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Abstract

Due to their internal execution characteristics, application programs exploit the hardware very differently,
which leads to a quite diverse behavior concerning their performance or the energy consumed for their execution.
A change of the operational frequency of DVFS processors leads to further variations in performance and energy
consumption, as does the exploitation of thread parallelism on multicores. This article combines frequency scaling
and thread-parallelism and considers several new metrics for the evaluation of an application’s performance and
energy consumption. As application programs, the PARSEC benchmark suite and the SPLASH-2 benchmark
suite are investigated. The PARSEC benchmark suite provides an up-to-date collection of applications with
different workloads on chip-multiprocessors. The SPLASH-2 is a common suite for scientific studies on parallel
shared memory machines. Intel Core i7 processors are used as hardware platforms for the evaluation.

1 Introduction

A low energy consumption as well as a good performance are important properties of today‘s application codes.
These properties are influenced by the software structure, the execution characteristics, and the way in which the
code exploits the hardware details of the execution platform. The internal organization of the processor archi-
tecture may have a large influence on the resulting runtime and energy consumption, depending on how well the
operations defined by the application code can be mapped onto the functional units of the processor. Also, recent
processors provide features, such as chip-multiprocessing or dynamic voltage frequency scaling (DVFS), which
can be exploited to achieve a better performance or energy balance. However, it is not a priori predictable whether
the use of more threads leads to a smaller execution time of an application and whether the use of a smaller opera-
tional frequency leads to a reduction in the energy consumption. Instead, for a given application there is typically
an optimal number of threads beyond which the execution time cannot be reduced further. Similarly, there is often
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an optimal operational frequency beyond which a further frequency reduction does not lead to a further energy
reduction.

In this article, we study the combination and interaction of energy efficiency and runtime performance for multi-
threaded applications on multicore DVFS processors. We consider the dependence of energy consumption as well
as runtime performance from both, the number of threads used and the operational frequency chosen. The runtime
performance usually improves with an increasing number of threads but decreases with a down-scaling of the fre-
quency. Also the energy used for an application varies when varying the number of threads or when scaling the
frequencies. And although the energy consumed depends on the execution time, it can be observed that the lowest
execution time achieved for a specific setting of number of threads and operational frequency does not necessarily
lead to the lowest energy consumption. This is caused by an application-specific power consumption.

The diverse interactions of the effects of a varying number of threads and varying frequencies on the runtime
performance and the energy consumption of applications can be quite intricate. Thus, the question arises whether
appropriate metrics can be defined which can capture the dependence of performance and energy consumption on
the two varying parameters, i.e., the number of threads and the operational frequency, and how an improvement
effect can be expressed. Since both runtime performance and energy consumption are consided together, a metrics
combining them is needed. In this article, we propose several metrics, including speedup and reduction factors
for the execution time and the energy in isolation as well as combined metrics. All these metrics depend on
two variables, which are the number of threads and the frequency. Also, metrics for the power consumption are
introduced with which application-specific power values can be assessed.

The Princeton Application Repository for Shared-Memory Computers (PARSEC) [6] is a collection of multi-
threaded benchmarks with different parallel workloads and execution characteristics. PARSEC provides programs
from a wide range of applications based on the latest techniques in the specific domains and with an emphasis on
large workloads as well as multicore parallelism. The contribution concerning the PARSEC benchmarks has two
aspects. First, we demonstrate and evaluate our metrics with respect to their expressiveness and validity. Second,
we provide an intensive study of the performance and energy characteristics of the PARSEC benchmarks on recent
Intel multicore processors that adds another study to the investigation of the PARSEC benchmarks. The results
concerning energy might be valuable for users of the benchmark suite.

The SPLASH-2 benchmark suite [32] is a popular benchmark suite comprising eleven applications mainly from
scientific computing and graphics, which were the main application areas for parallel programming when the
SPLASH-2 benchmark suite has been assembled. The benchmarks have been chosen and optimized for parallel
shared memory machines of the 90th. Thus, the optimizations naturally address different hardware features then
are now availbale in recent multicore architectures. Nevertheless, the programming model of the SPASH-2 bench-
marks is suitable for multicore programming and it is worthwhile to study these application codes with respect to
multicore parallelism and frequency scaling, which will gives insight into the behavior of scientific applications,
which are usually used for a longer period, on recent architectures.

The contribution of this article comprises an intensive empirical investigation of the performance and the energy
behavior of multithreaded applications with respect to varying numbers of cores and varying frequencies on recent
multicore DVFS processors. As hardware platform, we use two Intel Core i7 processors from the 4th (Haswell)
and the 6th (Skylake) generation, which both provide frequency scaling, and an ARM big.LITTLE architecture
with an Samsung Exynos5422 Cortex A15 2.0 GHz quadcore as well as a Cortex 1.4 GHz A7 quadcore CPU,
provided by an Odroid XU4 Board. The study gives insight into the performance and energy characteristics of the
PARSEC and the SPLASH-2 benchmarks, thus providing results for application optimized for recent as well as
for older parallel shared memory machines. The investigations and evaluations have been done with the help of
well-known and also newer metrics capturing both criteria, energy and performance.

The rest of the article is structured as follows: Section 2 describes the energy model and the evaluation strategy
used. Section 3 presents the new metrics. Section 4 evaluates of the PARSEC and SPLASH-2 benchmarks with
these metrics and discusses the results. Section 5 discusses related work and Section 6 concludes the article.

2 Multivariable energy model

The execution time T [sec] of an application code varies with the number of threads p used for the execution and
the operational frequency f chosen, as does the power drawing P [Watt]. To express the dependency of the energy
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consumption E = T · P [Joule] on the number of threads and the operational frequency, we develop an energy
model which explicitly uses the two variables p and f .

2.1 Energy model for frequency scaling

When considering the energy consumption of application programs for DVFS processors, it is useful to introduce
frequency scaling factors as follows: The frequency scaling for a DVFS processor is expressed by a dimensionless
scaling factor s ≥ 1 which describes a smaller frequency f̃ < fmax as f̃ = fmax/s where fmax is the maximum
frequency possible for the processor.

Power models for DVFS processors distinguish the dynamic power consumption and the static power consumption.
The dynamic power consumption Pdyn(f) is related to the supply voltage and the switching activity during the
computing activity of the processor and can be expressed by Pdyn(f) = α · CL · V 2 · f where α is the switching
probability, CL is the load capacitance, and V is the supply voltage. The frequency f depends linearly on the
supply voltage V , i.e., V = β · f with some appropriate constant β. Thus, the dependence of the dynamic power
consumption on the frequency f can be expressed as Pdyn(f) = γ · f3 with γ = α · CL · β2 or when using the
corresponding scaling factor s as Pdyn(s) = s−3 · Pdyn(1) where Pdyn(1) is the dynamic power consumption in
the un-scaled case.

The static power consumption Pstat(f) is intended to capture the leakage power consumption as well as the power
consumption of peripheral devices and can be expressed by Pstat(f) = V ·N ·kdesign ·Ileak, whereN is the number
of transistors, kdesign is a design dependent parameter, and Ileak is a technology-dependent parameter [7]. Again
using V = β·f leads to a linear dependence of the static power on f , i.e., Pstat(f) = δ·f with δ = N ·kdesign·Ileak·β
or Pstat(s) = s ·Pstat(1) where Pstat(1) is the static power consumption in the un-scaled case. Other authors have
also proposed to make the simplified assumption that Pstatic is independent of the voltage or frequency scaling
[33], i.e., Pstat(s) = Pstat(1) = Pstatic. In the following, we use this assumption. The total power consumption
includes both power components Pdyn(s) and Pstatic.

