Optimizing Locality for ODE Solvers

Thomas Rauber
Institut fir Informatik
Universitat Halle-Wittenberg
06099 Halle (Saale), Germany

rauber@informatik.uni—halle.de

ABSTRACT

Runge-Kutta methods are popular methods for the solu-
tion of systems of ordinary differential equations and are
provided by many scientific libraries. The performance of
Runge-Kutta methods does not only depend on the specific
application problem to be solved but also on the character-
istics of the target machine. For processors with memory hi-
erarchy, the locality of data referencing pattern has a large
impact on the efficiency of a program. In this paper, we
describe program transformations for Runge-Kutta meth-
ods resulting in programs with improved locality behavior.
The transformations are based on properties of the solution
method but are independent from the specific application
problem or the specific target machine, so that the result-
ing implementation is suitable as library function. We show
that the locality improvement leads to performance gains
on different target machines. We also demonstrate how the
locality of memory references can be further increased by
exploiting the dependence structure of the right hand side
function of specific ordinary differential equations.

1. INTRODUCTION

The numerical integration of initial value problems (IVPs)
of ordinary differential equations (ODEs) plays an important
role in the area of scientific computing. Large systems of
ODEs arise, e.g., when discretizing time dependent partial
differential equations (PDEs) in the spatial domain using
the method of lines. This results in an IVP in time with
one ODE for each of the spatial discretization points. The
advantage of this approach is that for the solution of IVPs,
a variable stepsize can be used to adapt the stepsize so that
a given accuracy can be guaranteed. Therefore, the number
of discretization points in the time domain is usually quite
small compared to a global discretization that discretizes
the time domain with a fixed stepsize resulting in a (linear
or non-linear) equation system.

Runge-Kutta (RK) methods with embedded solutions for
stepsize control are one of the most popular methods for the
numerical integration of non-stiff IVPs because they com-
bine low execution times with good numerical properties.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Proc. of ICS2001, pp. 123-132, June 2001, Sorrento, Italy

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Gudula Runger
Fakultat fir Informatik
Technische Universitat Chemnitz
09107 Chemnitz, Germany

ruenger@informatik.tu—chemnitz.de

The idea of these methods is to compute two approximations
of different convergence order with the same evaluations of
the right hand side function of the ODE system and to use
them for stepsize control [10]. Examples are the methods
of Fehlberg [8] and Dormand&Prince [13]. Variants of these
methods are used in many software libraries like DVERK or
RKSUITE [4].

In many scientific applications, not only the arithmetic
operations limit the performance on a specific computer but
also the movement of data between registers, caches of dif-
ferent levels, main memory, and out-of-core memory. To
achieve high performance, programs have to be tuned to
make efficient use of the memory hierarchy of the target ma-
chine. Tuning can sometimes be performed by a compiler
using locality optimizing transformations like loop fusion,
blocking, or tiling, see [11, 19] for an overview. Optimizing
transformations have been shown to improve the efficiency
for matrix computations, algorithms from dense linear alge-
bra, and grid-based computations by reducing the number
of cache misses. Cache optimizations are more difficult to
achieve for iterative methods that perform several global
sweeps over data structures to be computed or updated in
every iteration step. For large problem sizes, re-accessing
those data in each iteration step can lead to a poor cache
exploitation due to capacity misses. For those cases the tun-
ing is often done by hand since subtle rearrangements of the
computations are necessary, which are difficult to detect au-
tomatically. Cache optimizations for iterative methods in
the context of grid-based computations have been investi-
gated, see e.g. [16] and the references therein, but there are
only a few approaches for automatic optimizations [12].

In this article, we consider the question how the computa-
tions performed by a typical ODE solver can be rearranged
such that the locality of the memory references is increased.
ODE solver are iterative methods that perform consecutive
time steps where the number of steps depends on the step
size control mechanism and the time interval in which the
ODE has to be integrated. Because of their practical rel-
evance, we consider explicit RK methods with embedded
solutions for systems of ODEs. Those methods perform a
sequence of consecutive time steps. In each time step a new
approximation vector is determined involving the computa-
tion of several one-dimensional vectors and the evaluation
of function f for different argument vectors, where f is the
right hand side function of the ODE system to be integrated.
A strategy to improve temporal locality of the memory ref-
erences is to rearrange these function evaluations such that
after the computation of one component of f the result
is used as often as possible without performing additional
arithmetic operations in between. The goal is to achieve
a program structure with a good temporal locality behav-

ior of the data referencing pattern of the resulting program
without destroying spatial locality properties. We make no
assumptions about the specific characteristics of the cache
memory like cache size, cache line size, cache associativity,
or cache replacement strategy. As well, there are no assump-
tions about the specific application problem, i.e. the specific
form of the right hand side function f determining the ODE
system to be integrated. Thus, no information about the
specific access and dependence structure of f can be used
for the transformations to be applied to the general ODE
solver. So the difficulties with rearrangements of function
evaluations lie in the fact that black-box ODE-solvers are
designed to work with arbitrary right hand side functions
f so that the specific data dependencies are unknown and,
thus, many common loop restructuring methods cannot be
applied.

