
A Coordination Language for Mixed Task and Data Parallel Programs

Thomas Rauber
Institut für Informatik

Universität Halle-Wittenberg
Kurt-Mothes-Str.1

06120 Halle (Saale), Germany
rauber@informatik.uni–halle.de

Gudula Rünger
Institut für Informatik
Universität Leipzig

Augustusplatz 10/11
04109 Leipzig, Germany

ruenger@informatik.uni–leipzig.de

Keywords: mixed task and data parallelism, coordination language,
message-passing programs, parallel scientific computing.

ABSTRACT
We present a coordination model to derive efficient implementa-
tions using mixed task and data parallelism. The model provides a
specification language in which the programmer defines the avail-
able degree of parallelism and a coordination language in which
the programmer determines how the potential parallelism is ex-
ploited for a specific implementation. Specification programs de-
pend only on the algorithm whereas coordination programs may be
different for different target machines in order to obtain the best
performance. The transformation of a specification program into
a coordination program is performed in well-defined steps where
each step selects a specific implementation detail. Therefore, the
transformation can be automated, thus guaranteeing a correct target
program. We demonstrate the usefulness of the model by applying
it to solution methods for differential equations.

1. INTRODUCTION
Many application algorithms exhibit different kinds of potential

parallelism. Data parallelism occurs when the same operations
have to be applied to different data. The granularity depends on the
number of data elements per processor. Data parallelism can often
be detected by parallelizing compilers using loop parallelization
techniques [19], i.e., different iterations of a loop (performing the
same operations) are executed by different processors on different
data. Task parallelism occurs when independent program parts can
be executed on different processors or disjoint groups of processors
where processors of the same group collaborate in a data-parallel
fashion. Most applications have only a small degree of task paral-
lelism with coarse granularity. However, using the available task
parallelism and combining it with data parallelism can increase the
performance of parallel applications considerably since an addi-
tional degree of parallelism is exploited [10]. This is especially
true for parallel machines with a large number of processors like
the ASCI teraflop machines. Applications that can benefit from a
combination of task and data parallelism include examples from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proc. of 13th Annual ACM Symposium on Applied Computing, pp. 146-155,
San Antonio, USA, 1999.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

numerical analysis, signal processing [17], and multidisciplinary
codes like global climate modeling, see [1] for a good overview.
Since many applications benefit from an exploitation of both task
and data parallelism, many languages have been proposed to com-
bine data parallel with task parallel executions, including Fx, For-
tran M, Braid, Opus, or Orca [1]. A more detailed discussion is
given later.

Usually, there are many possibilities for combining data paral-
lel computations in a task parallel way, i.e., there is a large variety
of alternative parallel implementations for one algorithm and it is
often difficult to choose the most efficient variant. To obtain an
efficient parallel implementation for a specific algorithm, the pro-
grammer has to take properties of the algorithm and of the target
machine into account.

In this paper, we present a model for a systematic derivation of
efficient message-passing programs with mixed task and data par-
allelism which separates the algorithmic properties from the prop-
erties of the target machine and partitions the derivation process of
a parallel implementation for a given algorithm into several steps.
Data parallel executions are expressed as modules that can be ex-
ecuted by a varying number of processors. Depending on their
data dependencies, different modules can be executed concurrently
to each other on disjoint groups of processors or must be exe-
cuted consecutively. A specification language provides constructs
to express possible execution orders between modules and thus
describes the available degree of task parallelism explicitly. The
transformation of the specification program into a coordination pro-
gram describes how the available degree of parallelism is actually
exploited for a specific parallel implementation. The result is a
complete description of a parallel program that can easily be trans-
lated into a message-passing program. The coordination program
is expressed in a coordination language which is an extension of
the specification language. The final message-passing program is
expressed in C with MPI (message-passing interface [6]). A co-
ordination program can express only those parallel programs that
are allowed by the corresponding specification program. So for
example, if the specification program requires two modules to be
executed consecutively, the coordination program is not allowed to
execute them concurrently. Thus, based on a correct specification
program, only correct coordination programs can result.

The main advantage of this approach is that it provides a ba-
sis for a systematic derivation of efficient parallel implementations.
The derivation of the coordination program from a given speci-
fication program is further subdivided into several decision steps
which serve as a basis for an automatization of the design process
in an interactive compiler tool. The paper introduces the speci-
fication language to express mixed task and data parallelism and
the coordination language to express the parallel design decisions.

Parallel
Target Program

TranslationCoordination
ProgramProgram

Specification Transformation

Application Algorithm

Figure 1: Macro-steps of the derivation process.

We demonstrate the expressiveness of the approach with examples
from scientific computing. The languages are also the interface to
a compiler tool and serve as the basis for a cost model.

The remainder of the article is organized as follows. Section 2
gives a brief overview of the general approach for the derivation
of parallel programs. Section 3 describes the language support.
Section 4 applies the approach to solution methods for differential
equations. Section 5 discusses related work and Section 6 con-
cludes.

2. GENERAL APPROACH
The derivation process for a parallel implementation of an algo-

rithm is divided into three macro-steps, see Figure 1.
� In the first step, the application algorithm is formulated as

a specification program expressing the maximum degree of
task and data parallelism available. This step is completely
independent from the target architecture and depends only on
the control and data dependencies of the algorithm.

� In the second step, the specification program is transformed
into a coordination program that expresses which degree of
the parallelism will be exploited for the parallel implementa-
tion and which distribution will be used for the variables. A
program-oriented cost model will be used to guide the trans-
formations [12]

� In the third step, the coordination program is translated into
an executable message-passing program realizing the deci-
sions of the second step.

In the following, we give a brief and informal overview of these
macro-steps. In Subsection 2.2 we sketch the cost model and in
Subsection 2.3 we describe the design steps to construct a coor-
dination program from a specification program. We also mention
methods and algorithms based on cost formulas which we use to
yield a specific design decision. The emphasis of this paper is to
introduce the language support for the specification and coordina-
tion of parallel algorithms and to demonstrate its suitability for ap-
plications from scientific computing.