Reducing the operational frequency of a processor by a scaling factor of s usually decreases the power consump-
tion, however, it increases the execution time T (1) of an application program by the same factor compared to an
un-scaled execution, i.e., T (s) = s · T (1). Using the power and the execution time depending on the scaling used
for the execution of the application program leads to an energy model depending on the scaling factor s:

E(s) = (Pdyn(s) + Pstatic) · s · T (1)
= (s−3 · Pdyn(1) + Pstatic) · s · T (1)
= (s−2 · Pdyn(1) + s · Pstatic) · T (1) (1)

2.2 Energy model for parallel execution

The execution of multithreaded programs introduces a further variable into the model, which is the number of
threads used for a specific code execution. The execution time usually decreases with an increasing number of
threads (typically in a non-linear way) until a saturation point is reached, which strongly depends on the application.

On the other hand, also the power drawing varies with the number of threads, usually in a way that the power
drawing increases with an increasing number of threads. Table 1 shows the power consumption and Figure 4
illustrates the energy consumption impacts of multithreading and frequency scaling for the example applications
swaption and blackscholtes from the PARSEC suite. The table shows that the power drawing increases with the
frequency for a fixed number of threads. For a fixed frequency, the power drawing increases up to four threads,
corresponding to the number of physical cores, and then it may increase further or may slightly decrease. The
table shows the enormous differences in the power consumption with values between about 5 Watt and 50 Watt.
Taking the dependence of the execution time and power drawing on both, the number of threads and the frequency
scaling, into consideration results in an energy model for two variables. More precisely, Equ. (1) is extended to
take varying numbers p of executing threads into consideration, in addition to the scaling factor s, yielding

E(p, s) = (s−2 · Pdyn(p, 1) + s · Pstat(p, 1)) · Tpar(p, 1) (2)
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Table 1: Power Consumption in Watt of the PARSEC benchmark swaption on Haswell for different frequencies
and different number of threads

power consumption threads
Freq 1 2 4 8

0.8 GHz 4.97 6.45 8.75 9.34
1.0 GHz 5.40 7.37 10.17 10.66
1.2 GHz 5.84 8.05 11.32 12.61
1.4 GHz 6.74 9.49 14.37 15.35
1.5 GHz 7.33 10.09 15.18 16.44
1.7 GHz 7.80 11.33 17.20 18.60
1.9 GHz 8.43 12.68 19.00 21.16
2.1 GHz 9.24 13.52 21.82 23.81
2.3 GHz 10.05 14.82 24.18 27.01
2.5 GHz 11.39 17.29 25.27 32.27
2.7 GHz 12.22 19.15 32.31 35.95
2.8 GHz 12.77 20.05 33.90 37.96
3.0 GHz 14.06 22.46 37.52 42.43
3.2 GHz 15.92 25.17 42.71 47.40
3.4 GHz 17.19 27.39 45.87 52.61
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Figure 1: Sequential execution: Power consumption (in Watt) of PARSEC (left) and SPLASH2 (right) benchmarks
executed with one thread on an Intel Core i7 Haswell (top) and Core i7 Skylake (bottom) architecture using different
frequencies.
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Figure 2: Multi-threaded execution: Power consumption (in Watt) of PARSEC (left) and SPLASH2 (right) bench-
marks executed with eight thread on an Intel Core i7 Haswell (top) and Core i7 Skylake (bottom) architecture using
different frequencies.
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Figure 3: Energy consumption of the PARSEC benchmarks executed with one thread (top) and eight threads
(bottom) on an Intel Core i7 Skylake (left) and Haswell (right) architecture using different frequencies.

where Tpar(p, 1) denotes the execution time with p threads for scaling factor s = 1 and Pstat(p, 1) denotes the
static power consumption when using p threads.

The energy model (2) is a continuously differentiable function in s, which makes it possible to analytically derive
an optimal value for the scaling factor s, when p is set to a fixed value. The optimal scaling factor sopt(p) which
minimizes E(p, s) can be determined by building the derivative of E(p, s), see also [23]. The resulting optimum
scaling factor is

sopt(p) =

(
2 · Pdyn(p, 1)

Pstatic(p, 1)

)1/3

, (3)

assuming that this scaling factor is kept fixed during the execution of the application program. According to
Equ. (3), the value of sopt(p) is independent of the actual execution time of the application considered and at first
glance seems to be fixed. However, different applications may have different values Pdyn(p, 1) and Pstatic(p, 1)
for a fixed p due to a different usage of the hardware resources of the processor used. Moreover, using a different
number of threads may lead to different values for Pdyn(p, 1) and Pstatic(p, 1) due to the exploitation of paral-
lelism. Thus, different applications may have different values for sopt(p) for the same p, and different values for
sopt(p) may result for different values of p, even for the same application.

2.3 The PARSEC and SPLASH-2 Benchmark Suites

The PARSEC benchmark suite is a collection of benchmarks aiming at the investigation of thread parallelism on
recent chip multiprocessors. In contrast to the earlier very popular SPLASH-2 benchmark suite, the PARSEC
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benchmarks emphasize on larger workloads typical for today’s application programs. Also, while the SPLASH-
2 benchmarks primarily come from scientific computing, the PARSEC benchmarks include a broader range of
applications, including financial analysis, animation, data mining, or enterprise storage.

The computational characteristics of the PARSEC benchmarks are intensively studied in [6] and [3] where proper-
ties concerning the instructions and concerning shared data are investigated. The first properties are the number of
floating point operations, ALU instructions, branches and memory accesses. The second kind of properties are the
data cache miss rate, the percentage of shared cache lines for reading and for writing, the ratio of memory refer-
ences reading from shared cache lines and the ratio writing to them. The energy behavior measured with hardware
as well as software techniques has been investigated in [24] with an emphasis on frequency scaling. In this article,
we extend the investigations of the energy and the execution time depending on the two independent variables fre-
quency and number of threads and especially study newly defined efficiency characteristics, i.e., energy speedup
and runtime speedup, as defined in the next section.

The SPLASH-2 benchmark suite is a mature but still very popular benchmark suite released in 1995 and mainly
comprising HPC and graphics applications, including Cholesky and LU factorization or raytracing and radiosity
algorithms. Due to architectures at that time, the codes have been optimized for multi-nodes with high latencies
between nodes, so that communication between them had been avoided when possible.

2.4 Experimental setting

The following experiments have been performed on an Intel Core i7-4770 with the Haswell architecture, providing
a maximum frequency of 3.4 GHz and an Intel Core i7-6700 with the Skylake architecture, which also gains from
3.4 GHz of maximum frequency. The usage of Intel Turbo Boost Technology, which would be 3.9 GHz on Haswell
and 4.0 GHz on Skylake, was automatically disabled on both systems during the measurements. The reason is that
the system call cpufreq-set is needed to fix the operational frequency to a specific value, and this call disables the
Turbo Boost feature.

The processors have four physical cores with hyper-threading, leading to eight logical cores. The memory hierar-
chy includes an 8 MB shared L3 cache as well as a 256 KB L2 cache and a 32 KB L1 cache per core. The main
memory size is 16 GB. The specified thermal design power (TDP) is 84 W on the Haswell system and 65 W on
the Skylake system.

The time and energy measurements have been performed using the Running Average Power Limit (RAPL) in-
terface and sensors of the Intel architecture [27, 17]. RAPL sensors can be accessed by control registers, known
as Model Specific Registers (MSRs), which are updated in intervals of about 1 ms [17]. In particular, we have
used the likwid tool-set, especially the likwid-powermeter in Version 4.0 [31], which provides access to the MSRs
introduced above. Experiments have shown that the energy measurement with RAPL sensors are quite accurate
when compared to measurements with power-meters [27, 25].

The experiments have been performed with the native input set of the PARSEC benchmarks, which is the largest
input set available and which is intended for performance measurements on real machines [6].

