.27 (2.7) 8.0 2.4 8.0 5.2
fmm 27.988 317.544 3.611 2.855 969.552 2710.94 3.0 1.9 1.23 (2.7) 1.30 (2.7) 3.1 7.2 0.0 7.9
lu cb 26.889 408.141 3.614 3.616 1323.18 3430.18 3.0 1.9 1.32 (2.5) 1.58 (2.1) 5.8 0.95 0.0 8.6
lu ncb 35.209 502.018 3.819 3.691 1588.19 4588.54 3.0 1.9 1.28 (2.7) 1.55 (2.1) 0.9 0.35 0.0 11.2
ocean cp 50.570 289.784 3.660 1.503 1188.19 2865.26 3.0 1.0 1.25 (2.7) 1.44 (2.3) 2.1 27.8 0.0 40.6
ocean ncp 54.661 532.340 5.509 2.425 1400.14 5020.83 3.0 1.0 1.26 (2.7) 1.40 (2.5) 2.6 17.9 0.0 31.0
radiosity 108.56 534.572 1.131 1.165 2478.76 4713.34 3.4 3.0 1.26 (2.7) 1.36 (2.5) 4.9 7.0 0.7 7.0
radix 7.8211 140.550 6.553 4.278 238.103 1177.16 3.4 2.1 1.16 (3.0) 1.39 (2.5) 2.5 7.1 2.6 7.3
raytrace 22.863 489.276 5.047 5.015 1332.35 4482.98 3.0 2.1 1.30 (2.5) 1.55 (2.1) 5.5 0.0 0.0 2.4
volrend 24.689 479.362 4.534 4.461 1201.91 4192.04 3.4 1.9 1.25 (2.7) 1.52 (2.3) 6.5 5.3 5.2 4.4
water nsquared 84.675 1253.17 3.782 3.631 4097.42 11647.5 3.0 2.1 1.31 (2.5) 1.59 (2.1) 3.4 0.0 0.0 5.6
water spatial 24.841 495.010 4.812 4.838 1166.13 4497.56 3.2 1.9 1.25 (2.7) 1.51 (2.3) 3.6 4.5 1.1 4.3

barnes 21.39 232.84 3.05 4.48 417.23 1244.07 1.7 1.2 2.01 (1.7) 2.79 (1.2) 0.0 0.0 0.0 2.2
cholesky 0.32 1.32 1.10 1.13 3.39 5.14 1.7 1.5 2.22 (1.5) 2.26 (1.5) 0.2 0.0 0.0 2.9
fmm 18.64 198.87 3.21 3.88 322.22 926.49 1.7 1.0 2.03 (1.7) 2.73 (1.2) 0.0 0.2 0.0 1.4
lu cb 28.65 317.63 2.97 4.24 576.70 1573.95 1.5 1.2 2.00 (1.7) 2.89 (1.2) 0.4 0.0 0.4 0.8
lu ncb 34.78 407.64 3.36 4.18 652.01 1892.70 1.5 1.0 2.05 (1.7) 2.79 (1.2) 1.8 0.8 1.8 2.9
ocean cp 34.98 125.07 2.36 1.59 335.16 784.12 1.5 0.8 1.94 (1.7) 2.04 (1.7) 0.2 23.2 0.2 11.6
ocean ncp 39.60 139.62 2.24 1.58 388.21 1103.04 1.5 1.0 1.99 (1.7) 2.06 (1.7) 1.4 20.2 1.4 9.9
radiosity 98.38 317.35 1.13 1.21 1073.33 1740.68 1.7 1.5 2.03 (1.7) 2.25 (1.5) 0.0 0.9 0.0 0.0
radix 6.48 94.27 4.77 5.52 78.92 346.79 1.9 1.5 1.82 (1.9) 2.45 (1.4) 0.0 0.0 1.4 0.0
raytrace 20.88 273.69 3.46 4.98 477.11 1498.99 1.7 1.0 2.06 (1.7) 2.94 (1.2) 0.0 0.9 0.0 2.3
volrend 23.71 298.27 3.33 4.80 480.75 1437.68 1.7 1.2 2.00 (1.7) 2.97 (1.2) 0.0 0.0 0.0 1.1
water nsquared 72.83 715.78 2.91 3.84 1519.57 4015.32 1.5 1.0 2.09 (1.7) 2.89 (1.2) 0.9 1.2 0.9 3.7
water spatial 22.35 279.36 3.56 4.80 439.87 1376.12 1.7 1.0 2.01 (1.7) 2.89 (1.2) 0.0 0.8 0.0 0.5