2.1 Task and data parallelism in the derivation
process

Since task and data parallelism are orthogonal to each other and
require different treatment for its exploitation, we have partitioned
the derivation process of a parallel program into a task parallel and
a data parallel level. For both levels, the derivation process pro-
ceeds according to the macro-steps described in Figure 1. How-
ever, the internal structure of the macro-steps for the two levels is
different according to the specific needs.

Within each macro-step, both levels are clearly separated and
connected only by specific information transfer, see Figure 2. The
specification of data parallelism consists of definitions of basic
modules (BMs) expressing operations on data that can be executed
in a data parallel way. To provide a clear interface to the task paral-
lel level, each definition of a BM includes a specification of its in-
put/output behavior. On the task parallel level, the specification of
parallelism is expressed as a specification program which expresses

data dependencies between BM activations. The specification pro-
gram can be structured hierarchically by the definition of composed
modules (CMs) which can again call other CMs or BMs. The spec-
ification program essentially consists of calls to (composed or ba-
sic) modules and expresses whether the calls can be executed in
parallel or whether a sequential execution is necessary because of
data dependencies. For the flexibility of the transformation into a
parallel implementation, it is important that both levels express the
maximum degree of task and data parallelism, respectively, since
only the parallelism expressed in the specification can be exploited
in later phases.

The specification program is transformed into a coordination pro-
gram which describes the task parallel characteristics of the paral-
lel implementation. In particular, it fixes the execution order for
module calls and specifies for each call of a module how many
processors are used for its execution. Moreover, the data distribu-
tion of the composed variables used by the computations within
the BMs is determined. Although the coordination program is not
directly executable, it specifies the most important parallel design
decisions and can therefore easily be translated into a correspond-
ing message-passing program.

Based on the information in the coordination program about the
number of executing processors and about the data distributions,
the specification of a BM can be transformed into a parallel basic
module (PBM). This PBM fixes the internal data distributions and
contains the resulting communication operations. If a coordination
program calls the same BM with different data distributions, dif-
ferent parallel versions of the PBM have to be provided. The cor-
rect version for a call is selected according to the data distribution
needed. A PBM contains the number of executing processors as
parameter and, thus, the same version can be called with different
numbers of executing processors.

In the final step, a parallel implementation consisting of two
parts is generated: A coordination program in C creates separate
MPI communication contexts for module calls that are performed
concurrently and contains calls of PBM as specified in the coor-
dination program [4]. For each CM, a corresponding C-function
is provided which is constructed according to the calling structure
of the CM. If redistributions between consecutive module calls are
necessary, because different module calls require the same variable
with different distributions, appropriate calls to a redistribution li-
brary are inserted. The coordination program does not contain op-
erations on data. The PBMs in the coordination program are real-
ized as C programs with MPI communication operations as well.
In addition to the interface parameters of the BMs, each PBM has
a parameter specifying the number of executing processors and a
parameter specifying the communication context for the internal
communication.

2.2 Cost model
To derive a coordination program that corresponds to an efficient

parallel target program for a given parallel machine, a cost model
has to be used. Our general approach for the cost model are run-
time functions that express computation and communication times
of a parallel programm depending on several parameters. Runtime
functions of basic modules are derived according to the internal
computation and communication operations of the basic modules.
Runtime formulas for composed modules are built up according to
the hierarchical structure of the modules. Additionally, the costs
of redistributions of variables between calls of basic modules is
taken into account. Based on the potential parallelism expressed in
the specification program the runtime costs of possible coordina-
tion programs can be expressed. The costs can be used to compare

Program

non-executable
parallel specification

Parallel
Basic Modules

gr
ou

p
in

fo
rm

at
io

n
da

ta
 d

is
tr

ib
ut

io
n

ca
ll

 o
f

ba
si

c
m

od
ul

e

Coordinationsteps
Program

non-executable
specification

Basic
Modules

ca
ll

 o
f

in
pu

t-
ou

tp
ut

ba
si

c
m

od
ul

e

Design Translation Task parallel
Implementation

executable

Data parallel
Program

program

fu
nc

tio
n

ca
lls

Specification

LevelTask-parallel

Data-parallel Level

Figure 2: Design steps showing the task and the data parallel level

different parallel coordination programs for the same initial speci-
fication program and to select the most efficient one. But the costs
can also be used as information to guide the design steps from the
specification program to a coordination program.

The runtime functions are based on an abstract model of a paral-
lel machine that uses a set of parameters to describe the behavior of
the machine. The parameters include the number � of processors,
the time ��� for the execution of an arithmetic operation op, the
startup time � for a message transfer, and the bandwidth � of the
interconnection network. These parameters are used in the runtime
functions to describe the execution time of basic operations and of
collective communication operations in basic modules. The com-
putation time is determined according to the computations speci-
fied in the basic module and uses application-specific parameters
like iteration counts or sizes of data structures. The communi-
cation time depends on the internal data distribution of the basic
module and describes the resulting internal communication oper-
ations. Each communication operation is described by a specific
formula. For different data distributions, different communication
operations with messages of different size might have to be per-
formed and, hence, different runtime formulas may result for the
same basic module.

2.3 Design decisions for mixed task and data
parallelism

The derivation of a coordination program from a specification
program is further subdivided into four substeps.

2.3.0.1 Execution order:.
In the first substep, the execution order of independent module

calls is determined. These calls can either be executed concurrently
by independent groups of processors or consecutively by all proces-
sors available. The decision on the execution order has to take the
internal computation and communication structure of the BMs and
the communication behavior of the target machine into considera-
tion. For many parallel machines (including the IBM SP2, the Intel
Paragon, or the Cray T3D and T3E), performing a collective com-
munication operation on small groups of processors in parallel is
less expensive than performing the same operation on all proces-
sors. This is due to the fact that, depending on the communication
operation, there is a logarithmic or linear dependence of the exe-
cution time on the number of participating processors. Moreover,
the effect of this property is increasing with an increasing number
of processors. So, a concurrent execution of independent modules
should be prefered. However, performing the computations by dis-

joint groups of processors might cause an additional overhead be-
cause of two reasons. First, we consider the situation that the mod-
ule calls to be performed in parallel require an equal amount of
computation. Nevertheless, the sizes of the processor groups work-
ing in parallel may differ since the number of processors available
is not necessarily a multiple of the number of processor groups to be
built. Hence, the computational work is not load balanced among
the groups which possibly results in idle times. Second, building
the processor groups takes a certain amount of execution time, as
the corresponding communication contexts have to be established.