The starting point of our investigation is an RK imple-
mentation in the form of routines as they are used in many
scientific libraries like RKSUITE. We propose a modifica-
tion of the original computation scheme which enables re-
arrangements of the function evaluations without affecting
the numerical properties of the method. We demonstrate
that the resulting program can be obtained from the orig-
inal computation scheme by a series of high-level program
transformations and restructuring. The modification of the
original computation scheme is motivated only by the high-
level program structure. So, further evidence is needed to
show that the transformations result in more efficient target
programs. Runtime tests on different systems demonstrate
that the execution time can often be reduced considerably.

The rest of the paper is organized as follows. Section 2 de-
scribes the computational structure of explicit RK methods
and discusses approaches for increasing the locality. Sec-
tion 3 describes program transformations for increasing the
locality of the memory references. Section 4 presents run-
time experiments. Section 5 discusses how the locality can
be further improved if the access structure of f is given for
the example of the Brusselator equation. Section 6 discusses
related work and Section 7 concludes.

2. COMPUTATIONAL STRUCTURE OF

RK METHODS

We consider the solution of IVPs of first order ODE sys-
tems

Y (z) = f(2,y(2)) with y(z0) = yo (1)

for a given initial vector yo at start time xo and system
size n > 1. The unknown solution function y : IR — IR"
is approximated numerically. The right hand side function
f:IR xIR" — IR" is usually a nonlinear function describing
the structure of the ODE system.

For non-stiff ODE systems of the form (1), explicit RK
methods with an error control and stepsize selection mecha-
nism are robust and efficient [10] and guarantee that the ob-
tained discrete approximation of y is consistent with a pre-
defined error tolerance [10, 7]. In each time step, these meth-
ods compute a discrete approximation vector 7,.4+1 € IR" for
the solution function y(z.+1) at position z.4+1 using the
previous approximation vector 7,. To do this, an s-stage
RK method computes s stage vectors vi,...,vs € IR" and
uses them to compute 7,+1. The following computations

are performed:

vi = f(zx,m4),

ve = f(zx + c2hw, e + heazivi), (2)
s—1

Vs = f(zn +Cshi<;77]n+hn Zasivi)-

i=1

The stage vectors are used to compute the approximation
vector 7.+1 and an additional approximation vector 741
for error control:

nn+hn'zblvl; (3)

=1

Nk + hy - Zi)lvl-

=1

The coefficients b = (b1,...,bs), b = (b1,...,bs) and ¢ =
(ci,...,cs) are s—dimensional vectors, and A = (a;;) is an
s x s matrix specifying the particular RK method under con-
sideration. The order r of approximation 7,+1 and the order
7 of approximation 7,41 usually differ by 1, i.e., r = # 4+ 1.
The difference between the two approximations 7.+1 and
flk+1 gives an asymptotic estimate of the local error in the
lower order approximation and is used for stepsize control
[7]. The approximation of the current step is accepted, if a
suitable weighted norm of the local error estimate lies within
a predefined tolerance level. Although the estimate of the
local error is in the lower order approximation, the more
accurate approximation is usually used to advance the inte-
gration (local extrapolation). Several embedded RK meth-
ods have been derived including the methods of Dormand
& Prince (e.g., DOPRI5 of order 5(4) or DOPRIS of order
8(7)) or Verner’s methods DVERK of order 6(5) [10].

The number of function evaluations in one time step of an
RK method that are necessary to obtain an approximation
of order r increases faster than the order itself. It can be
shown that for methods of order 5, 6, or 8, at least 7, 8,
or 13 function evaluations, respectively, are necessary [10].
To decrease the runtime of RK methods, parallel implemen-
tations have been proposed [15, 14, 5]. In this paper, we
investigate runtime improvements for sequential implemen-
tations on processors with a memory hierarchy.

Runtime improvements may be achieved by global rear-
rangement of data accesses for which data dependencies have
to be taken into account in order to preserve correctness.
The computation scheme (2) and (3) restricts the poten-
tial evaluation order due to data dependencies between the
vectors vi, ... ,Vs, and 1,41 in the following way. All stage
vectors have to be computed before the computation of 741
and 741 starts. Because of the argument vectors of f in (2),
the computation of v; depends on vi,...,v;_1, so that the
stage vectors have to be computed one after another. For
a general ODE solver, the dependence structure of f is not
known in advance. We therefore have to make the conser-
vative assumption that every component of f depends on all
vector components of its argument vector, i.e., the computa-
tion of one component of v; requires that all components of
vi,...,v;—1 are already determined. The entire dependence
structure is illustrated in Figure 1 for the case s = 4.