measured measured measured measured modeled modeled modeled modeled

two benchmarks for p = 8 for varying frequencies: when increasing the frequency, the execution time reduction
is much smaller than expected by the model and much smaller than it can be observed for all other PARSEC
and SPLASH-2 applications. On the other hand, the power consumption of the two ocean benchmarks increases
normally. This behavior is not covered by the energy model, and therefore larger deviations result. The effect
cannot be observed for p = 1. This effect will be leveled out by using an application-independent modeling, see
Subsection 5.5.

Figure 8 shows the optimal frequencies that lead to the smallest measured energy consumption for one and eight
threads and compares the measured optimal frequencies with the frequencies that have been computed according
to Equ. (6) for sopt for the i7 Skylake. The left diagram covers the PARSEC benchmarks, the right diagram covers
the SPLASH-2 benchmarks. The application-independent values for sopt are also shown as horizontal lines. It
can be seen that for some of the benchmarks, the modeled values for the optimal frequency are quite different
from the measured values. However, the variations of the energy consumption with the frequency are not very
large, see Fig. 3, and larger differences in the frequency do not necessarily lead to large differences in the energy
consumption, see Tables 7 and 8 for the resulting deviations in the energy consumption. Figure 9 contains the same
information as Figure 8 for the Haswell processor.

5.4 Application-specific optimal EDP frequencies

The modeling for the optimal EDP frequencies are given in Table 9 for the PARSEC benchmarks and in Table
10 for the SPLASH-2 benchmarks. Both tables contain the minimum and maximum measured EDP (in Joule ·
seconds) for different frequencies and different numbers of threads (columns 1 and 2), the frequency for which
the measured EDP is at a minimum for p=1 and p=8 threads (columns 3 and 4), the optimum EDP scaling factors
derived with Equ. (9) (columns 5 and 6), and the percentage difference between the minimum EDP measured and
the EDP for the analytically determined EDP frequency (columns 7 and 8).

In Table 9, two benchmarks (facesim, ferret) have very small EDP values, which is caused by their short execution
times, given in Table 7. A comparison with the best energy frequencies from Tables 7 and 9 show that the smallest
EDP values require larger frequencies than the smallest energy values, since the execution time plays a larger role
for the EDP. This confirms the EDP model from Section 2.3 and the optimum scaling factors computed with this
model, see columns 5 and 6 in Table 9, which are smaller than the scaling factors in columns 9 and 10 of Table 7.
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Figure 8: Comparison of measured and predicted optimum frequency values for PARSEC (left) and SPLASH-2
(right) benchmark suites for Skylake.
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Table 9: Evaluation of the EDP for the PARSEC Benchmarks on Haswell (first half) and Skylake (second half)
EDP Best Freq sEDP