The decision how to realize the execution order can be described
as a scheduling problem for multiprocessor tasks. Each activation
of a basic module can be considered as a multiprocessor task which
can be executed by a varying number of processors. The speci-
fication of parallelism determines possible dependencies between
activations of multiprocessor tasks which makes an execution in a
predefined order necessary. These data dependencies can be repre-
sented in a directed acyclic graph, the module dependence graph.
The nodes of the graph are attached with the costs (in form of run-
time formulas) of the corresponding module calls. Edges are an-
notated with redistribution costs if the internal data distributions
of successive module calls require such a redistribution. A heuris-
tic scheduling approach considering all possible group partionings
for independent modules calls is applied to the multiprocessor task
graph, see [14] for a detailed description.

2.3.0.2 Pipelining:.
In the second substep, data dependent modules are considered.

For those modules there is the possibility to perform them on one
group of processors one after another or to introduce a limited form
of concurrent processing in the form of a pipelined execution. For
a consecutive execution the next module is not started before the
execution of the preceding module has been completed by all pro-
cessors of the group. Depending on the data dependencies of the
modules, their execution can be pipelined, i.e., the execution of the
module calls happens in parallel and one module continuously pro-
duces data that is processed by the following module call. This is
possible, if the first module produces its output data, i.e., data items
of a compound data object, one after another in the same order in
which the succeeding module call uses the data as input. Thus, the
degree of parallelism can be increased since the modules can be
executed in parallel by different processor groups. This is useful if
the number of processors is large enough to execute both modules
concurrently and if the use of all available processors for a con-
secutive execution of the modules would not increase the resulting
performance because a saturation point of the speedup has been
reached.

2.3.0.3 Processor groups:.
The result of the first two substeps is an exact execution order of

the module calls, but the number of executing processors has not
yet been determined. This is done in the next substep by consid-
ering the computational work of the different module calls and the
resulting communication time. For a specific group �, the proces-
sors in � perform module calls concurrently to other groups such
that at each point in time, all processors of � perform the same data
parallel operations. Each group � has a certain lifetime starting with
the generation of � and ending by merging � with other groups or
further subdividing �. During its lifetime, each group has to per-
form module calls with internal computations. Considering groups
working concurrently to each other, the best performance results, if
the processors are partitioned among these groups according to the
internal computation and communication time of the modules, i.e.,

if each group has the same parallel runtime. Thus, idle times are
reduced as far as possible.

To avoid a load imbalance for modules to be executed concur-
rently the group sizes of the subsets of processors have to be adapted
to the execution times of the modules. The problem can be consid-
ered as a constraint optimization problem as described in [13] for
the extrapolation method. Usually, an approximation method has
to be employed for the solution.

2.3.0.4 Data distribution:.
In the last substep, the data distributions have to be determined.

A specific module � might be available in different versions using
different data distributions usually resulting in different execution
times. If we consider the execution of a module call � in isola-
tion, the internal data distribution with the smallest execution time
should always be used. This might however no longer be true, if
we consider � in the context of other module calls that possibly
require another data distribution for a specific variable. If we use
the data distribution with the smallest execution time for � , a data
redistribution before and after the execution of � might be nec-
essary. The redistribution could possibly be avoided, if we use
another version of � with a data distribution fitting to the data
distributions of the surrounding modules. Thus, a smaller overall
execution time could result although a suboptimal data distribution
has been used for the call of � .

An analytical approach to compute optimal data distributions for
arrays of arbitrary dimension is based on runtime formulas and
parametrized data distributions that can be used to describe many
regular distributions of arrays like blockwise or cyclic or block
cyclic distributions [11]. The runtime functions contain additional
parameters that describe the shape of the data distributions. An
approach to select data distribution for basic modules in a coor-
dination program is based on data distribution types and dynamic
programming [15]. The composed modules are described by their
corresponding module syntax tree. Bottom-up for each node of the
module tree a time functions is determined that maps each data dis-
tribution type of the corresponding module � onto the minimal
runtime that can be achieved for this data distribution type.

3. SPECIFICATION AND COORDINATION
LANGUAGE

As described in Section 2 the specification program consists of a
task parallel level comprising the hierarchical structure of CMs and
a data parallel level containing BMs which are not decomposed
further but express potential data parallelism.

The specification language for the task parallel level contains
operators that describe how modules of an algorithm can be com-
bined. The data parallel level consists of a set of C functions that
perform internal communication with MPI operations. In the fol-
lowing, we concentrate on the task parallel level and describe the
interaction with the data parallel level.

3.1 Specification language
A specification program consists of
– a list of external BM declarations,
– a list of external CM declarations, and
– a list of CM definitions.

An external CM or BM declaration has the form

modul name(IN inputlist; OUT outputlist)

where modul name denotes the CM or BM to be declared. The
type and the arity of the module modul name is given in form of a

list of input parameters required by the module and the list of output
parameters computed by the module. The inputlist of a module
indicated by the keyword IN describes a number of input values ��
together with their types ���	�,
 � �� ����
, denoted as IN �� �
���	�� � � � � �� � ���	�. Analogously, the outputlist indicated by
the keyword OUT describes a number of output variables �� with
corresponding types ���	�� , � � �� ���� �, denoted by OUT �� �
���	��� � � � � �� � ���	��. Data types include the types

scal , vec(n) , mat(n,n) , vec(n) � vec(n)

denoting scalars, vectors of size �, matrices of size � � �, and
multidimensional functions mapping vectors onto vectors.