As described, the computation of the argument vector of £
in the calculation of v; (see Formula (2)) requires to access
all components of vi,...,v;_1, so that i vectors of size n
have to fit into the cache simultaneously to avoid capacity

MNk+41

f]}e+1

+hay,Vv,
+ha43v3
f(2)

Vy

n k+1

Figure 1: Dependence structure of an explicit RK method with
s = 4 stage vectors v1,v2,v3,v4 applied to a system of ODEs with
dimension n = 4. The circles depict vector elements to be com-
puted. Each horizontal row of circles represents one vector. On the
left, the name of the vector in the corresponding row is given. The
different argument vectors 7, + hsx Eé;} a;;vi, | =2,3,4, of f are
abbreviated by z. The computation of z is depicted in the rows
above the row of the corresponding f(z). The arrows depict depen-
dencies. The arrows above f(z) show the potential dependency of
each component of f(z) on all components of z.

misses. The maximum size s-n of the working set is reached
when computing vs. In the following, we try to reduce the
size of the working set and to increase the locality of memory
references by suitable program transformations.

3. TRANSFORMATION OF THE
RK PROGRAM

In this section, we consider an RK method and transfor-
mations to improve the locality properties. We start the
transformation process with a standard implementation of
the embedded RK method given in computation scheme (2)
and (3). Similar implementations are used in scientific li-
braries. This program version has the loops over the di-
mension always as innermost loop which has the advantage
to provide a good spatial locality since the innermost loop
realizes the computations over vectors of length n. We ap-
ply a sequence of transformations to this first version with
the goal to improve the temporal locality properties with-
out affecting the good spatial locality properties. In order
to illustrate the transformation process, we describe some of
the intermediate program versions together with the trans-
formations needed to get them. Each intermediate version
combines several transformation steps.

3.1 Vector version

The initial version of an embedded RK program can be
written in vector notation since the computations of the
components of the stage vectors and approximation vectors
can be realized by the innermost loop over the dimension
0 < j < n and since there are no dependencies carried by
the innermost loops. In the following core loop of the pro-
gram the variables in boldface denote entire vectors. The
vector z denotes the argument vector for the function eval-
uation, and v;,2 = 1,...,s are the stage vectors; z1 and
z2 are additional vectors for the computation of the new
approximation vector 7.+1. The vector err is computed for
stepsize control as difference of 7,41 and 7,+1. The outer-
most loop over the time step and the details of the stepsize
control are omitted for simplicity. In essence, the body of
the iteration over time consists of a loop over the stage vec-
tor computation with the computation of the argument vec-
tor z as inner loop. The vector notation has the advantage
that the loop structure is simplified and the program trans-
formation process can concentrate on the outer i-loop and
lI-loop. The body of the time loop is given in the following
program fragment. The arrays a, b, and c in the program
fragment denote the corresponding coefficients of the RK
method. The array bbs denotes the difference of the vectors

b and b.

Program A :

(1) for (i=0;i<s; i++) {
(2) z = 0.0;

(3) for (1=0; I<i; 14++)
(4) 2 = 2 +alill] * vi;
() s=h*z+n

(6) vi=fx+el]*h, %)
(M}

(8) z1 =0.0;2z2=0.0;

(9) for (i=0; i<s; i++) {
(10) z1 = bbs[i] * v;;

(11) z2 = b[i] * v;;

(12) }

(13) mut1 = e + h* 22

(14) err = h* z1;

The program mainly contains non-tightly nested loops.
In addition to array computations, the code fragment con-
tains function evaluations of f where the computation of
each component of f may depend on every component of its
argument vector. Therefore, the computation of all compo-
nents of z in the program lines (4) and (5) of program A
is completed before any component of v; in line (6) can be
computed. The data dependence of the computation of one

component of stage vector v; on all components of the stage
vectors vi,...,v;_1 is realized in the outermost i-loop so
that the stage vectors are computed one after another. The
computation of the argument and the stage vectors leads to
a poor temporal locality especially for large system sizes as
each vector component is re-accessed in each loop step after
accessing all other components of the vector in between. Im-
proving the temporal locality cannot be achieved by a simple
restructuring of the computations. Due to the complex de-
pendencies this requires several intermediate transformation
steps.

3.2 Separation of argument vectors

The initial set of transformations modifies the computa-
tion of the argument vectors in the program lines (2)—(5)
of program A to prepare later loop restructurings. At first,
separate vectors z[i] are introduced as argument vectors for
different stage vector computations in order to decouple the
dependencies and to make further transformations possible.
Also, the initialization and the computation of the vectors
z[i] are changed slightly so that the components of the ar-
gument vectors are realized within one nested loop. The
transformations result in the following program fragment B
where lines (1)-(6) replace the line (1)—(7) in program A.