opt (f) EDP-Diff[%] EDP-Diff-glob[%]
Benchmark min max p=1 p=8 p=1 p=8 p=1 p=8 p=1 p=8
blackscholes 47745.13 1297994.89 3.4 3.2 1.15 (3.0) 1.34 (2.5) 5.4 11.9 5.7 7.3
bodytrack 37647.80 989076.15 3.4 3.2 1.13 (3.0) 1.35 (2.5) 4.1 16.2 4.2 14.2
canneal 120885.86 1354092.07 2.8 2.7 1.06 (3.2) 1.17 (3.0) 14.1 5.9 4.3 0
facesim 292995 6901199 3.4 2.8 0.85 (3.4) 1.03 (3.2) 0 2.4 6.1 2.6
ferret 189153 5788118 3.2 3.4 0.94 (3.4) 0.98 (3.4) 1.2 0 6.0 14.5
fluidanimate 5352385.18 186174.95 3.4 3.2 1.13 (3.0) 1.38 (2.5) 2.4 6.2 2.5 2.8
freqmine 326402.63 12177540.17 3.4 3.2 1.14 (3.0) 1.44 (2.3) 3.1 9.7 3.1 6.6
streamcluster 157654.12 4797148.67 2.3 1.9 0.97 (3.4) 1.19 (2.8) 18.5 12.1 10.4 10.4
swaptions 81911.89 3741768.23 3.4 3.4 1.12 (3.0) 1.48 (2.3) 4.8 10.4 5.0 7.77
vips 19470.45 581622.91 3.4 3.0 1.12 (3.0) 1.28 (2.7) 4.1 4.9 4.1 5.1
x264 13792.44 855348.67 3.4 3.4 1.09 (3.2) 1.37 (2.5) 7.6 11.1 5.3 7.4

blackscholes 29693.18 408471.95 3.4 2.7 1.24 (2.7) 1.59 (2.1) 3.0 9.3 1.9 10.3
bodytrack 22756.40 314972.63 3.4 2.7 1.24 (2.7) 1.79 (1.9) 3.5 12.0 2.6 7.7
canneal 68628.75 569316.84 2.7 2.3 1.21 (2.8) 1.43 (2.3) 2.9 0 2.9 1.0
facesim 224735 4467468 2.8 2.5 1.13 (3.0) 1.4 (2.5) 2.6 0 0 4.2
ferret 127648 2244714 2.7 2.5 1.16 (2.8) 1.26 (2.7) 0.6 0.6 2.4 4.4
fluidanimate 120781.00 1529633.80 3.4 2.5 1.27 (2.7) 1.76 (1.9) 0.3 8.5 1.4 4.7
freqmine 207365.11 3777602.27 3.4 2.5 1.27 (2.7) 1.87 (1.9) 2.1 10.5 1.9 6.9
streamcluster 94014.90 2456987.16 2.3 1.7 1.23 (2.7) 1.45 (2.3) 0.8 3.7 3.3 1.8
swaptions 49561.53 1031320.00 3.4 2.7 1.25 (2.7) 1.86 (1.9) 2.9 11.8 4.3 7.0
vips 11839.69 183456.93 3.2 2.7 1.28 (2.7) 1.80 (1.9) 0.4 11.2 1.3 7.0
x264 7760.78 244215.62 3.4 2.5 1.26 (2.7) 1.80 (1.9) 6.5 8.7 1.8 5.0

measured measured modeled modeled modeled modeled

The percentage deviation between the minimum EDP value and the EDP value for the frequency computed with
the EDP model are slightly larger than for the energy values: For the PARSEC benchmarks, the average percentage
deviations are 6.8 % and 8.5 % for the Haswell processor for p = 1 and p = 8, respectively, and 3.8 % and 9.3
% for the Skylake for p = 1 and p = 8, respectively. Thus, the average deviations are larger than the deviations
for the energy, especially for the Skylake processor for p = 8. This can be explained by the strong influence of
the application-specific execution time, which seems to be more difficult to capture by the model, especially for an
increasing number of threads.