The list of external BM declarations represents the interface to
the lower data parallel level. The input and output parameters de-
termine the data dependencies in the module structure. The actual
code is given externally. The behavior of CMs is defined within
the specification program by a module expression. External CMs
are only declared in the specification program and are defined by
module expressions in an external file. A CM definition is a CM
declaration together with a definition of the behavior of the CM. It
has the form

modul name(IN inputlist; OUT outputlist) � modul expr�

where modul expr is an expression built up from activations of
other CMs and BMs declared or defined in the same specification
program.

A module expression describes the hierarchical decomposition of
a module into other BMs or CMs which are combined by appropri-
ate constructors. An expression contains variable names for BMs
(denoted by ��� ������ in the following), variable names for CMs
(denoted by ��� ������), and variable names for data objects like
scalars, vectors, matrices, or higher dimensional data objects (de-
noted by ��� ���� ��). Variables denoting BMs or CMs have a range
and an image of fixed arity and type consistent with the arity and
type in the declaration of that module. A module expression � is
built up from activations of basic modules ����� ���� ��� ��� ���� ���
and activations of composed modules ����� ���� ��� ��� ���� ���,
i.e., modules names together with a list of parameters correspond-
ing to the declaration of the modules.

Module expressions are defined by the following grammar:

� ��� ����� ���� ��� ��� ���� ��� (1)

� ����� ���� ��� ��� ���� ���

� �� Æ ��

� �� � ��

� for �
 � �� ���� �� �

� parfor �
 � �� ���� �� �

� while �
� ����� �

� if ������ then �

� ��	�

The meaning of the operators in a module expression � is the
following: Æ denotes a data dependent composition of modules, �
denotes a potential concurrent execution of modules, for and while
denote sequential loops, parfor denotes a parallel loop, and if de-
notes a control dependence. The occurrence of a BM name in a
module expression can be considered as a call of a corresponding
function that is provided from outside. The operator Æ denotes data
dependency and not functional composition. Thus, the number of
OUT parameters and IN parameters of two consecutive modules do
not have to match. Modules combined by the ��-operator may have

the same input parameter but there is no interaction between the
modules during their execution.

The actual input parameters, i.e., the parameters of a module call
in a module expression can denote variables or constants; output
parameters denote variables only. For input variables a call-by-
value semantics is used, thus guaranteeing that the value given to a
module on the left hand side are visible to all module expressions
on the right hand side. For output variables a call-by-reference
semantics is used so that the computed value of one module are
visible to all succeeding modules in the same module expression.

The scope of visibility of data corresponds to the hierarchical
structure of the module decomposition. So, input variables of a
module activation in a module expression can include input vari-
ables of the module to be defined by that expression and all output
variable of preceding module activations within the same module
expression. Output variables of a modul activation in a module
expression can be used as input variables for a following module
activation within the same expression or as output variable of the
entire module expression, i.e., as output of the module defined by
this definition. The output of the last module activation in the ex-
pression should be part of the output of the module to be defined,
as otherwise the result is lost and the computation would be re-
dundant. Only output parameters of a module expression that are
output of the module to be defined by that expression are visible to
other parts of the module specification. All other output is visible
only locally within the module expression.

The input parameter list can contain function parameters of type
�	���� � �	���� mapping vectors onto vectors. Function param-
eters are included in the parameter list as many applications in sci-
entific computing, such as solution methods for nonlinear equations
or differential equations, are parametrized by a function describing
the specific system to be solved. The use of function parameters is
restricted to the evaluation of that function which is appropriate in
that application area and avoids a complicated type system. As a
consequence there are no function parameters as output parameters
which is consistent with the discrete nature of numerical methods.

As example for a specification program we consider the Newton
method in the next subsection.

3.2 Example: Newton iteration
The Newton method solves a nonlinear system of equations � ����

� described by a nonlinear function � � �� � � �� �. The Newton
method iteratively computes a sequence of approximation vectors
��� ��� ��� for the solution �
 �� � according to the formula:

������ � ���� �
�
�� ������

�
��

� �������
 � �� �� �� � � � �

where
�
�� ������

�
�
�
	
�

	��
������

�
������

��

denotes the Jacobian

matrix of function � at ���� and ���� is an initial approximation.
Each iteration step of the Newton method comprises several com-
putations:

(1) The function � is evaluated at ����.

(2) The entries of the matrix
�
�� ������

�
are determined by a

forward difference approximation.
(3) The vector ���� is computed by solving the system of linear

equations
�
�� ������

�
���� � �� ������ by a direct method

like the Gaussian elimination (instead of determining the in-
verse matrix of the Jacobian).

(4) The next approximation vector ������ � ����	���� is com-
puted.

(5) The error e � �������� is computed.

The Newton iteration ends if the error 	 is small enough and out-
puts the result of the last iteration �� as approximation solution
���� � ���

�� of the system. Figure 3 illustrates the hierarchical de-
composition of the Newton method into modules. Figure 4 shows
the corresponding specification program. The decomposition starts
with the module Newton and consists of four steps:

(I) The composed module Newton consists of a while-loop over
NewtonBody which stops if 	 is small enough.

(II) NewtonBody activates ComputeCorrection computing a
correction vector ���� and ComputeIterate computing the
new iteration vector ������ and the error 	.

(III) ComputeCorrection is decomposed into
(1) EvaluateFunction for computing � ������ � �,
(2) ComputeJaco for computing the Jacobian matrix �� ,

and
(3) SolveLinSystem for solving the linear system provid-

ing the correction vector ����.
These steps are executed one after another which is expressed
by the operation Æ.

(IV) ComputeIterate comprises the modules
(4) Update for computing the next approximation

������ and
(5) ComputeError for computing the error 	.

These activations are independent from each other and can
be executed in parallel which is expressed by the operator ��.

(The numbers (1)–(5) correspond to the computation steps of the
Newton method given above.) SolveLinSystem is an external
module for solving a linear system of equations. Any appropriate
solver can be used. ComputeJaco, Update, and ComputeError
are data parallel BMs. EvaluateFunction is based on the specific
function � describing the problem to be solved.