Program B :
(1) for (i=0;i<s; i++) {
zi]= nx;
for (1=0; 1<i; 14++)
zli] = =[i] + h* afi]fl] *
vi =f(x +cli] *h, zi])7

2)
3)
4)
5)
6)
7) zl = 0.0; z2 = 0.0;
8) for (i=0;i<s;i++) {
9) z1 = bbs[i] * v;;
10 z2 = b[i] * vy;
11
12
13

Nw+1 = N + h* 22;
err = h* z1;

/\r\/\/—\/—\/\/—\/\/—\/\/\/—\

N —

Still the entire loop structure mainly consists of non-tightly
nested loops. The use of s vectors z[i], i=1,...,s, to rep-
resent the argument vectors instead of only one vector z
increases the memory requirement but not the working set
as z[i] is used only in one loop iteration i, i=1,...,s. The
further goal is to interchange the i-loop and the l-loop in
program fragment B.

3.3 Loop interchange

Our aim to use stage vector components as soon after their
computation as possible can be reached by interchanging
the i-loop and the l-loop in the lines (1)—(6) in program B.
First, the initialization in program line (2) is separated from
the computation loop. Then the function evaluation of line
(5) within the outer loop is merged with the inner loop and
becomes a new last iteration of the inner l-loop. This results
in a tightly nested loop which can be interchanged. The
loop structure and their dependencies are shown in Figure
2 where the bottom line corresponds to the computation of
vi,t=1,...,s.

After the loop interchange, the loop structure is again
converted into a non-tightly nested loop by extracting the
function evaluation from the new inner loop and executing
it as first operation in the new outer loop, see program frag-
ment C’.

Program C’ :

Figure 2: Dependence structure of the i-loop and the I-loop for an
explicit RK method with s = 4. The circles depict vector components
where the entire vector in the j-direction is not shown explicitly. The
dependence structure illustrates the dependencies for components
of different vectors for one fixed component j. The dependencies
between different components due to the evaluation of function f
are shown by thick arrows annotated with f. The bottom row circles
represent the stage vectors and the new approximation vector. All
other circles represent the computation of argument vectors.

(1) for (i=0; i<s; i++)

@) alil=

(3) for (1=0; l<s I4++) {

(9 vi=Rx+el] *h,all):
(5) for (i=141; i<s; i++)

(6) ofi] = #fi] + b* afi[] * vi
M}

The program lines (3)—(7) show the interchanged loop
structure in which a stage vector v; is first computed and
then immediately used to build all argument vectors for suc-
ceeding function evaluations in the same time step. The re-
sulting code has still the drawback of using s stage vectors
and s argument vectors, i.e., the code uses more data than
the original program. But the new loop structure avoids
the interleaving of the accesses to different stage vectors in
lines (3)—(7). However, the stage vectors are still used for
the computation of z1 and z2. When merging the loop for
computing z1 and z2 (see program B) with the l-loop in
line (3) of program C’, all interleaved accesses to vectors
v; are removed and actually only one vector v is needed to
perform the computation of the different stage vectors one
after another. The following program results:

Program C :

(1) for (i=0;i<s; i++)
2) z[i]= n;

(3) 1zl =0.0; 22 = 0.0;

(4) for (1=0; 1<s; 1+4) {

(5) ve=fx+cl]*h,)

(6) z1 = bbs[l] * v;

(7) z2 = b[l] *

(8) for (i=141; i<s; i++)

(9) 2li) = =fi] + b* alill] * v;

(10

(11

(12

—

) Metr =1k + h* 22
) err = h* z1;

The resulting program version corresponds to a delay of
the function evaluations in computation scheme (2) and (3)

so that a function evaluation is started not before its result is
needed for another computation. This is an implementation
of the following computation scheme.

Modified computation scheme of an RK method:
The computation of argument vectors and stage vectors in
the original computation scheme (2) and (3) can be trans-
formed into the computation of modified stage vectors wi,

.,Ws by a delay of the function evaluations using the
transformation v; = f(x, + cihy, w;):

W1 = Tk,

Nk —f-hnanf(l'ﬁ,Wl), (4)

w2

s—1

N + he Z asif(zx + cihw, Wi).

i=1

Ws

The approximation vectors n.+1 and 7.+1 are then com-
puted as follows:

Met1 = Ne+he 'Zblf(l‘n+cth7wl)7 ()
I=1

Me+1 = n,e+h,¢-z{31f(x,€+clh,€,wl).

=1

According to the modified scheme a straightforward im-
plementation of the computation scheme requires multiple
evaluations of f(w;), i =1,... ,s—1. This computational re-
dundancy requires too much execution time, especially when
the evaluation of the components of f is costly, but can be
avoided by saving the results of the function evaluations in
separate vectors requiring additional vectors for the compu-
tation scheme.