5.5 Application-independent optimal frequencies

The goal of an application-independent modeling is to derive only one optimum scaling factor sglob that is rea-
sonable suitable for all benchmarks. The method to derive such an application-independent scaling factor is to
subdivide the PARSEC and SPLASH-2 benchmark sets into a test set, containing three benchmarks, and a vali-
dation set, containing the remaining benchmarks. We select the first three benchmarks (blackscholes, bodytrack,
canneal for PARSEC and barnes, cholesky and fmm for SPLASH-2) as test set. For each benchmark in the test
set, the values for Pdyn and Pstatic are determined by the least-squares method as it was done in Subsection 5.3.
These values are used to calculate mean values Pmean

dyn and Pmean
static , which are then used to calculate an optimum

scaling factor sglob according to Equ. (6). Tables 11 and 12 shows the resulting values for the global optimum
scaling factor sglob along with the corresponding operational frequencies for p = 1 and p = 8 for the PARSEC and
SPLASH-2 benchmarks. The global optimum scaling factor sglob is then applied to the validation set to which the
other benchmarks belong. We calculate two kinds of percentage difference to evaluate the quality of sglob for the
benchmarks in the validation set, which are (i) the percentage difference between the minimum measured energy
consumption and the energy consumption for the frequency to sglob and (ii) the percentage difference between
the individual sopt values and sglob. The percentage deviations of the energy are given in the last two columns of
Tables 7 and 8. Selecting other benchmarks for the test set leads to very similar results.

For the PARSEC benchmarks, the percentage deviation lies below 10% except for one case, which has a maximum
percentage deviation of 11.3% on the Haswell architecture (ferret application for p = 1) and 6.3% on the Skylake
(swaptions application for p = 1). The average percentage deviation for the Haswell processor is 2.9% and 5.7%
for p = 1 and p = 8, respectively. Thus, surprisingly, the application-independent modeling leads to smaller
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Table 10: Evaluation of the EDP for the SPLASH-2 Benchmarks on Haswell (first half) and Skylake (second half)
EDP Best Freq sEDP

opt (f) EDP-Diff[%] EDP-Diff-glob[%]
Benchmark min max p=1 p=8 p=1 p=8 p=1 p=8 p=1 p=8
barnes 30518.1 1798840 3.4 3.4 0.78 (3.4) 0.91 (3.4) 0.0 0.0 0.0 0.0
cholesky 2.70503 21.4811 3.4 3.2 0.71 (3.4) 0.80 (3.4) 0.0 2.39 0.0 2.39
fmm 28483.4 860843 3.4 3.4 0.78 (3.4) 0.81 (3.4) 0.0 0.0 0.0 0.0
lu cb 38890.3 1400000 3.4 3.4 0.83 (3.4) 0.99 (3.4) 0.0 0.0 0.0 0.0
lu ncb 66348.6 2303530 3.4 3.4 0.81 (3.4) 0.97 (3.4) 0.0 0.0 0.0 0.0
ocean cp 74499.6 830306 3.4 1.5 0.78 (3.4) 0.90 (3.4) 0.0 53.58 0.0 53.58
ocean ncp 92290.7 2672790 3.4 1.9 0.80 (3.4) 0.80 (3.4) 0.0 38.58 0.0 38.58
radiosity 295224 2519620 3.4 3.4 0.79 (3.4) 0.85 (3.4) 0.0 0.0 0.0 0.0
radix 2158.91 165450 3.4 3.0 0.73 (3.4) 0.87 (3.4) 0.0 4.4 0.0 4.4
raytrace 31409.5 2193410 3.4 3.4 0.82 (3.4) 0.97 (3.4) 0.0 0.0 0.0 0.0
volrend 30308.2 2009500 3.4 3.4 0.79 (3.4) 0.95 (3.4) 0.0 0.0 0.0 0.0
water nsquared 415024 14596300 3.4 3.4 0.83 (3.4) 1.00 (3.4) 0.0 0.0 0.0 0.0
water spatial 30029 2226340 3.4 3.4 0.79 (3.4) 0.95 (3.4) 0.0 0.0 0.0 0.0