External BM Declarations:

EvaluateFunction(IN F:vec(n)�vec(n), z:vec(n);
OUT v: vec(n))

ComputeJaco(IN F:vec(n)�vec(n), z:vec(n), v:vec(n);
OUT DF: mat(n � n))

Update(IN z: vec(n), w: vec(n); OUT znew: vec(n))
ComputeError(IN w: vec(n); OUT e: scal)

External CM Declarations:

SolveLinSystem(IN DF: mat(n � n), v: vec(n);
OUT w: vec(n))

Definitions:

Newton(IN F:vec(n)�vec(n), z:vec(n), tol:scal, e:scal;
OUT z: vec(n))

= while(e � tol) NewtonBody(F, z; z, e)
NewtonBody(IN F: vec(n) � vec(n), z: vec(n);

OUT znew: vec(n), e: scal)
= ComputeCorrection(F, z; w)
Æ ComputeIterate(w, z; znew, e)

ComputeCorrection(IN F: vec(n) � vec(n), z: vec(n);
OUT w: vec(n))

= EvaluateFunction(F, z; v)
Æ ComputeJaco(F, z, v; DF)
Æ SolveLinSystem(DF, v; w)

ComputeIterate(IN w: vec(n), z: vec(n);
OUT znew: vec(n), e: scal)

= Update(z, w; znew) �� ComputeError(w; e)

Figure 4: Specification program of the Newton method.

zk

z0

zk

z0

zk

z0
z0

k+1z
zk+1

zk+1

zappzappz
zapp

ComputeJaco

SolveLinSystem

Update

ComputeError

EvaluateFunctionNewton
Newton

Body
Compute

Correction

Compute
Iterate

e e

app

vk

D

kw

wk

Figure 3: Decomposition steps for the Newton method resulting in a hierarchical module structure.

3.3 Coordination language
The coordination program is derived from the specification pro-

gram in four substeps as described in Subsection 2.3. The corre-
sponding design decisions are represented in the language by new
constructors or by annotations.

3.3.0.5 Execution order and Pipelining.
Fixing the execution order is relevant for module activations that

are combined by �� or parfor, since such modules can be computed
either concurrently on subgroups of processors or one after another
on the entire set of processors. The decision on the actual execution
order is described by new operators which express the execution or-
der (in contrast to the operators in the specification language where
the data dependence between module activations is expressed). The
binary operator �� of the specification language is either transformed
into a consecutive execution expressed by the operator ��� or into a
concurrent execution expressed by the same symbol �� as the origi-
nal operator. Analogously, parfor is converted into seqfor or par-
for expressing that a loop with independent iterations is realized
consecutively or concurrently, respectively. It is also possible that
a single parfor of the specification program is transformed into a
double-nested loop of seqfor and parfor thus allowing a flexible
adaptation to the number of processors available.

The operator Æ of the specification language expresses a depen-
dence between module activations. As described in Subsection 2.3
a pipelined realization of the module activations might be possible.
We express pipelining in the coordination program by the operator
�. A non-pipelined consecutive execution order is denoted by the
same symbol Æ as in the specification program.

In summary, the operators �� and Æ of the specification language
are transformed into the operators �� , � , Æ , and � in the coor-
dination language. Those operators exactly express all possible
combinationss of data dependence and execution order as shown in
the following table.

data no data
dependence dependence

consecutive Æ �
concurrent � ��

To distinguish between a consecutive execution order with and with-
out data dependence (i.e., using different operators Æ and �) is im-
portant for later decisions about the internal data distribution which
may or may not cause expensive data redistributions.

3.3.0.6 Processor groups.
For the decision about the sizes of the processor groups, an addi-

tional parameter � is used for each module determining the number
of executing processors. In the declarations of external BMs and
CMs and in the definition of CMs, � is always the first parameter.
The number of executing processors is determined for each module
activation by using the parameter value of the calling module. For
consecutive module activations, the same group sizes are used. For
a concurrent execution of modules, each module is executed with a
subset of the available processors.

3.3.0.7 Data distribution.
The distributions of the variables among the executing proces-

sors are described by data distribution types. Types provide a mech-
anism to express a complex data distribution as names so that the
data distribution information can easily be passed to a called mod-
ule or can be used to check whether data distribution types fit to-
gether. In addition to the usual data type, a data distribution type
� is given for every input or output parameter of a module declara-
tion, i.e., for a parameter � the entire information is � � ���	 � �.
For a module activation in a module expression, the data distribu-
tion information is implicitly passed to the called modules. If the
distribution of the actual parameters do not fit to the distribution de-
clared for the called module, a call to a redistribution module has to
be inserted into the coordination program. If the same BM is avail-
able with different data distributions, these different versions are
distinguished by different names for the corresponding functions.

3.3.0.8 Coordination program for the Newton method.

Figure 5 shows a coordination program to the specification pro-
gram in Figure 4. The execution order in module ComputeIterate
has been fixed to a consecutive execution. No pipelining is used.
Using a Gaussian elimination for SolveLinSystem, a row-cyclic
distribution of the Jacobian matrix DF is appropriate to get a good
load balance. Correspondingly, the right hand side vector v will
also be distributed cyclically, but the backward substitution delivers
the output vector w replicated. This choice for SolveLinSystem
leads to the remaining distributions shown in the figure, if redistri-
butions are avoided.

4. EXAMPLES AND EXPERIMENTS
In this section, we consider some examples from numerical anal-

ysis for which specification and coordination programs have been

External BM Declarations:

EvaluateFunction cyclic(p; IN F: vec(n) � vec(n),
z: vec(n): replic ;

OUT v: vec(n) : cyclic)
ComputeJaco rowcyclic(p; IN F: vec(n) � vec(n),

z: vec(n): replic,
v: vec(n): cyclic;

OUT DF: mat(n � n):rowcyclic)
Update replic(p; IN z: vec(n): replic, w: vec(n): replic;

OUT znew: vec(n): replic)
ComputeError replic(p; IN w: vec(n): replic;

OUT e: scal: replic)

External CM Declarations:

SolveLinSystem rowcyclic(p; IN DF: mat(n � n): rowcyclic,
v: vec(n): cyclic;

OUT w: vec(n): replic)

Definitions:

Newton(p; IN F: vec(n) � vec(n), z: vec(n): replic,
tol: scal: replic, e: scal: replic;

OUT z: vec(n): replic)
= while(e � tol) NewtonBody(p; F, z; z, e)

NewtonBody(p; IN F: vec(n) � vec(n), z: vec(n): replic;
OUT znew: vec(n) :replic, e: scal :replic)

= ComputeCorrection(p; F, z; w)
Æ ComputeIterate(p; w, z; znew, e)

ComputeCorrection(p; IN F: vec(n) � vec(n),
z: vec(n): replic;

OUT w: vec(n): replic)
= EvaluateFunction cyclic(p; F, z; v)
Æ ComputeJaco rowcyclic(p; F, z, v; DF)
Æ SolveLinSystem rowcyclic(p; DF, v; w)

ComputeIterate(p; IN w: vec(n): replic,
z: vec(n): replic;

OUTznew: vec(n): replic ,
e: scal: replic)

= Update replic(p; z, w; znew)
� ComputeError replic(p; w; e)

Figure 5: Coordination program of a parallel Newton method for p
processors.

developed according to the derivation process. We also give run-
time experiments of the corresponding message-passing programs.

Runge-Kutta (RK) methods are one-step solution methods for
initial value problems of ordinary differential equations (ODEs) of
the form �����

��
� ���� �����, ����� � ��, �� � � � ����� where

� � �� � ��� is the unknown solution function and � � ������ �
�� � is an application-specific function which is nonlinear in the
general case. The vector ��
 ��� specifies the initial condition
at ��. The solution method computes approximation vectors ��
for the exact values ����� at discrete �-values �� � ���� 	 �,
� � �� �� ���, one after another with step-size �. There is a large
variety of RK methods that can be used for ODEs with different
characteristics. In particular, we consider RK methods with a large
potential of task and data parallelism. We apply the solution meth-
ods to two classes of ODEs which differ in the amount of com-
putational work of the right hand side � of the ODE system: (i) f
has evaluation costs that are linear in the size of the ODE system
(sparse function); (ii) f has evaluation costs that are quadratic in
the size of the ODE system (dense function). In the experiments
we used the Brusselator equation as example for a partial differen-
tial equation that results in a sparse system of ODEs and nonlinear
partial differential equations solved with Fourier–Galerkin methods
that results in a dense system of ODEs.

External BM Declarations:

StageVector(IN f: scal � vec(n) � vec(n), x: scal,
y: vec(n), s: scal, A: mat(s � s),
h: scal, V: list[s] of vec(n);

OUT vnew: vec(n))
ComputeApprox(IN f: scal � vec(n) � vec(n), x: scal,

y: vec(n), s: scal, b: vec(s),
h: scal, V: list[s] of vec(n);

OUT ynew: vec(n))
StepsizeControl(IN y: vec(n), ynew: vec(n);

OUT hnew: scal, xnew: scal)

Definitions:

ItRKmethod(IN f: scal � vec(n) � vec(n), x: scal,
xend: scal, y: vec(n), s: scal,
A: mat(s � s), b: vec(s), h: scal;

OUT X: list[] of scal, Y: list[] of vec(n))
= while(x � xend) �

ItComputeStagevectors (f, x, y, s, A, h ; V)
Æ ComputeApprox (f, x, y, s, b, h, V ; ynew)
Æ StepsizeControl (y, ynew; xnew, hnew) �

ItComputeStagevectors(IN f: scal � vec(n) � vec(n),
x: scal, y: vec(n), s: scal,
A: mat(s � s),
h: scal;

OUT V: list[s] of vec(n))
= InitializeStage(y ; V)
Æ for(j=1,...,m)

parfor (l=1,...,s) StageVector(f, x, y, V ; Vnew)

Figure 6: Specification program of the iterated RK method.

4.1 Iterated RK methods
Iterated RK methods are new solution methods for ODEs that

have been derived from implicit RK methods for execution on par-
allel machines [18]. In each time step, an -stage iterated RK
method performs a fixed number
 of iterations to compute stage
vectors ��� � � � � �� in each iteration step. The stage vectors com-
puted in the last stage vector iteration
 are used to compute the
next approximation vector ����. The advantage of the iterated RK
methods for parallel execution is that the iteration system of size

� consists of independent function evaluations that can be per-
formed concurrently in a task parallel way.

Figure 6 shows the resulting specification program. In each itera-
tion step of ItRKmethod, the stage vectors are computed in ItCom-
puteStagevectors, the next approximation vector is computed in
ComputeApprox, and the new step-size hnew and �-value xnew
for the next iteration step are computed in StepsizeControl. The
computation of the stage vectors is performed by a sequential loop
with
 iterations where each iteration is a parallel loop with in-
dependent activations of the basic module StageVector.

In a coordination program, the parfor-loop over StageVector
can be realized as group-parallel variant with mixed task and data
parallelism or as pure data parallel variant. Experiments on sev-
eral DMMs show that the pure data parallel variant performs better
in most cases than a variant that exploits the available task paral-
lelism, although the group-communication operations are usually
faster than global communication operations. But a change from
the group computation of the iteration vectors in StageVectors
to the global computation of ComputeApprox requires additional
(global) communication with costs that outweigh the savings by the
group-communication. Figure 7 shows the resulting runtimes of a
three-stage iterated RK method on an SP2 when applied to a sparse
or dense ODE system, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ru
nt

im
e

in
 s

ec

system size

iterated RK: sparse function for 32 processors on SP2

data parallel
task parallel

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ru
nt

im
e

in
 s

ec

system size

iterated RK: dense function for 32 processors on SP2

data parallel
task parallel

Figure 7: Runtimes in seconds on the IBM SP2: task parallel and
data parallel execution schemes of the iterated RK method for sparse
(top) and dense (bottom) ODE systems.