After each evaluation of a component of f(w;), the com-
putation scheme (4) also allows the update of the corre-
sponding components of all vectors w;, j > ¢, and of N.41
and 7jx+1. Therefore, no explicit storage of the results of the
function evaluations is necessary and temporal locality for
the result value and spatial locality for the updated vectors
is established. This is realized in program version C of the
RK method.

3.4 Loop interchange with dimension loop

Further optimizations are possible by a loop interchange
with the dimension loop and the use of only one scalar vari-
able to represent all stage vector components. To this end,
we make the innermost loops over the dimension explicit.
The innermost loops for the vector computation and the
loop for updating the argument vectors are interchanged and
the resulting dimension loops are combined with the vector
loops computing the vectors z1 and z2 by loop fusion. The
resulting program has no interleaved use of different stage
vector components so that the stage vector computations
can be represented by a single variable fx. This results in
the following program fragment in which vector components
are denoted by subscripts.

Program D :
(1) for (i=0;i<s; i++)
(2 z[i]= nw;

)

) =zl =0.0; z2 = 0.0;

) for (1=0; I<s; 14++) {

) for (j=0; j<n ; j4++) {

) B f; (x4 clll * b, 2l)
) z1; = bbs[l] * fx;

z2; = b[l] * fx;
for (i=141; i<s; i++)
2ili] = 7,(i] + b* afi]l] * £

The transformation does not only lead to a better tempo-
ral locality but also reduces the number of storage locations
used within the program which may lead to further reduc-
tion of the access distances.

This kind of transformation could not have been applied
to the vector version given in program A as a complete
decoupling of vector computations is not possible for this
version. The reason is that in program A the computation of
the argument vector z can be changed in a similar style but
that the entire vector z is needed in the function evaluation
in line (6) of program A so that a merge of the dimension
loops would lead to an incorrect program.

4. RUNTIME EXPERIMENTS

We have implemented the original RK method and RK
program versions according to the program fragments A—D
in order to investigate the resulting runtimes and the run-
time improvements. As application problem we use a spatial
discretization of the Brusselator equation, a two-dimensional
time-dependent partial differential equation describing a re-
action-diffusion problem of two chemical substances [10]. A
spatial discretization with N discretization points in each
dimension leads to an ODE system of size n = 2N2. Each
block of N? unknowns represent the concentration of one of
the chemical substances. As RK method we use the DO-
PRI5 method with s = 7 stages; this is one of the most
popular RK methods in practice. The programs are written
in kmpidntodieipre@dioPentium III Figure 3 shows the
runtimes of all four program versions of the embedded RK
method for different ODE system sizes on a 700 MHz Pen-
tium III processor (having a 4-way associative L1-data cache
of size 16 KB and an 8-way associative L2-cache of size 256
KB with line size 32 Byte). The labeling in the Figure has
the following correspondence: vector version = Program A;
separate argument vector = Program B; loop exchange =
Program C; loop exchange cache opt. = Program D. The
figure shows that each transformation leads to performance
gains on the Pentium IIT processor. Even the introduction
of additional argument vectors improves the runtime as the
actual working set in not increased and the increase of the
arithmetic operations is compensated by a change in the ini-
tialization. The transformation to program C results in a
further reduction of the runtime solely reached by the loop
interchange and the corresponding change of the computa-
tion order, i.e., the stage vectors are added to all vectors as
soon as they are computed. Finally, the loop interchange
with the dimension loop in program D and the reduction of
the working set by using only one variable for all components
of all stage vectors results in another significant reduction of
the runtime. The last program version in the figure results
from another program modification which we address later
in this section.

Figure 4 shows the corresponding MFLOPS rates which
are obtained by the PCL library [2] using hardware counters.
For small system sizes, the MFLOPS rate first decreases and
starting at about n = 21632 (corresponding to N = 104)
remains almost constant. The four different versions A—
D have different MFLOPS rates where the original version

DOPRI5 method for Brusselator equation on Intel P6 700 MHz
14 T

vector version —+—
separate argument vectors ---x---
12 F loop exchange ---%---
) loop exchange cache opt. &

loop exchange cache opt. and specialized ---=-—

08

0.6

Runtime in sec

04

02

| | | | | |
0 20000 40000 60000 80000 100000 120000 140000
size ODE system

Figure 3: Runtimes of the different RK versions in seconds on
Pentium 111, 700 MHz.

has the smallest rate, the last version has the highest rate.
Versions B has a higher rate than version C. The change in
the MFLOPS rate can be analyzed by considering the cache
miss rates.

MFLOPS DOPRI5 method for Brusselator equation on Intel P6 700 MHz
65 T

T
vector version —+—

60 m separate argument vectors ---x--- |
M loop exchange ---%---
55 L) loop exchange cache opt. &~ |

n loop exchange cache opt. and specialized --s-

MFLOPS

20% b

| | | | | | |
0 20000 40000 60000 80000 100000 120000 140000
size ODE system

15

Figure 4: MFLOPS of the different RK versions on Pentium Ill,
700 MHz.