barnes 14989.6 201077 2.8 2.5 1.10 (3.0) 1.33 (2.5) 1.33 0.0 1.33 1.7
cholesky 1.56215 5.20819 2.8 3.2 1.17 (2.8) 1.19 (2.8) 0.0 1.75 1.83 3.24
fmm 10192.8 134910 3.0 2.5 1.11 (3.0) 1.31 (2.5) 0.0 0.0 0.0 0.7
lu cb 28632.6 378218 3.4 2.5 1.10 (3.0) 1.35 (2.5) 2.2 0.0 2.2 0.03
lu ncb 39448 595360 3.2 2.7 1.12 (3.0) 1.33 (2.5) 1.6 1.15 1.6 0.0
ocean cp 15691.6 66498.7 2.5 1.4 1.07 (3.2) 1.11 (3.0) 5.65 74.3 2.45 48.42
ocean ncp 20022.8 80603.1 2.5 1.5 1.09 (3.2) 1.11 (3.0) 7.93 74.08 5.09 47.51
radiosity 176397 355392 3.2 2.7 1.11 (3.0) 1.19 (2.8) 1.82 0.31 1.82 0.0
radix 801.203 28531.2 3.4 2.3 1.03 (3.2) 1.24 (2.7) 0.86 0.87 3.52 0.87
raytrace 17713.1 299872 3.2 2.8 1.12 (3.0) 1.36 (2.5) 0.43 0.98 0.43 0.18
volrend 20138.8 327530 3.4 2.7 1.10 (3.0) 1.37 (2.5) 1.63 0.76 1.63 0.0
water nsquared 200446 2021020 3.2 2.5 1.13 (3.0) 1.35 (2.5) 1.34 0.0 1.25 1.82
water spatial 16879.3 285822 3.4 2.5 1.10 (3.0) 1.35 (2.5) 1.58 0.0 1.58 2.97

measured measured modeled modeled modeled modeled

Table 11: Application-independent optimum scaling factors sglob and corresponding frequencies for PARSEC
benchmarks.

optimum scaling factors energy PARSEC
processor p = 1 p = 8
Haswell sglob=1.77 (1.9 GHz) sglob=2.04 (1.7 GHz)
Skylake sglob=1.95 (1.7 GHz) sglob=2.55 (1.4 GHz)
Haswell-EP sglob=0.79 (2.4 GHz) sglob=1.04 (2.3 GHz)
Broadwell sglob=1.86 (1.6 GHz) sglob=2.49 (1.2 GHz)

Table 12: Application-independent optimum scaling factors sglob and corresponding frequencies for SPLASH-2
benchmarks.

optimum scaling factors energy SPLASH-2
processor p = 1 p = 8
Haswell sglob=1.14 (3.0 GHz) sglob=1.34 (2.5 GHz)
Skylake sglob=2.08 (1.7 GHz) sglob=2.42 (1.4 GHz)
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Table 13: Application-independent optimum scaling factors sEDP
glob and corresponding frequencies for PARSEC

benchmarks.
optimum scaling factors EDP PARSEC

processor p = 1 p = 8
Haswell sEDP

glob =1.11 (3.0 GHz) sEDP
glob =1.28 (2.7 GHz)

Skylake sEDP
glob =1.23 (2.8 GHz) sEDP

glob =1.60 (2.1 GHz)
Haswell-EP sEDP

glob =0.47 (2.4 GHz) sEDP
glob =0.66 (2.4 GHz)

Broadwell sEDP
glob =1.23 (2.5 GHz) sEDP

glob =1.58(1.9 GHz)

Table 14: Application-independent optimum scaling factors sEDP
glob and corresponding frequencies for SPLASH-2

benchmarks.
optimum scaling factors EDP SPLASH-2

processor p = 1 p = 8
Haswell sEDP

glob =0.79 (3.4 GHz) sEDP
glob =0.86 (3.4 GHz)

Skylake sEDP
glob =1.13 (3.0 GHz) sEDP

glob =1.29 (2.7 GHz)

average deviations than the application-specific modeling. For the Skylake, the average deviations are 1.7% and
1.4%, respectively. Thus, they are similar to the deviations for application-specific modeling. Again, the model
fits significantly better for the Skylake than for the Haswell architecture. Simular results are obtained for the
SPLASH-2 benchmarks: For p = 1, the percentage deviations are even smaller than for the PARSEC benchmarks.
For p = 8, the ocean benchmarks lead to larger deviations due to their irregular behavior.