2.5 Power and energy consumption

The power and energy consumption of application programs both depends on the number of threads used and
the operational frequency. Figures 1 shows the power consumption in Watt for all PARSEC and SPLASH-2
benchmarks on the Haswell and Skylake processors for an execution with one thread. Figure 2 shows the analogous
values for an execution with eight threads. In all cases, the power consumption increases with the operational
frequency, as expected, and there is also an increase of the power consumption with the number of threads used.
For the highest frequency of 3.4 GHz, the power values are roughly between 10 and 14 Watt on the Skylake system
(bottom diagrams in Fig. 1) and between 14 and 20 Watt on the Haswell system (top diagrams in Fig. 1) for
both the PARSEC and SPLASH-2 benchmarks. The SPLASH-2 benchmarks show a slightly larger variance of the
power consumption than the PARSEC benchmarks especially on the Haswell system. For an execution on eight
threads, the power values are between 15 and 40 Watt on the Skylake system and between 20 and 55 Watt on the
Haswell system for the highest frequency.
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Figure 4: Energy surface plot for the blackscholes benchmark with different frequencies and different number of
threads on an i7 Skylake.

Comparing the Haswell and Skylake systems, it can be observed that the power increase with the operational
frequency is more or less linear for the Haswell, whereas the Skylake exhibits a more than linear power increase
with the frequency, i.e., decreasing the frequency results in larger power savings on the Skylake than on the
Haswell system. The qualitative behavior is quite similar for the PARSEC and SPLASH-2 benchmarks, but specific
applications may change their power consumption behavior in different ways: E.g. the benchmark facesim has
a slightly lower power consumption on eight threads than on one thread with the effect that facesim has one
of the highest power consumptions on one threads compared to the other applications but has the lowest power
consumption on eight threads compared to the other applications. Another example is the benchmark ferret,
which has a higher power comsumption on the Haswell architecture than almost every other benchmark when
using only one thread. This difference disappears more and more when the number of threads increases.

Figure 3 shows the energy consumption corresponding to the power consumption of the PARSEC application pro-
grams from Figs. 1 and 2. The diagrams show that for most of the programs, there is an operational frequency
for which the energy consumption is at a minimum. This effect is especially recognizable for the Haswell archi-
tecture, see Fig. 3 (right), but is also visible for Skylake system. The U-shape of the energy curves confirms the
energy model described in Subsection 2.1, which predicts such a frequency with minimum energy consumption in
Formula (3).

The energy model presented in Subsection 2.1 mainly emphasizes on the minimization of the energy by choosing
the appropriate frequency fmax/sopt. In Subsection 2.2 we have extended the energy model by including the
number of threads as another independent variable in the terms of the formula. However, so far, the number of
threads is set to a fixed value so that a family of curves, each curve for a fixed number of threads having its own
minimum, is considered. In the next section, we will introduce metrics which also take the number of threads into
account to interrelate these curves. Also, we will include the performance and speedup into the consideration.

3 Energy and Performance Metrics

To capture the effect on the performance or energy consumption when using more threads or reducing the fre-
quency, several metrics have been proposed in the literature. Metrics for evaluating the runtime performance
depending on the number of cores include the traditional speedup, the number of floating point operations per
second (flop/s) or just the total execution time needed to solve a specific problem (time-to-solution). Metrics for
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evaluating the power or energy efficiency include the performance per Watt and the amount of energy needed to
solve a problem (energy-to-solution). An attempt to combine the runtime performance and energy consumption in
a single metrics is the energy-delay product (EDP).

In the following, we consider DVFS systems with pmax cores and frequencies f between the minimum frequency
fmin and maximum frequency fmax. For parallel programs, the parallel execution time is still an important factor,
so that the simultaneous investigation and analysis of energy and performance is relevant. Due to the fact that both
evaluation criteria for application codes depend on the two independent variables (number of threads, frequency
scaling), the evaluation function is fully described by a two-dimensional function

(E, T ) : [1, pmax]× [1 : fmax/fmin] ⊂ R2 → R2

with
(p, s) 7→ (E(p, s), T (p, s))

and E(p, s) according to Equ. (2) or with measured values.

For each application, these performance functions can be visualized by two surfaces over a grid of (p, s)-points.
Such an energy surface for the PARSEC application blackscholes is shown in Fig. 4. When investigating the
performance properties of an application, the structure of both surfaces is analyzed for either getting a minimum
of E or of T or of a combination of both. For a simpler description of the performance surfaces, we propose and
study several metrics, which concentrate on specific performance aspects.

3.1 Performance metrics

The consideration in the last section has assumed that an application program has been executed with a fixed
number of threads. In the following, we consider the number of threads as an additional variable. For a specific
application program, the sequential execution time for a specific frequency f with scaling factor s is denoted by
Tseq(s) and the parallel execution time using p threads is denoted by Tpar(p, s). The (runtime) speedup obtained
with p threads for a fixed frequency f with scaling factor s is traditionally defined as

S(p, s) =
Tseq(s)

Tpar(p, s)
, with s fixed, (4)

expressing the relative saving of execution time that can be obtained by using p threads instead of one thread for
a fixed frequency [22]. For different operational frequencies, different speedups may result, as can be seen in the
following sections.

For DVFS processors, the execution time also varies for varying frequencies and increases when the frequency
is reduced. To capture how intesively the execution times varies, we define a metrics with a similar flavor as the
speedup. This is the runtime reduction factor:

R(p, s) =
Tpar(p, s)

Tpar(p, 1)
, with p fixed. (5)

The runtime reduction factor describes the relative increase of the execution time that arises when the operational
frequency f = fmax/s is used instead of fmax for a fixed number p of threads. Equ. (5) can also be used for the
sequential case, using Tseq(s) = Tpar(1, s). Table 2 shows the reduction factors for the blackscholes benchmark
on the Skylake architecture as a typical example.

3.2 Energy metrics

The energy consumption of the execution of an application code also changes with varying frequencies and/or
numbers of threads. This is not only an effect of the changes in the execution time but also due to the changes
in the power consumption of the individual application code. Thus, it is reasonable to quantify the changes in the
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Table 2: Runtime reduction factor for blackscholes on Skylake
runtime reduction factor

Freq 1 2 4 8
0.8 GHz 2.748 2.134 3.728 3.738
1.0 GHz 2.782 2.128 2.740 3.362
1.2 GHz 2.774 1.777 2.804 2.821
1.4 GHz 2.426 1.524 2.008 2.403
1.5 GHz 2.259 1.421 1.905 2.245
1.7 GHz 1.998 1.260 1.623 1.985
1.9 GHz 1.788 1.126 1.457 1.776
2.1 GHz 1.612 1.017 1.317 1.612
2.3 GHz 1.474 0.929 1.466 1.474
2.5 GHz 1.357 0.856 1.107 1.352
2.7 GHz 1.256 0.792 1.249 1.258
2.8 GHz 1.212 0.764 1.207 1.219
3.0 GHz 1.132 0.713 1.131 1.130
3.2 GHz 1.063 1.068 0.864 1.059
3.4 GHz 1.000 1.000 1.000 1.000

energy consumption E(p, s) using p threads and frequency f with scaling factor s by a metrics. Analogously to
the runtime speedup S(p, s), we define the energy speedup

ES(p, s) =
E(1, s)

E(p, s)
, with s fixed. (6)

The energy speedup expresses the relative difference of the energy consumption that occurs by using p threads
compared to one thread for a fixed frequency. Figure 3 shows that the energy consumption decreases when using
a larger number of threads, i.e., it is expected that ES(p, s) > 1.

When considering a varying frequency and its effect on the energy consumption, we propose a metrics similar to
the runtime reduction factor R(p, s). We define the energy reduction factor as

ER(p, s) =
E(p, s)

E(p, 1)
, with p fixed. (7)

The energy reduction factor expresses the relative difference of the energy consumption when using frequency
f = fmax/s instead of fmax for a fixed number of threads.