4.2 Diagonal-implicitly iterated RK methods
The iterated RK methods from Subsection 4.1 is an explicit RK

method which is only suitable to solve non-stiff ODE systems. To
provide an RK-solver for solving stiff ODE systems exhibiting task
parallelism, the diagonally iterated implicit RK (DIIRK) method
has been introduced. The computation scheme differs slightly from
the iterated RK method. Functions evaluations are delayed and an
additional diagonal matrix � is introduced. For a system of ODEs
of size �, one stage vector iteration consists of implicit nonlinear
equations which are independent from each other.

The specification program for the DIIRK method is similar to
the specification program for the iterated RK method in Figure 6,
except that the computation of the stage vectors is different, i.e.,
the call StageVector(f, x, y, V ; Vnew) in the body of the parfor
loop is replaced by the call Newton(F(f, x, y, s, A, h, l), Y, tol, e;
Vnew) where Newton is the CM from Figure 4.

In the coordination program with task parallel execution of the
DIIRK method, the iteration vectors of one corrector step are
computed by independent groups of processors where each group
contains �! processors. It is convenient to use the implementation
of the Newton method from Figure 5. At the end of each correc-
tor step, a redistribution has to be executed to make the iteration
vectors available to all processors.

Implementations on different parallel machines (IBM SP2 and
Intel iPSC/860 and Paragon) show that the group execution leads to
a better performance than a consecutive execution order that solves
the independent systems of one corrector step by all available pro-
cessors one after another. The reason for this lies in the fact that
the broadcast operations executed in the Gaussian elimination are
less expensive when executed in parallel on independent groups of

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450 500 550

sp
ee

du
p

system size

sparse function for 32 processors on SP2

data parallel
task parallel

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450 500 550

sp
ee

du
p

system size

sparse function for 32 processors on Paragon

data parallel
task parallel

Figure 8: Speedups of task parallel and data parallel execution
schemes of the DIIRK method on the IBM SP2 (top) and the Intel
Paragon (bottom).

processors (group broadcast). So, the combination of the modules
in the specification program of the DIIRK method has the same
structure as the iterated RK method but the transformation into a
coordination program results in a different exploitation of the task
parallelism.

Figure 8 shows the resulting speedup values on 32 processors
of an IBM SP2 and Intel Paragon for an application of a DIIRK
method with 5 stages to the solution of a stiff ODE system that
results from a discretization of the Brusselator equation [8]. For
dense ODE systems, the attained speedup values are larger for both
the task parallel and data parallel execution. The task parallel ex-
ecution is still much faster than the data parallel execution, but the
difference in percentages is smaller.

4.3 Extrapolation methods
Extrapolation methods use a generating method like the Euler

method and compute different approximations for ����� 	 �"�
with different step-sizes �� # �� # � � � # ����, e.g., defined
by �� �� "!�� with �� �� � 	 �, i.e., the generating method
is applied �� times for the computation of ����� 	 �"�. These
approximations ����� 	 �"� are then combined to obtain an ap-
proximation solution ���� 	 �"� of higher order.

Extrapolation methods offer task parallelism since the compu-
tation of the different approximations with different step-sizes are
independent from each other. In the specification program in Fig-
ure 9 this is expressed in the parfor-loop of MicroSteps where
each activation of MicroSteps(j,...) computes one approximation
����� 	 �"�. The �� steps of the generating method with the
same step-size �� have to be executed one after another. This is ex-
pressed in the definition of MicroSteps as a for-loop over i=1,...,j.

External BM Declarations:

BuildExtrapTable(IN Y: list[r] of vec(n); y: OUT vec(n))
ComputeMicroStepsize(IN j: scal, H:scal, r:scal;

OUT h� :scal)

External CM Declarations:

EulerStep(IN f: scal � vec(n) � vec(n), x: scal,
y: vec(n), h: scal;

OUT ynew: vec(n))

StepsizeControl(IN y: vec(n), ynew: vec(n);
OUT hnew: scal, xnew: scal)

Definitions:

ExtrapMethod(IN f: scal � vec(n) � vec(n), x: scal,
xend: scal, y: vec(n), r: scal, H: scal;

OUT X: list[] of scal, Y: list[] of vec(n))
= while(x � xend)

parfor(j=1,...,r) MicroSteps(j, f, x, y, H ; y�)
Æ BuildExtrapTable((y�,...,y�) ; ynew)
Æ StepsizeControl(y, ynew ; Hnew, xnew)

MicroSteps(IN j:scal , f: scal � vec(n) � vec(n), x: scal,
y: vec(n), H: scal;

OUT ynew: vec(n))
= ComputeMicroStepsize(j, H, r ; h�)
Æ for(i=1,...,j) EulerStep(f, x, y, h� ; ynew)

Figure 9: Specification program of the extrapolation method.

The generating method provides additional data parallelism which
can be exploited by distributing the components of the approxima-
tion vectors among the processors.

The difference concerning a parallel implementation between
the iterated RK methods from the last subsection and extrapola-
tion methods is that for extrapolation methods each of the inde-
pendent computations require a different amount of computational
work. Hence, for a task-parallel implementation, an appropriate
load balancing scheme should be used to guarantee that the differ-
ent approximations are available at about the same time so that a
small parallel runtime results.

In a concurrent execution order using $ disjoint processor groups
the size of the groups can be adapted to the computational work,
i.e., group � obtains about �� � �
 ��!

��
��� �� processors. This

design decision is expressed in a coordination program by annotat-
ing the group information to the body of the parfor-loop. Another
possibility is to use �$!�� disjoint processor groups containing the
same number of processors and each group performs the generating
method with two different step-sizes �� and ���� . This scheduling
and group-size decision is expressed in the coordination program
by transforming the parfor-loop into a mixed parfor- and seqfor-
loop over module actications of MicroSteps annotated with the
same group size.

5. RELATED WORK
A large variety of programming models and languages have been

proposed with different levels of abstraction. A good overview
of related work on programming paradigms can be found in [9,
16]. The most important language approaches include functional
programming languages and algorithmic skeletons for which par-
allelism is implicitly available as independent expressions can be
evaluated in parallel, and data parallel languages like HPF (High
Performance Fortran) [5] or NESL [3].

Other language approaches include Braid, Fortran M, Fx, Opus,

and Orca [1]. Fortran M [7] allows the creation of processes which
can communicate with each other by predefined channels and which
can be combined with HPF Fortran for a mixed task and data par-
allel execution.