5.6 Application-independent optimal EDP frequencies

For the application-independent modeling of the EDP, the same approach has been used, and the resulting percent-
age deviations are given in the last two columns of Tables 9 and 10. The resulting EDP optimum scaling factors
are given in Tables 13 and 14.

Larger deviations between the measured and modeled EDP values can be observed for two programs (facesim,
ferret) on Skylake for p = 8, which is mainly caused by an irregular runtime behavior of these programs: The
runtime is quite short compared to the other programs, see Table 7, and sudden runtime leaps occur between
neighboring frequencies for p = 8, which cannot be captured by the model. These runtime leaps are not visible
for the Haswell. The average deviations are (i) for Haswell 4.8% and 8.5% for p = 1 and p = 8, respectively, and
(ii) for Skylake 1.8% and 10.8% for p = 1 and p = 8, respectively. For the SPLASH-2 benchmarks, the situation
is similar with larger deviations again for the two ocean benchmarks.

5.7 Scalability analysis

This section investigates the development of the optimal frequencies for the energy consumption and the EDP
with respect to the number of threads used for the execution of the different benchmarks. Figure 10 (left) shows
this development of the optimal frequencies for the energy consumption for a varying number of threads. The
optimal frequencies have been computed with the global application-independent model from Section 5.5 for the
PARSEC benchmarks. The figure shows the optimal frequencies for the different processors that have been used
for the experimental evaluation. Figure 10 (right) shows the optimal frequencies for the EDP again using the global
application-independent model for the PARSEC benchmarks. The following observations can be made from the
Figure 10:

• For both the energy consumption and the EDP, there is no large variation of the optimal frequency when
increasing the number of threads for a specific processor. This is especially true for the Haswell-EP and for
the energy consumption on the Broadwell processors. For the EDP on the Broadwell processor, an increase
of the optimal frequency with the number of threads can be observed beyond two threads.
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Figure 10: Development of the optimal frequencies for the energy consumption (left) and EDP (rigt) computed with
the global model for the different processors considered using different numbers of threads.

• For the energy consumption on the Haswell and Skylake processors, a slight decrease of the optimal fre-
quency with the number of threads can be observed beyond two threads.

• Especially for the energy consumption, the different processors require a different frequency to obtain the
minimum energy consumption. For the desktop processors Haswell and Skylake, which have a frequency
range between 0.8 GHz and 3.4 GHz, the optimal frequency typically lies between 1.4 GHz and 2.2 GHz,
which is significantly below the maximum frequency. For the Broadwell processor, the optimal frequency
is even smaller. In comparison, the server processor Haswell-EP requires a frequency between 2.2 GHz and
2.4 GHz for the minimum energy consumption, which is close to the maximum frequency 2.4 GHz available
for this processor.

5.8 Summarizing modeling observations

In this section 5, we have applied the analytical power and energy models from Section 2 to derive application-
specific and application-independent power, energy, and EDP models. The application-specific models are derived
by calculating values for the dynamic and static power consumption, given in Table 6 and by computing optimal
frequency scaling factors, given in Tables 7 – 10 according to the formulas in Section 2. For the calculation, we
have proposed a methodology which can be applied in an application-specific or an application-independent way.
The resulting modeling and parameter values exhibit the following behavior and quality:

• benchmark suites: The calculated optimum scaling factors for the PARSEC and SPLASH-2 benchmarks
are quite similar for the Skylake architecture. This can be seen in Fig. 8 where the application-independent
scaling factors are nearly identical. The situation is different for the Haswell architecture, see Fig. 9, where
the scaling factors for the SPLASH-2 benchmarks are significantly larger than the scaling factors for the
PARSEC benchmarks. This behavior can be attributed to the higher computational intensity of the SPLASH-
2 benchmarks, which has a much larger effect on the Haswell than on the Skylake.