3.3 Energy-Delay product

The energy-delay product EDP is defined as the energy consumed by an application program multiplied by its
execution time [26]. When considering the scaling factor s explicitly, the EDP is expressed as

EDP (p, s)=E(p, s) · (T (p, 1) · s) [Watt · sec2] (8)
=(s−1·Pdyn(p, 1) + s2 ·Pstatic(p))·T (p, 1)2

The EDP is a single metric that combines effects of execution time and energy consumption for different config-
urations of an application and captures the translation of energy into useful work. The analytical minimization of
the function EDP (s) yields the optimum scaling factor

sEDP
opt (p) =

(
Pdyn(p, 1)

2 · Pstatic(p, 1)

)1/3

(9)

for the EDP. It is sEDP
opt (p) < sopt(p) from Equ. (3), i.e., to minimize the EDP, a smaller scaling factor must be

used than for the minimization of the energy consumption.
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Table 3: EDP for the blackscholes benchmark on Skylake.
energy-delay product

Freq 1 2 4 8
0.8 GHz 408471.95 174496.01 95548.65 61174.88
1.0 GHz 407648.30 175014.38 91240.54 57132.67
1.2 GHz 420990.95 147781.74 75506.57 50443.76
1.4 GHz 361843.89 127790.57 66892.77 45695.50
1.5 GHz 333869.42 119608.92 62906.10 42396.80
1.7 GHz 295863.46 102313.89 56870.55 38661.13
1.9 GHz 263209.61 96868.74 51741.68 34778.67
2.1 GHz 234092.78 89761.25 49321.55 32750.56
2.3 GHz 219116.60 85904.01 46751.87 31338.13
2.5 GHz 207158.99 81970.41 45030.67 30278.64
2.7 GHz 200559.41 81253.48 44338.35 29693.18
2.8 GHz 197998.20 79843.06 44165.68 30576.95
3.0 GHz 198941.88 80629.03 44707.31 29724.46
3.2 GHz 196821.34 80533.64 44755.90 30045.83
3.4 GHz 194507.31 80398.78 44891.82 30165.26

The significance of the energy delay product can be seen when looking at the energy efficiency (EE). The en-
ergy efficiency of an application is defined as performance (flop/s) per energy unit (Watt · s) and is measured as
flop/(Watt·sec2). Given two EDP valuesEDP1 andEDP2 withEDP1 < EDP2 yields 1/EDP1 > 1/EDP2,
both sides measured in 1/(Watt · sec2), i.e., smaller EDP values indicate a better energy efficiency, and thus, a
larger performance per energy unit. Therefore, the EDP is a good measure for the energy efficiency of an appli-
cation, and sEDP

opt optimizes the energy efficiency of an application program for a given execution platform. Table
3 gives the EDP for the blackscholes benchmark on Skylake as example. Similarly to the energy and the parallel
execution time, the EDP is a function depending on two variables p and f , merging the two former functions. In
order to further evaluate the behavior of this hybrid function, we propose a set of new metrics involving energy,
power and executions time in the following subsections.

3.4 Combining energy consumption and speedup

A metric to compare the energy consumption and the (runtime) speedup of a specific application program is energy
per speedup

EPS(p, s) =
E(p, s)

S(p, s)
[J ] (10)

with s fixed, since the speedup is defined for a fixed s, see Equ. (4). The energy per speedup captures the amount
of energy that must be invested per speedup for a given number of threads and a given frequency. Table 4 shows the
EPS values for the blackscholes benchmark on Skylake, see also Fig. 5. Interestingly, the EPS is strongly related
to the EDP from the last subsection due to:

EPS(p, s) =
EDP (p, s)

Tseq(s)
[J ]. (11)

This shows that the EPS normalizes the EDP which the application-specific sequential runtime for the same fre-
quency, and, thus, the metric EPS can be viewed as a normalized measure for energy efficiency.
A speedup metrics for the power is derived from the energy speedup and the runtime speedup by considering the
power as a function P (p, s) of the number of threads p and the operational frequency f = fmax/s. The power
speedup PS(p, s) is defined as energy speedup per (runtime) speedup in the following way:

PS(p, s) = ES(p,s)
S(p,s) = E(1,s)

E(p,s) ·
Tpar(p,s)
Tseq(s)

= E(1,s)
Tseq(s)

·
(

E(p,s)
Tpar(p,s)

)−1

= P (1,s)
P (p,s) .

(12)
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Table 4: EPS for the blackscholes benchmark on Skylake.
energy per speedup

Freq 1 2 4 8
0.8 GHz 1223.49 522.66 286.19 183.24
1.0 GHz 1227.49 527.00 274.74 172.04
1.2 GHz 1231.41 432.26 220.86 147.55
1.4 GHz 1184.56 418.35 218.99 149.59
1.5 GHz 1170.97 419.50 220.63 148.70
1.7 GHz 1176.71 406.92 226.19 153.76
1.9 GHz 1170.00 430.59 230.00 154.60
2.1 GHz 1149.51 440.77 242.19 160.82
2.3 GHz 1178.57 462.05 251.47 168.56
2.5 GHz 1211.48 479.37 263.34 177.07
2.7 GHz 1266.15 512.96 279.91 187.46
2.8 GHz 1297.01 523.02 289.31 200.30
3.0 GHz 1397.57 566.42 314.07 208.82
3.2 GHz 1472.07 602.33 334.74 224.72
3.4 GHz 1546.02 639.04 356.82 239.76
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Figure 5: Energy per speedup EPS for blackscholes for different frequencies and threads on an i7 Skylake (left)
and Haswell (right).

PS(p, s) is a dimensionless metrics which captures the relative difference of the power consumption of an appli-
cation program that occurs when using p threads instead of a sequential execution for a fixed frequency. Although
PS is defined to be dependent on p and s, the calculation shows that PS(p, s) is actually only dependent of p for
each fixed f . Figure 6 shows the power speedups of all PARSEC benchmarks and Fig. 7 is a detailed diagram for
blackscholes.

3.5 Combining power consumption and speedup

Considering the power consumption of an application program using the same operational frequency with scaling
factor s, it can be observed that the power typically increases with the number of threads employed, see Table 1.
This effect can be quantitatively captured with the power increase factor PI(p, s), which we define as follows:

PI(p, s) =
P (p, s)

P (1, s)
, s fixed. (13)

Different applications lead to different values for PI(p, s), which should be smaller than p in all cases. Table 5
shows PI for the blackscholes benchmark on Skylake as an example. The example shows that PI(p, s) is not a
linear function in p, which means that the power increase is not proportional to the number of threads employed.
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Figure 6: Power speedup PS for selected frequencies on an i7 Skylake (left) and Haswell (right): 0.8 GHz (top), 2.1
GHz (middle), and 3.4 GHz (bottom).
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Figure 7: Power speedup PS for blackscholes for different frequencies and threads on an i7 Skylake (left) and
Haswell (right).

Table 5: PI for the blackscholes benchmark on Skylake.
power increase factor

Freq 1 2 4 8
0.8 GHz 1.00 0.90 1.24 1.32
1.0 GHz 1.00 0.89 1.26 1.39
1.2 GHz 1.00 1.05 1.50 1.60
1.4 GHz 1.00 1.13 1.60 1.69
1.5 GHz 1.00 1.14 1.63 1.70
1.7 GHz 1.00 1.10 1.61 1.74
1.9 GHz 1.00 1.17 1.70 1.81
2.1 GHz 1.00 1.22 1.82 1.91
2.3 GHz 1.00 1.25 1.85 1.95
2.5 GHz 1.00 1.26 1.86 2.00
2.7 GHz 1.00 1.29 1.91 2.03
2.8 GHz 1.00 1.29 1.93 2.03
3.0 GHz 1.00 1.29 1.94 2.04
3.2 GHz 1.00 1.31 1.97 2.09
3.4 GHz 1.00 1.32 2.00 2.12
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Figure 8: Relative Power Increase RPI for different frequencies using four threads on an i7 Skylake (left) and
Haswell (right)

A comparison with the runtime speedup values shows a direct correlation between the runtime speedup and the
power increase. Thus, the runtime speedup seems to be a good indicator for the effect, whether a significant
increase of the power consumption has to be expected for a larger number of threads.