The Fx model expresses task parallelism by providing declara-
tion directives to partition processors into subgroups and execution
directives to assign computations to different subgroups (task re-
gions) [17]. Task regions can be dynamically nested, i.e., a proce-
dure call made in a task region can further subdivide the execut-
ing processors using another task region directive. A model that is
similar to the task parallelism model of Fx has recently been added
to High Performance Fortran [5] as an approved extension. Al-
though the Fx approach is similar in spirit to our approach, there
are some important differences. The task regions in Fx cannot be
nested lexically whereas our model allows a hierarchical structure
of the modules. On the other hand allows Fx a dynamic nested
partitioning of processors by allowing (recursive) procedure calls
with internal partitioning of processors whereas our model requires
all task coordination to be performed on the upper level of the pro-
gram derivation process. The Fx model is primarily a programming
approach in which the programmer has to decide on the task parti-
tioning and the assignment of task to processor groups. Our model
is more a specification approach in which the programmer is re-
sponsible for specifying the available task parallelism, but the final
decision whether the available task parallelism will be exploited
and how the processors should be partitioned into groups is taken
by the compiler. Therefore, our model provides a framework for
the complete derivation process in which support tools can be inte-
grated quite naturally.

An exploitation of task and data parallelism in the context of
a parallelizing compiler can be found in the Paradigm compiler
[2] which provides a framework that expresses task parallelism by
a macro dataflow graph derived from the hierarchical task graphs
used in the Parafrase compiler. Nodes in the macro dataflow graph
correspond to basic parallel tasks or loop constructs, edges corre-
spond to precedence constraints that exist between tasks. The nodes
and edges are weighted with processing and data transfer costs both
of which depend on the number of processors used for the execu-
tion.

6. CONCLUSIONS
We have presented a new model with an integrated language sup-

port to derive efficient parallel implementations. Important features
of the model are

� an exploitation of data parallelism and arbitrary levels of task
parallelism,

� a structured derivation of parallel implementations that are
efficient for a specific parallel machine, and

� a clear separation and interface between the data parallel and
the task parallel executions.

The model enables the programmer to derive efficient implemen-
tations in well-defined steps where each step concentrates on one
design decision. Thus, the model provides an easy-to-use frame-
work for the programmer and is the basis for an automatic or semi-
automatic derivation of implementations from a general machine-
independent specification. Currently, a prototype is available that
allows the generation of MPI programs from coordination programs
[4]. Moreover, optimization algorithms have been developed and
implemented to support the derivation steps. Future research in-
cludes the integration of these algorithms into an integrated tool to
support the programmer in the derivation of parallel implementa-
tions.

7. REFERENCES
[1] H. Bal and M. Haines. Approaches for Integrating Task and

Data Parallelism. IEEE Concurrency, 6(3):74–84,
July-August 1998.

[2] P. Banerjee, J. Chandy, M. Gupta, E. Hodge, J. Holm,
A. Lain, D. Palermo, S. Ramaswamy, and E. Su. The
Paradigm Compiler for Distributed-Memory
Multicomputers. IEEE Computer, 28(10):37–47, 1995.

[3] G.E. Blelloch. Programming Parallel Algorithms.
Communications of the ACM, 29(3):85–97, March 1996.

[4] U. Fissgus, T. Rauber, and G. Rünger. A framework for
generating task parallel programs. In 7th Symposium on the
Frontiers of Massively Parallel Computation - Frontiers ’99,
pages 72–80, Annapolis, Maryland, 1999.

[5] High Performance Fortran Forum. High Performance Fortran
Language Specification. Scientific Programming, 2(1), 1993.

[6] The MPI Forum. MPI: A Message Passing Interface
Standard. Technical report, University Tennessee, April
1994.

[7] I. Foster and K.M. Chandy. Fortran M: A Language for
Modular Parallel Programming. Journal of Parallel and
Distributed Computing, 25(1):24–35, April 1995.

[8] E. Hairer and G. Wanner. Solving Ordinary Differential
Equations II. Springer, 1991.

[9] M.G. Norman and P. Thanisch. Models of Machines and
Computation for Mapping in Multicomputers. ACM
Computing Surveys, 25(3):263–302, 1993.

[10] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A
Framework for Exploiting Task and Data Parallelism on
Distributed-Memory Multicomputers. IEEE Transactions on
Parallel and Distributed Systems, 8(11):1098–1116, 1997.

[11] T. Rauber and G. Rünger. Optimal Data Distribution for LU
Decomposition. In Proc. of the EuroPar’95, Springer LNCS
966, pages 391–402, 1995.

[12] T. Rauber and G. Rünger. Deriving Structured Parallel
Implementations for Numerical Methods. Microprocessing
and Microprogramming, 41:589–608, 1996.

[13] T. Rauber and G. Rünger. Load Balancing Schemes for
Extrapolation Methods. Concurrency: Practice and
Experience, 9(3):181–202, 1997.

[14] T. Rauber and G. Rünger. Compiler Support for Task
Scheduling in Hierarchical Execution Models. Journal of
Systems Architecture, 45:483–503, 1998.

[15] T. Rauber, G. Rünger, and R. Wilhelm. Deriving Optimal
Data Distributions for Group Parallel Numerical Algorithms.
In Proc. 2nd Conf. on Massively Parallel Programming
Models, pages 33–41, Berlin, Germany, 1995.

[16] D. Skillicorn and D. Talia. Models and languages for parallel
computation. ACM Computing Surveys, 30(2):123–169,
1998.

[17] J. Subhlok and B. Yang. A New Model for Integrating
Nested Task and Data Parallel Programming. In 8th ACM
SIGPLAN Symp. on Principles & Practice of Parallel
Programming, pages 1–12, 1997.

[18] P.J. van der Houwen and B.P. Sommeijer. Parallel Iteration of
high–order Runge–Kutta Methods with stepsize control.
Journal of Computational and Applied Mathematics,
29:111–127, 1990.

[19] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison Wesley, 1996.