• processor architecture: The optimal scaling factors computed for the Skylake architecture are generally
smaller than the optimal scaling factors computed for the Haswell. This can be observed for the energy and
the EDP modeling. This effect is epecially significant for the SPLASH-2 benchmarks. Correspondingly, the
minimum energy consumption is obtained for a smaller operational frequency on the Skylake than on the
Haswell. This is confirmed by the measurements in Figures 3 and 4 and the modeling shown in Tables 7 –
10. The scaling factors for the Broadwell-E processor are similar than the scaling factors for the Skylake
processor, see Tables 11 and 13. For the server processor Haswell-EP, the scaling factors are such that the
maximum frequencies should be used in most of the cases for both the energy consumption and the EDP.

• energy consumption and EDP: Comparing Tables 11 and 12 with Tables 13 and 14, it can be seen that the
application-independent scaling factors for the EDP are smaller than the corresponding scaling factors for the
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energy consumption. Thus, a larger frequency leads to the optimization of the EDP. The same observation
can be made for the application-specific scaling factors, see Tables 7–10, both for the measured and the
modeled optimal frequencies. This confirms the theoretical prediction in Section 2.3 about the two scaling
factors.

6 Related Work

Power-management techniques and features have been integrated in computer systems of different sizes and
classes, from handheld devices to large servers [37, 13, 14]. An important feature for energy saving is the DVFS
technique that trades off performance for power consumption by lowering the operating voltage and frequency if
this is possible [42]. The approach to determine the voltage scaling factor that minimizes the total CPU energy
consumption by taking both the dynamic power and the leakage power into consideration has been discussed in
[23, 22, 42] for sequential executions. The influence of voltage scaling has been investigated in [24].

Power models for multicore designs have been developed in [13]. A detailed model for capturing the leakage cur-
rents on recent CMOS devices has been developed in [18]. The model takes DVFS into consideration and is much
more detailed than the model in Section 2, since a quite accurate gate-level modeling is intended. The transition
overhead for DVFS is addressed in [30] and a formal analysis of these overheads as well as a detailed analysis of
the various components of the overhead are given. A similar power model as the one described in Section 2 has
been used in [8] to evaluate the effect of DVFS on the execution of Lattice-Bolzmann simulations for computa-
tional fluid dynamics. A DVFS energy model similar to our model has been used in [10] for analyzing and tuning
the energy efficiency of the fast-multipole method for n-body simulations. The experimental evaluation has been
performed on a NVIDIA Jetson TK1 mobile system-on-chip (SoC) development board. The DVFS performance
predictor DEP+BURST for managed multithreaded applications has been proposed in [2]. DEP+BURST takes
into account synchronization, inter-thread dependencies, and store bursts. However, the energy consumption is not
considered.

Performance prediction for DVFS processors is addressed in [36] with an emphasis on green supercomputing.
Predictive models for multi-dimensional power-performance optimization on many-core processors is investigated
in [12]. Especially, the interaction between DVFS and dynamic concurrency throttling (DCT) is investigated and a
library targeting power-performance adaptation of OpenMP applications is presented. The experimental evaluation
has been performed for the OpenMP versions of some of the NAS parallel benchmarks. The model used for the
prediction is based on sample configurations and does not use a power model as presented in Section 2. The
performance impact of DVFS for realistic memory systems is explored in [28]. The experimental evaluation is
done with the SPEC CPU 2006 benchmarks, which are based on a sequential workload. The energy consumption
of parallel algorithms for shared memory architectures based on the parallel external memory (PEM) model [4] has
been discussed in [25]. [38] proposes a systemlevel iso-energy-efficiency model to analyze, evaluate and predict
energy-performance of data intensive parallel applications running on cluster systems.