To further investigate the correlation between runtime speedup and power increase, we define the relative power
increase factor as a quantitative measure for the mutual dependence of the runtime speedup and the power increase
factor as follows:

RPI(p, s) =
PI(p, s)

S(p, s)
(14)

RPI(p, s) describes how much the power consumption of an application increases per runtime speedup if the num-
ber of threads is increased accordingly. If there were a linear dependence of the power consumption on the runtime
speedup, we would expect an RPI value of about 1. This is indeed the case for some of the PARSEC benchmarks,
but for many benchmarks, it is RPI < 1, i.e. the power increase is smaller than the runtime speedup. Figure 8
illustrates the RPI values for all PARSEC benchmarks using p = 4 threads, since the executing processors have
only four physical cores.

Please note that RPI(p, s) is a metric that captures effects of both independent variables p and s, and is thus able
to illustrate the influence on both. Also, both the energy consumption and the parallel execution time are evaluated
together. This metric is capable to reduce the influence of two independent variables onto the two dependent
phenomena to one metrics. RPI has typically values between 0.5 and 1, so it is easy to read and interprete compared
to other metrics such as the EDP. The RPI metrics is suitable to study and compare different applications concerning
the correlation between power or energy efficiency on the one hand and effective parallelism on the other hand. A
coarse evaluation criteria is that a lower RPI-value means that the inherent parallelism of an application is exploited
without a significant increase of the power drawing, thus leading to a smaller overall energy consumption. Thus, a
lower RPI value is better.

4 Analysis, Discussion and Summary

In this section, we evaluate the metrics from the last section for the PARSEC and SPLASH-2 benchmarks suites,
discuss the results, compare the Intel Core i7 and an ARM architecture, and reflect upon usage scenarios for the
metrics.
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4.1 Results of the metrics applied to PARSEC and SPLASH-2

Table 6 presents measurements of some of the metrics from Sect. 3 for all PARSEC benchmarks on both the
Haswell (top) and the Skylake (bottom) architecture. The table shows for each PARSEC application

(a) the minimum and maximum runtime in seconds, taken over all possible frequencies and number of threads
(columns 1 and 2),

(b) the speedup obtained when using p = 8 threads for frequencies f = 0.8 GHz and f = 3.4 GHz (columns 3
and 4),

(c) the minimum and maximum energy consumption in Joule, taken over all possible frequencies and number
of threads (columns 5 and 6),

(d) the operational frequency for which the minimum energy consumption results for the cases of one and eight
threads (columns 7 and 8),

(e) the energy speedup ES using p = 8 threads for the smallest and the largest frequency available (columns 9
and 10),

(f) the minimum and maximum energy per speedup EPS in Joule, taken over all possible frequencies and num-
ber of threads (columns 11 and 12), and

(g) the minimum and maximum relative power increase factor RPI when using four threads, taken over all
frequencies (columns 13 and 14).

Table 7 shows the same information for the SPLASH-2 benchmarks.

Usually, it is not needed to consider all metrics. Rather, it is reasonable to clearly specify the specific goal for
an appraisal of an application program, a set of application programs, or different implementations of the same
application. The selection of metrics presented in Table VI and VII has been guided by a specific goal to assess
the possibility of energy minimization of a set of benchmarks when the frequency and the number of threads can
be freely chosen. Clearly for this goal, the interval boundaries (minimum and maximum values) of the possible
runtimes and the possible energy consumptions for all possible frequencies and numbers of threads available belong
to the core information illustrating a possible need or potential for energy minimization. The frequencies (columns
7 and 8 in Table VI and VII) leading to the minimal energy is also a first indicator for the potential of optimization.
The last three sets of columns (column 9 to 14) are devoted to the metrics chosen for this appraisal-criteria:
The energy speedup, the energy per speedup and the relative power increase factor are all metrics evaluating the
energy with respect to performance and speedup. And thus they are possible metrics for an estimate of the energy
efficiency. The specific results of the appraisal for the PARSEC and SPLASH-2 benchmarks is given in the next
subsection.

4.2 Interpretation of the results

For both the PARSEC and the SPLASH-2 applications, it can be observed that there is a large variation of the
runtime (columns 1 and 2) and the energy consumption (columns 5 and 6) when different frequencies or number
of threads are used, i.e., the specific selection of the parameters has a large impact and a significant amount of
energy can be saved if the right combination is used. For the Haswell, the frequency for which the minimum
energy consumption results lies between 1.2 GHz and 2.3 GHz for the PARSEC benchmarks and between 0.8
GHz and 3.2 GHz for the SPLASH-2 benchmarks, with smaller frequencies for a larger number of threads, see
columns 7 and 8. Thus, the SPLASH-2 benchmarks show a larger variation. For the Skylake, the corresponding
frequencies lie between 0.8 GHz and 2.1 GHz for the PARSEC benchmarks and between 0.8 GHz and 1.9 GHz,
again with smaller frequencies for a larger number of threads. For this processor, no significant difference between
the PARSEC and the SPLASH-2 applications results.

For most of the applications, a significant runtime speedup can be obtained by executing them with multiple
threads. The speedup values obtained differ slightly when different operational frequencies are used, see columns
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Table 6: Evaluation of different Parsec Benchmarks on Haswell (first half) and Skylake (second half) using runtime
in seconds, engery in joule and Power in Watt

Runtime Speedup Energy Consumed Best Freq ES (p=8) EPS RPI (p=4)
Benchmark min max f=0.8 f=3.4 min max p=1 p=8 f=0.8 f=3.4 min max min max
blackscholes 37.12 558.67 3.60 3.54 948.56 2323.36 2.3 1.2 2.04 1.57 260.22 2323.36 0.60 0.73
bodytrack 31.52 463.37 3.72 3.47 868.69 2134.53 2.3 1.2 2.11 1.44 234.26 2134.53 0.56 0.77
canneal 71.00 527.51 2.59 2.66 1209.09 2851.98 1.5 1.2 1.83 1.53 460.53 2851.98 0.64 0.76
dedup 6.25 51.30 2.77 2.09 182.23 334.58 2.3 2.1 1.69 1.19 68.04 397.87 0.68 0.84
facesim 0.27 1.11 1.00 0.93 3.84 6.07 2.3 2.3 0.88 0.95 3.84 6.12 0.98 1.14
ferret 0.26 1.07 1.00 0.94 3.63 5.89 2.3 2.3 0.86 1.07 3.63 6.00 0.91 1.19
fluidanimate 63.30 1054.09 4.32 4.02 1949.83 5077.73 2.3 1.2 2.30 1.45 453.43 5077.73 0.50 0.77
freqmine 80.63 1581.32 4.67 4.65 2742.39 7700.87 2.1 1.2 2.49 1.58 586.20 7700.87 0.46 0.71
streamcluster 71.25 918.56 5.19 4.99 1564.56 5222.48 1.7 1.2 3.00 1.93 315.75 5442.64 0.50 0.81
swaptions 39.46 867.48 5.18 5.18 1411.24 4313.39 2.3 1.2 2.76 1.69 269.41 4313.39 0.44 0.69
vips 21.63 341.41 4.30 3.76 648.34 1703.58 2.1 1.2 2.28 1.48 151.61 1703.58 0.48 0.70
x264 16.87 396.76 5.95 5.75 560.11 2155.81 2.1 1.2 3.48 2.08 94.92 2155.81 0.33 0.53