The L1 cache miss rate in Figure 5 remains almost con-
stant. Only program versions C and D have a smaller L1
cache miss rate for small system sizes and have a jump at
about n=20000. However, the L1 cache miss rate is not re-
sponsible for the differences in the MFLOPS rates and the
runtimes as three out of the four program versions have al-
most identical L1 cache miss rates. Only program version
C has a higher miss rate. Differences in the runtime are
caused by L2 cache misses.

Figure 6 shows the L2 cache miss rate, i.e. the number of
L2 cache misses per L1 cache miss. The L2 cache miss rates
of the four program versions have the same overall behavior.
Starting with very small L2 cache miss rates for small system
sizes, the rate increases rapidly with increasing system size
up to a system size of about n = 20000 where a local mini-
mum is reached resulting from a higher L1 cache miss rate.
After another slight local minimum at about n = 50000 the
L2 cache miss rate increases linearly with increasing system
size. Considering a fixed system size, the program version
A-D have decreasing L2 cache miss rates with exceptions
for small system sizes. This decrease corresponds to the or-
der of the program transformation, i.e. version A has the
highest values and the values get smaller for the following
versions.

The ratio of memory references to floating point opera-

L1 miss rate DOPRIS5 for Brusselator equation on Intel P6 700 MHz

0.12 T T
BB i e L —
i
0.1 ! vector version —+— o
i separate argument vectors ---x---
. loop exchange ------
[L N loop exchange cache opt. &
£ oos ?‘"‘ AT loop exchange cache opt. and specialized -—-=---
- Y
é Liu "
5 006} g
2
S
S L e TR Heoommeemoaas Hooonomoaeeonaan B e
T 0.04 KK i
= B
o
0.02 [ululal q
0 | | | | | | |
0 20000 40000 60000 80000 100000 120000 140000

size ODE system

Figure 5: L1 cache miss rate of the different RK versions on
Pentium 11, 700 MHz.

DOPRI5 method for Brusselator equation on Intel P6 700 MHz

16 T T T
vector version —+—
14 F separate argument vectors ---x--- |
: loop exchange ---%---
loop exchange cache opt. & e

1.2 I loop exchange cache opt. and specialized --m-— g 4
© g =Y
S e
8 LK -
*
g al
o & i
@
92
E 4
~
-]

S 4
0 1 1
0 20000 40000 60000 80000 100000 120000 140000

size ODE system

Figure 6: L2 cache miss rate of the different RK versions on 700
MHz Pentium 1. Actual values *10e6.

tions is given in Figure 7. Again, all four program versions
show the same overall behavior. First, this rate decreases up
to a local minimum at about n = 20000 and after another
local minimum at n = 50000 the rate increases linearly with
the system size where version A shows the highest values
and version D the smallest.

DOPRI5 method for Brusselator equation on Intel P6 700 MHz
120 T T T
vector version —+—
110 + separate argument vectors ---x--- 4
loop exchange ---%---
loop exchange cache opt. &
loop exchange cache opt. and specialized --=-—

100

loadstore/fp *10e6

| | | |
0 20000 40000 60000 80000 100000 120000 140000
size ODE system

Figure 7: LS/FP rate of the different RK versions on 700 MHz
Pentium III. Actual values *10e6.

In order to investigate the effect of the transformations on
the runtime separated from other influences, the measure-
ments shown above are performed for RK program versions
A-D in the most general case. This means the implemen-
tations make no assumptions about the specific application
problem to be solved or the specific RK method to be used.

So, the runtimes and MFLOPS measurements reflect only
the effect and improvement caused by the transformations
described in Section 3 and do not show secondary effects
caused by exploiting special memory reference pattern. As
mentioned earlier, the independence from the application
problem requires an RK implementation with a general right
hand side function f assuming all possible data dependen-
cies on the argument vector. Specific functions may have
a more restricted reference pattern which can only be ex-
ploited when the RK method is written only for this func-
tion. To show the most general case, we have implemented
the discrete Brusselator equation in a entirely separate pro-
gram module realizing the specific access structure in which
the integer and comparison operations dominate the floating
point operations. The independence from the specific RK
method means that no specific RK coefficients b, ¢, and A
are coded but that the RK method contains array references
to be linked to an arbitrary RK method.

The general RK-form has the advantage to show only run-
time effects caused by the transformations but has the draw-
back to result in runtimes and MFLOPS rates that are not
the best values possible for an RK method solving the Brus-
selator equation. As an illustration we have included the
runtimes for a specific RK implementation of version D di-
rectly using the values for the RK coefficients b, ¢, and A
of the DOPRI5 method. No adaption to the specific ac-
cess structure of the Brusselator equation has been made.
Figures 3 and 4 show that this optimization improves the re-
sulting runtimes and MFLOPS rates considerably. Similar
tuning can be applied to all four versions.