A detailed analytical treatment of energy models in the context of scheduling algorithms is given in [27]. Funda-
mental aspects of speed scaling and power-down scheduling are described in [11]. Power-down mechanisms and
dynamic speed scaling techniques with a focus on algorithmic solutions are addressed in [3].

In the domain of realtime scheduling, many techniques for utilizing available waiting times based on DVFS have
been considered, see, e.g., [19, 29, 41]. These approaches are usually based on heuristics and are not based on
an analytical model as presented in this work. The effects of dynamic concurrency throttling (DCT) and DVFS
in the context of a hybrid MPI/OpenMP programming model are considered in [26]. In particular, frequency
selection is formulated as a variant of the 01 knapsack problem and dynamic programming is used to compute an
approximation.

The energy delay product (EDP) has first been introduced in [17] to capture both energy consumption and execution
time simultaneously. However, as it has been pointed out in [1], the EDP is not able to distinguish whether a shorter
execution time or a better energy utilization leads to a smaller EDP value when comparing different version of a
program. The biased effects of the EDP and its generalization EDnP for a nonnegative integer n are also discussed
in [20]. To separate energy and performance when considering different program versions, [1] introduces powerup
and greenup metrics. These metrics are then used together with the speedup to identify different energy categories
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of software. In the context of frequency scaling, [15] defines the power-aware speedup, which incorporates the
frequency when computing the runtime speedup of programs. However, the energy consumption is not explicitly
taken into consideration.

A detailed energy roofline model, which also takes details of the processor architecture such as memory hierarchies
into consideration, has been presented in [9]. The model has been evaluated with micro-benchmarks for different
architectures including x86, ARM, and GPU. In contrast to this model, our model is application-oriented and can
be used for an application-specific as well as for an application-independent modeling. Our model abstracts from
the details of the architecture considered. Instead, application-specific effects are captured by the parameters of
the energy model, which are determined from measured runtime and energy values. An earlier version of this
paper [33] contained preliminary results for the PARSEC benchmarks on the Skylake processor. Application-
specific thermal energy models using both hardware-specific and application-specific parameters are described in
[16]. The paper describes a detailed thermal hardware model along with an experimental verification by hardware
measurements.

7 Conclusions

This article has demonstrated that analytical models can help to explain the dependence of the energy consumption
of DVFS processors on the operational frequency and that such models can also be used for the EDP. Based on
an existing sequential power model, this article presents parallel models for the energy consumption and the EDP
of application codes and shows that the models can be used to compute optimal frequency values. The analytical
models are derived from power formulas modeling the power activity of processors in general and without any
assumption about the application to be executed. We have performed a detailed experimental evaluation of these
models using the PARSEC and SPLASH-2 benchmark programs on four Intel processors.

A comparison with measured energy and EDP values shows that for most of the applications, the models can
support an a priori selection of a frequency for which the energy consumption is near the minimum energy con-
sumption over all frequencies. This has been done for an application-specific as well as an application-independent
modeling for the energy consumption and the EDP. The application-independent modeling is based on a test set of
applications for determining the parameters of the energy model and an independent validation set for the experi-
mental comparison. The comparison shows that the modeling process is very accurate for the energy consumption
and quite accurate for the EDP. This shows that the analytical models are suitable to explain and control the fre-
quency scaling on recent DVFS processors.

Although we have taken the PARSEC and SPLASH-2 benchmark suites for our investigations, the method to
derive application specific power, energy and EDP models is entirely independent from the specific multi-threaded
applications or the internal behavior of the application and the hardware details. Instead, the derivation of the
models relies entirely on the provision of measured performance data.
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