blackscholes 34.02 333.86 2.97 3.70 539.53 1546.02 2.1 1.2 2.25 1.74 147.55 1546.02 0.52 0.68
bodytrack 27.15 294.10 2.91 3.91 490.99 1314.92 1.7 1.2 2.06 1.49 126.06 1314.92 0.53 0.73
canneal 67.94 456.88 2.80 2.77 650.01 2015.27 1.5 0.8 2.00 1.55 232.10 2015.27 0.58 0.72
dedup 5.38 43.14 2.36 2.65 84.86 207.75 1.7 1.0 1.83 1.39 30.00 207.75 0.59 0.76
facesim 0.26 0.99 1.01 1.00 2.33 3.47 1.7 1.7 0.98 0.93 2.32 3.75 0.99 1.03
ferret 0.49 1.72 1.03 0.99 4.53 7.17 2.1 1.5 0.99 0.97 4.09 8.28 0.95 1.05
fluidanimate 60.51 636.68 2.97 3.95 1151.72 3151.76 1.9 1.0 2.04 1.46 282.69 3151.76 0.53 0.77
freqmine 75.31 1011.15 3.55 4.83 1543.42 4726.40 2.1 1.0 2.38 1.63 322.56 4726.40 0.48 0.69
streamcluster 70.36 878.20 5.29 4.77 878.56 3851.71 1.5 0.8 3.09 1.86 144.19 3851.71 0.44 0.69
swaptions 35.91 516.00 3.68 5.31 779.57 2529.71 1.9 1.0 2.53 1.75 149.48 2529.71 0.47 0.69
vips 18.54 221.89 3.28 4.27 367.38 1067.31 2.1 1.0 2.22 1.58 84.57 1067.31 0.48 0.68
x264 14.61 255.89 4.92 6.20 304.57 1197.61 1.7 1.0 3.11 2.09 48.37 1197.61 0.37 0.53

Table 7: Evaluation of the metrics for the Splash2 Benchmarks on Haswell (first half) and Skylake (second half)
Runtime Speedup Energy Consumed Best Freq ES (p=8) EPS RPI (p=4)

Benchmark min max f=0.8 f=3.4 min max p=1 p=8 f=0.8 f=3.4 min max min max
barnes 25.29 444.98 4.34 4.21 1067.37 2477.43 2.30 2.10 1.99 1.61 251.33 2477.43 0.51 0.72
cholesky 0.35 1.51 1.12 1.13 6.18 9.68 2.30 3.00 0.90 0.92 5.71 8.68 1.00 1.05
fft 148.98 595.58 2.66 2.29 1809.84 4830.14 0.80 0.80 1.82 1.54 373.47 4830.14 0.69 0.83
fmm 24.75 317.68 3.54 2.52 831.06 1670.93 2.30 1.40 1.76 1.32 241.21 1670.93 0.55 0.74
lu cb 26.32 408.42 3.61 3.61 1061.13 2254.42 3.00 1.70 1.65 1.28 286.33 2254.42 0.56 0.74
lu ncb 34.70 502.74 3.88 3.69 1407.10 2693.82 2.10 1.90 1.63 1.27 375.23 2675.30 0.70 1.09
ocean cp 49.72 289.87 3.64 1.51 953.77 2106.09 2.30 1.00 1.98 0.66 269.88 1943.71 0.51 1.43
ocean ncp 54.00 537.91 5.62 2.50 1113.04 3426.67 2.70 1.00 2.92 1.12 208.33 3426.67 0.48 1.02
radiosity 102.44 534.97 1.12 1.16 2065.73 3002.57 3.00 2.10 1.00 0.91 395.28 3002.57 0.95 1.17
radix 7.94 139.99 6.50 4.21 203.03 779.66 3.20 1.70 3.47 1.75 32.87 779.66 0.48 0.70
raytrace 22.90 489.52 5.07 5.01 1158.39 2938.06 2.30 1.40 2.33 1.66 229.44 2938.06 0.52 0.71
volrend 24.73 480.42 4.55 4.55 1031.52 2826.36 2.30 1.70 2.37 1.66 224.74 2826.36 0.50 0.70
water nsquared 82.97 1252.57 3.77 3.64 3604.37 8221.01 2.30 1.90 1.91 1.26 446.20 8221.01 0.55 0.88
water spatial 24.75 490.37 4.72 4.85 992.49 2889.17 3.20 1.70 2.53 1.79 208.22 2889.17 0.46 0.64

barnes 21.39 232.84 3.05 4.48 417.23 1244.07 1.7 1.2 1.55 1.61 100.79 1244.07 0.52 0.68
cholesky 0.32 1.32 1.10 1.13 3.39 5.14 1.7 1.5 0.96 0.96 3.10 4.95 0.99 1.02
fft 23.55 90.83 1.50 1.65 258.05 580.93 1.5 1.5 1.23 1.15 163.02 580.93 0.78 0.87
fmm 18.64 198.87 3.21 3.88 322.22 926.49 1.7 1.0 2.09 1.50 81.17 926.49 0.53 0.77
lu cb 28.65 317.63 2.97 4.24 576.70 1573.95 1.5 1.2 2.03 1.50 137.53 1573.95 0.51 0.70
lu ncb 34.78 407.64 3.36 4.18 652.01 1892.70 1.5 1.0 2.11 1.45 145.82 1892.70 0.53 0.96
ocean cp 34.98 126.45 2.36 1.59 335.16 784.12 1.5 0.8 1.59 0.82 125.37 784.12 0.66 1.19
ocean ncp 39.60 139.62 2.24 1.58 388.21 1103.04 0.8 1.0 1.45 0.83 146.66 907.70 0.71 1.22
radiosity 106.78 317.35 1.13 1.21 1073.33 1740.68 1.7 1.4 1.00 0.85 943.07 1559.80 0.99 1.11
radix 6.48 94.27 4.77 5.52 78.92 346.79 1.9 1.4 3.63 2.34 11.90 346.79 0.42 0.61
raytrace 20.88 273.69 3.46 4.98 477.11 1498.99 1.7 1.0 2.24 1.67 97.71 1498.99 0.52 0.70
volrend 23.71 298.27 3.33 4.80 480.75 1437.68 1.7 1.0 2.23 1.61 102.06 1437.68 0.51 0.69
water nsquared 72.83 715.78 2.91 3.84 1519.57 4015.32 1.5 1.0 1.85 1.31 394.11 4015.32 0.59 0.85
water spatial 22.35 279.36 3.56 4.80 439.87 1376.12 1.7 1.0 2.29 1.68 89.69 1376.12 0.47 0.63
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3 and 4 in Tables 6 and 7, and depend on the specific benchmark. For the Skylake architecture, using a larger
frequency leads to a larger speedup for most of the applications. This behavior is slightly stronger for the SPLASH-
2 applications than for the PARSEC applications. Such an increase of the speedup with the operational frequency
cannot be observed for the Haswell architecture. Instead, many applications even exhibit a descrease of the speedup
when using a larger operational frequency.

Considering the energy speedup for the different applications in columns 9 and 10 of Tables 6 and 7, it can be seen
that the resulting values are larger than 1 for most of the applications. This corresponds to the observation that the
energy consumption decreases when using a larger number of threads. Therefore, it is expected that ES(p, s) > 1.
This is confirmed for most of the PARSEC applications, as can be seen in column 5 of Table 6. There are a few
exceptions, which are caused by applications with a very small energy consumption and no significant runtime
speedup such as facesim or ferret from PARSEC or cholesky from SPLASH-2. For most of the applications,
the energy speedup decreases with the operational frequency, which means that for larger frequencies the energy
saving obtained when using more threads is not as significant as for smaller frequencies. There is no significant
difference between the PARSEC and the SPLASH-2 applications, and also not between the Haswell and Skylake
architecture.

The RPI values in the last columns show a surprising match of the values on the two processors. This suggests that
the RPI expresses the essence of the application behavior. Only the applications with a very low execution time
have an RPI larger than 1. The other applications have RPI values of about 0.5. There is one exception which is
application x264 with a minimum RPI value of 0.33 and 0.37, respectively. The same application also achieves the
highest speedup.