Experiments with blocking. We have also investigated
program versions with an additional block structure for the
computation of the stage vectors. This program version is
a mixture of program C and D, i.e., starting from program
version C not the entire vector loop is interchanged with
the i-loop but the vector computation is first decomposed
into blocks of equal size resulting in a nested loop for the
dimension loop and only the outer loop is interchanged with
the i-loop. We have tested different block sizes. However,
the block version has reached no runtime improvement over
the version C.

Runtimes on different processors. Figures 8-13 show
the runtimes of the four RK implementations on several
other processors, a 300 MHz IBM Power PC, a 700 MHz
AMD Athlon processor, one 600 MHz DEC Alpha 21164
processor of the Cray T3E, a 300 MHz Sun UltraSparc pro-
cessor, a 300 MHz MIPS/QED RM5200 processor, and a
195 MHz MIPS R10000 processor. The figures show that
the proposed transformations can considerably reduce the
runtime on recent processors like the Athlon processor with
a similar cache structure as the Pentium III. On other pro-
cessors the differences are sometimes smaller. Thus, the
locality optimizing transformations are suitable on a large
range of processors as they increase the locality on proces-
sors where it is needed and preserve the performance on
processors on which the locality is not so important.

5. EXPLOITING SPECIFIC ACCESS
STRUCTURES

The transformation steps in Section 3 did not assume any
specific dependence structure for the right hand side func-
tion f of the ODE system to be integrated. To apply only
correctness preserving transformations, we have assumed
that any component of f may access each component of its
argument vector. However, many application problems are

DOPRI5 method for Brusselator equation on PowerPC
3 T T T

vector version —+— % X
separate argument vectors ---x--- By
25 F loop exchange ------ e *
loop exchange cache opt. & P
loop exchange cache opt. and specialized —-m- ya L

Runtime in sec

| |
0 20000 40000 60000 80000 100000 120000 140000
size ODE system

Figure 8: Runtime of the RK program versions in seconds on a
300 MHz Power PC.

DOPRI5 method for Brusselator equation on Athlon

0.7 T T T
vector version —+—
separate argument vectors ---x--- el
0.6 I loop exchange ---%--- 4 =1
loop exchange cache opt. &
0s loop exchange cache opt. and specialized --m~
. o B
o p .
& -
2 o04r) .
o 2 %
£ _ - -
2 03 X i
& “ -
B -
02 q
_m
01 P - 1
e
4
0 | | | | | | |
0 20000 40000 60000 80000 100000 120000 140000

size ODE system

Figure 9: Runtime of the RK program versions in seconds on a
700 MHz Athlon processor.

described by a right hand side function £ = (fi,..., fa)
with component functions f; which actually need only a few
components of the entire argument vector depending on its
index [=1,... n.

As an example, we consider the discretization of the 2D-
Brusselator equation

ou 9 v 0%u
ov 2 % 0t
% 3.4u—uv+a(w+a—y2)

for 0 <z <1,0<y<1,t>0, which describes the reaction
of two chemical substances with a diffusion term [10]. The
unknown functions u and v describe the concentrations of
the two substances. A Neumann boundary condition

ou ov
om0 a0

and the initial conditions
u(x,y,0)=05+y, U(ﬁ,y,0)21+5$

are used. A standard discretization of the spatial derivatives
on a uniform grid with mesh size 1/(N — 1) leads to the

DOPRI5 method for Brusselator equation on one processor t3e

35 T T T
vector version —+—
separate argument vectors ---x--- |
3r loop exchange ------ =
loop exchange cache opt. & s
25 loop exchange cache opt. and specialized --m~ X
o
&
e 27 b
o __-m
£ -
€ 15 q
5
x
1k i
05 q
I.ll
0 | | | | | | |
0 20000 40000 60000 80000 100000 120000 140000

size ODE system

Figure 10: Runtime of the RK program versions in seconds on
DEC Alpha processor of the Cray T3E.

DOPRI5 method for Brusselator equation on Ultra Sparc Turing
3 T T T T

vector version —+—
separate argument vectors ---x---

25 loop exchange ---%---
loop exchange cache opt. &
loop exchange cache opt. and specialized —-m— L
2+ - 4
o
& .=
£ w7
Q = g -
£ 15
15
5
x
1r 4
05 4
0 L | | | % | |
0 20000 40000 60000 80000 100000 120000 140000

size ODE system

Figure 11: Runtime of the RK program versions in seconds on a
300 MHz UltraSparc.

following ODE system of dimension 2N?:

ddU;f = 14+ U}Vij — 4.4U;; +

A(N=1)> (Uss,j + Ui j + Ui jua + Ui j — 4Us5)
dVi; 2
7 = 3.4U;; — UijVi]‘ +

A(N=1)> (Vi ,j + Virj + Vi + Vija —4Vij) .