4.3 Comparison of different architectures

When comparing the Intel Core i7 architectures Haswell and Skylake, it can be observed that the Skylake typically
leads to smaller execution times. This can be seen at the minimum and maximum execution times in Table 6,
but also when considering the execution times for the whole range of frequencies and number of threads, which
are not shown in a figure. Even more significant is the fact that the Skylake processor needs much less energy
for executing an application than the Haswell processor, indicating a more energy-efficient architectural design.
The best frequencies for the energy consumption are typically smaller for Skylake than for Haswell, which can be
explained by the power characteristics shown in Figs. 1 and 2: the Skylake shows a larger decrease of the power
consumption than the Haswell architecture when the operational frequency is decreased starting with the maximum
frequency, i.e., a reduction of the frequency has a larger impact for the Skylake than for the Haswell architecture,
and this effect influences the energy consumption correspondingly. The smallest energy consumptions typically
result for frequencies that are larger than the minimum frequency provided.

In order to study whether the effects observed are specific for the Intel Core i7 architectures, we have tested some
of the PARSEC applications for an ARM architecture. More precisely, we have considered the Odroid XU4 with
the ARM big.LITTLE architecture, providing DVFS and allowing a frequency variation between 0.2 GHz and 2.0
GHz for the Cortex A15 and between 0.2 GHz and 1.4 GHz for the Cortex A7, both with 0.1 GHz steps. The energy
and power measurements have been performed using a second board with analogue digital converter provided. In
the following, we investigate the PARSEC application blackscholes as example, which has already been used in
the previous section as running example. The following observations can be made:

• The power consumption increases with the operational frequency. However, compared to the Intel Core i7
systems, this increase is less steep. As example, Table 8 shows the power consumption for the blackscholes
benchmark for different frequencies and different numbers of threads. It can also be observed that the
overall power consumption is much smaller than on the Core i7 systems. For the Odroid XU4, the power
increase factor PI increases only slightly with the number of threads, see Table 10, and it is smaller than the
corresponding PI values for the Core i7 systems, see Table 5 for the Skylake.
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power consumption threads
Freq 1 2 4 8
0.2 2.44 3.06 2.52 2.60
0.3 2.51 2.61 2.62 2.71
0.4 2.57 2.70 2.66 2.81
0.5 2.63 2.80 2.80 2.93
0.6 2.69 2.91 2.89 3.07
0.7 2.75 3.00 2.98 3.17
0.8 2.84 3.13 3.12 3.34
0.9 2.96 3.27 3.25 3.53
1.0 3.06 3.41 3.30 3.71
1.1 3.17 3.58 3.54 4.03
1.2 3.27 3.75 3.75 4.15
1.3 3.40 3.93 3.95 4.40
1.4 3.52 4.10 4.10 4.63
1.5 3.63 4.29 4.23 4.81
1.6 3.81 4.59 4.17 5.06
1.7 3.99 4.87 4.35 5.33
1.8 4.23 5.21 4.50 5.62
1.9 4.51 5.70 5.17 6.09
2.0 4.93 6.41 5.12 6.54

Table 8: Power Consumption in Watt of
the Blackscholes benchmark on Odroid
XU4 for different frequencies and different
number of threads

energy per speedup
Freq 1 2 4 8
0.2 11561.67 4665.48 2788.56 1175.03
0.3 7844.16 2629.16 1940.31 828.50
0.4 6028.86 2042.55 1484.84 627.25
0.5 4938.38 1680.23 1262.86 525.31
0.6 4240.47 1468.31 1085.29 467.08
0.7 3706.72 1292.05 970.65 415.42
0.8 3363.54 1188.27 885.25 385.86
0.9 3125.81 1100.47 825.38 365.54
1.0 2887.67 1042.74 770.40 353.00
1.1 2749.21 1004.97 669.07 322.09
1.2 2602.31 961.47 728.44 336.13
1.3 2496.77 951.37 719.34 329.37
1.4 2413.06 910.50 698.76 327.92
1.5 2320.11 892.90 750.75 344.11
1.6 2292.03 901.43 758.42 368.54
1.7 2259.22 893.10 822.14 392.32
1.8 2270.24 908.24 874.67 424.81
1.9 2300.43 954.72 1036.87 471.12
2.0 2376.84 1021.98 1065.69 518.81

Table 9: Energy per Speedup for the
Blackscholes benchmark on Odroid XU4
for different frequencies and different
number of threads

• The runtime on the Odroid XU4 is much larger than on the Core i7 systems for all frequencies. Correspond-
ingly, the overall energy consumption is also larger than on the Core i7 systems (not shown in a figure). This
has also an influence on the EDP and the energy per speedup EPS, which are both much larger on the Odroid
XU4 architecture than on the Core i7 systems, see Table 9 for the EPS on the Odroid XU4 and Table 4 for
the EPS on the Syklake system.

• The runtime reduction factors are quite similar on both systems, if the same scaling factors are used. Larger
deviations occur if the number of threads increases.

• The behavior of the relative power increase factors RPI for the Odroid XU4 is quite similar than for the
Core i7 systems, see Table 11. The RPI values get smaller if the operational frequency is descreased and if
the number of threads is increased.

These observations suggest that the new metrics introduced are well suited to evaluate the execution of multi-
threaded applications on different architectures, to study their behavior for frequency scaling and parallelism, and
to capture fundamental differences of the applications’ energy sensitivity.

4.4 How and when to use the metrics

In this article, we have used or defined several metrics, which are T , E, P , S, R, ES, ER, EDP , EPS, PS, PI ,
RPI . In the following, we briefly describe how and when to use them.

The runtime T , energy consumption E and power consumption P of an application can be measured for different
operational frequencies and different numbers of threads and can be used for a comparison of different implemen-
tation variants of the same application. But these data do not explicitly provide an information about the energy
or power sensitivity of an application. The (runtime) speedup S is the traditional metric to investigate the runtime
scalability of a parallel application. However, this metric does not take frequency scaling into account. The runtime
reduction factor R is a modification of the runtime speedup that emphasises on the change in the runtime when
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power increase factor
Freq 1 2 4 8
0.2 1.00 1.25 1.03 1.06
0.3 1.00 1.04 1.04 1.08
0.4 1.00 1.05 1.04 1.10
0.5 1.00 1.07 1.07 1.11
0.6 1.00 1.08 1.08 1.14
0.7 1.00 1.09 1.09 1.15
0.8 1.00 1.10 1.10 1.18
0.9 1.00 1.11 1.10 1.19
1.0 1.00 1.11 1.08 1.21
1.1 1.00 1.13 1.11 1.27
1.2 1.00 1.15 1.15 1.27
1.3 1.00 1.16 1.16 1.29
1.4 1.00 1.17 1.17 1.32
1.5 1.00 1.18 1.17 1.33
1.6 1.00 1.21 1.10 1.33
1.7 1.00 1.22 1.09 1.34
1.8 1.00 1.23 1.06 1.33
1.9 1.00 1.26 1.14 1.35
2.0 1.00 1.30 1.04 1.33

Table 10: Power Increase Factor for
the Blackscholes benchmark on Odroid
XU4 for different frequencies and different
number of threads

RPI threads
Freq 1 2 4 8
0.2 1.00 0.71 0.50 0.33
0.3 1.00 0.59 0.51 0.34
0.4 1.00 0.60 0.51 0.34
0.5 1.00 0.60 0.52 0.34
0.6 1.00 0.61 0.52 0.35
0.7 1.00 0.62 0.53 0.36
0.8 1.00 0.62 0.54 0.37
0.9 1.00 0.62 0.54 0.37
1.0 1.00 0.63 0.54 0.39
1.1 1.00 0.64 0.52 0.39
1.2 1.00 0.65 0.57 0.40
1.3 1.00 0.66 0.58 0.41
1.4 1.00 0.66 0.58 0.42
1.5 1.00 0.67 0.61 0.44
1.6 1.00 0.69 0.60 0.46
1.7 1.00 0.69 0.63 0.48
1.8 1.00 0.70 0.64 0.50
1.9 1.00 0.72 0.72 0.53
2.0 1.00 0.75 0.68 0.54

Table 11: Relative Power Increase of
the Blackscholes benchmark on Odroid
XU4 for different frequencies and different
number of threads

the operational frequency is changed for executing an application using the same number of threads. Thus, R can
be used to explore the DVFS behavior of applications and the influence of frequency changes on the runtime. The
energy reduction factor ER has the same flavor as the runtime reduction factor R, but considers the influence of
DVFS on the energy consumption instead of the runtime.

The energy sensitivity or energy efficiency can be assessed with the metrics ES, EDP , and EPS. The energy
speedup ES can be considered as an energy-oriented modification of the runtime speedup, as it investigates the
energy consumption of an application for a varying number of threads using a fixed operational frequency. In
particular, ES evaluates the energy consumption when the number of threads is increased for the execution of
a multithreaded application. A value ES(p, s) < 1 would indicate that using more threads would lead to a
higher energy consumption than a sequential execution, whereas ES(p, s) > 1 means that using more threads
leads to a reduction of the energy consumption. Tables 6 and 7 show that nearly all PARSEC and SPLASH-2
applications have ES values larger than 1, i.e., a parallel execution is beneficial for the energy consumption. The
metrics can be used to compare the energy sensitivity of different applications or of different implementations of
the same applications: an implementation with a higher value of ES(p, s) leads to more energy saving than an
implementation with a smaller ES value for the same number of threads and is therefore preferable if the energy
consumption should be kept small. The metric energy per speedupEPS is strongly related to the traditionalEDP
metric, see Equ. (11). The normalization with the sequential runtime allows a comparison of different applications
or implementations of the same application, which is not staightforwardly possible with the EDP metric. When
comparing different implementations, smallerEPS values indicate a more efficient energy utilization for a parallel
execution with a certain number of threads.

The power behavior with respect to varying frequencies and numbers of threads is in the focus of the metrics PS,
PI , and RPI . The power speedup PS investigates the development of the power consumption of an application
when the number of executing threads is increased. Typically, the power consumption increases with the number of
threads and PS captures the increase factor. The metric can be used to compare the power sensitivity of different
applications when the number of threads is increased using a fixed operational frequency. The power increase
factor PI is the inverse of the power speedup, which is exploited for the next metric. The relative power increase
factor RPI sets the power increase and the runtime speedup in relation. The metric can be used to investigate
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whether the increase of the power consumption of an application is related to a corresponding increase in the
runtime speedup, or in other words, whether the additional power invested when using more threads is rewarded
by a corresponding decrease in the runtime. A small RPI value indicates a good and efficient power usage. Thus,
when comparing different implementation variants of an application, a variant with a smaller RPI value should
be preferred.
The metrics introduced can be used to analyze the runtime and energy behavior of multithreaded applications of
DVFS architectures using different number of threads for their execution. Future work might also address the
usage of the metrics for system software to control the DVFS setting, e.g., by an inclusion in a new governor.
Especially the novel metrics relative power increase factor RPI is capable to express all runtime and energy effects
and integrate them in a single measure. The metrics RPI has also the advantage that due to its scale between about
0.5 and 1, the application-specific values are easy to grasp and interprete by the application programmer. Not
only the absolute values but also significant deviations or anomalies are quickly detected. Thus, the RPI metrics
is a promising and easy-to-use metrics for a combined assessment of energy consumption and execution time
depending on both variables.

5 Related Work

Power saving is in the focus of research for some years now and several features have been integrated in computer
systems of different sizes and classes, from handheld devices to large servers [28, 12, 13]. A well studied and
accepted technique is DVFS, which allows the hardware to lower the operational voltage and frequency at the cost
of a possibly higher execution time, as documented in [33]. The approach to determine the voltage scaling factor
that minimizes the total CPU energy consumption by taking both the dynamic power and the leakage power into
consideration has been discussed in [19, 18, 33] for sequential executions. Power models for multicore designs
are developed in [12]. A detailed analytical treatment of energy models in the context of scheduling algorithms
is given in [20]. The energy model used in this article has been used in [23] to analyse scheduling algorithms for
fork-join parallelism. Fundamental aspects of speed scaling and power-down scheduling are described in [11].
The energy delay product (EDP) has first been introduced in [15] to capture both energy consumption and execution
time simultaneously. However, as it has been pointed out in [1], the EDP is not able to distinguish whether a smaller
execution time or a better energy utilization leads to a smaller EDP value when comparing different version of a
program. The biased effects of the EDP and its generalization EDn for a nonnegative integer n are also discussed
in [16]. To separate energy and performance when considering different program versions, [1] introduces powerup
and greenup metrics, which are similar to our power speedup and energy speedup metrics. These metrics are
then used together with the speedup to identify different energy categories of software. In our article, we go
into a different direction by investigating the relationship between speedup, energy, and power. In the context of
frequency scaling, [14] defines the power-aware speedup, which incorporates the frequency when computing the
runtime speedup of programs. However, the energy consumption is not explicitly taken into consideration. In the
context of task scheduling policies, [21] has proposed the metrics speedup per Watt (SPW), power per speedup
(PPS), and energy per target (EPT) and has evaluated task scheduling policies using these metrics.
The investigation of multithreaded application programs is an ever-present research topic for several years now.
Especially, the properties and the behavior of the PARSEC and the SPLASH-2 benchmark suites have been studied
intensively with repect to different criteria, for which we give some representative examples. In [5], the motivation
and design goals of PARSEC have been documented. The SPLASH-2 benchmark has been introduced in [32].
A first qualitative comparison of both benchmarks is given in [4]. In [2], the comparison concentrates on the
communication characteristics of the suites. More recently, the workload scalability of the PARSEC has been
analysed in [29]. A system to dynamically adapt a multithreaded programs’ parallelism has been proposed in [30];
it was applied to several benchmarks including some from the PARSEC. Vectorization approaches for PARSEC
benchmarks have also been considered in [9] and the energy consumption has been reported. The performance and
energy impact for parallelization and vectorization has been studied for the PARSEC benchmarks in [8] for the Intel
core i5 and i7 with up to 8 threads and for an ARM architecture for up to 32 threads. The above mentioned studies
for PARSEC and/or SPLASH-2 have mainly used the execution time, the speedup or the energy consumption for
measuring the performance but have ignored other measures or fused metrics to appraise the results as it was done
in our work. Also, a joint study and comparison of parallelism and frequency scaling has been missing so far in
the investigations of PARSEC and SPLASH-2 and our work is contribution in that direction.
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A detailed energy roofline model, which also takes details of the processor architecture such as memory hierarchies
into consideration, has been presented in [10]. The model has been evaluated with microbenchmarks for different
architectures including x86, ARM, and GPU.

6 Conclusions

The growing interest in energy efficient computing leads to a demand for appropriate ways to appraise the behavior
of program execution. Especially for parallel executions on DVFS processors, the mutual interaction and contrary
effects of the parallelism exploited and the energy consumed are quite complex. To assess the program behavior,
we have proposed and evaluated several metrics, including energy speedup, energy reduction factor, energy per
speedup, power speedup, power increase factor, and relative power increase factor, which capture the effects of a
varying number of threads and frequencies on performance and energy in isolation or in a combined measure.

The metrics have been used to assess the multithreaded applications of the PARSEC benchmark suite with the goals
to illustrate the expressiveness of the metrics and to appraise the energy behavior of the benchmarks. Furthermore,
the experiments have been repeated for the SPLASH-2 benchmark suite to have a broader experimental foundation
of the results. A detailed analysis of the metrics discusses the usage and usage scenarios of the metrics explaining
how and when to use a specific metric or set of metrics for appraising a specific optimization goals.
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