For @ = 2 %102, this is a non-stiff ODE system, so an
explicit RK method is well-suited for the integration. Us-
ing a row-oriented assignment of the unknowns U;; and V;j,
i,7=1,...,N, onto components of the vector y or n,, re-
spectively, results in the following access structure of the
corresponding right hand side function f:

e function component f; accesses argument components
I-N,l—1,1,14+ 1,1+ N, and I + N? (if available) for
I=1,...,N?,

e function component f; accesses argument components
I-N,l—1,1,14+ 1,1+ N, and [— N? (i available) for
I=N?+1,... 2N%

The access structure of the Brusselator equation is typical
for ODE systems resulting from a discretization of a two-
dimensional partial differential equation. For the specific
case, there is the disadvantage that for the computation
of each component f; a component of the argument vec-
tor in distance N? is accessed. This access pattern results
from the coupling of the original differential equations (6)

DOPRI5 method for Brusselator equation on MIPS R5200
6 T T T

vector version ——
separate argument vectors ---x---
51 loop exchange ------ . A
loop exchange cache opt. & i
loop exchange cache opt. and specialized —-m-

Runtime in sec

0 L L L L L L L
0 20000 40000 60000 80000 100000 120000 140000

size ODE system

Figure 12: Runtime of the RK program versions in seconds on a
300 MHz QED RM5200.

DOPRI5 method for Brusselator equation on MIPS R10000

4 T T T

vector version —+—

35 | separate argument vectors ---x---

- loop exchange ---%---
loop exchange cache opt. &

loop exchange cache opt. and specialized

Runtime in sec

| | | | |
60000 80000 100000 120000 140000
size ODE system

L L
0 20000 40000

Figure 13: Runtime of the RK program versions in seconds on a
195 MHz MIPS R10000.

and can also be observed in the corresponding ODE sys-
tem. Therefore, no locality improvement can be exploited.
An alternative assignment of the unknowns U;; and V;; to
the vector y merges corresponding components of U and V'
such that component V;; is assigned next to component U;;
with the same index values ¢ and j. For this assignment, the
vector y has the entries

Ui, Vi1, Uiz, Vag, ..., Uij, Vij,.. . Unn, V. (7)

Using this order changes the access structure of the cor-
responding f into the following:

e function component f; accesses argument components
l—2N,1—2,1,1 4+ 1,14+ 2,1+ 2N (if available) for [=
1,3,...,2N% —1,

e function component f; accesses argument components
I —2N,1—2,1—1,1,1+ 2,1+ 2N (if available) for [=
2,4,...,N2.

For this access structure the most distant components of
the argument vector to be accessed for the computation of
one component of f have distance 2N. When using RK
scheme (4) and (5), the access structure can be exploited in
a pipelined computation order for blocks of the stage vec-
tors wi,...,ws in the following way: The stage vectors
wi,...,ws are divided into blocks of size 2N each. Using
computation scheme (4), the computation of the stage vec-
tors can be initialized by computing s blocks of stage vector
wi. Since the computation of component (w2); requires the

w, | SSS==———— |
W, | SSSSSS=2 |
Wy | SSSSS2 |
w, | S=—2 |
Moy A |
Ny =2)

Figure 14: Pipelining computation for 7. Blocks of stage vectors
that are accessed for the Brusselator equation for the computation
of one block ¢ of 7,41 and 7,41 in the case s = 4. Computing
block i + 1 requires accessing one additional block of each of the
stage vectors wy,... ,wy.

evaluation of fi(xx,w1) and since f has the specific access
structure described above, this enables the computation of
s — 1 blocks of w2, which again enables the computation of
s — 2 blocks of ws and so on. This process continues until
finally one block of wg, 17,41 and 7j.+1, respectively, is com-
puted. After the computation of the first block of 9,41 and
fk+1, the next block can be determined by computing only
one additional block of w; which enables the computation
of one additional block of wa,... ,ws. This computation is
repeated until the last block of 7,41 and 7.1, respectively,
is computed.

The advantage of the pipelining approach is that only
those blocks of the stage vectors are kept in the cache that
are needed for the further computations of the current time
step.

For the computation of an arbitrary block 7 of 7.4+1 and
flx+1, the corresponding block i of wy, ... , w,s and the neigh-
boring blocks ¢ —1 and 7 + 1 have to be accessed because of
the dependence pattern of f. For the computation of blocks
i—1and i+ 1 of ws, blocks ¢ — 2 and ¢ 4+ 2 of ws_; have to
be accessed, too. Fig. 14 shows an illustration. Altogether,
at most

8
Z(2i+1) =s+s(s+1)=s(s+2)

i=1

blocks of wi,...,w, of size 2N have to be accessed and
should therefore be held in cache simultaneously. Addition-
ally, the two blocks of 7n.+1 and 7.4+1 that are just being
computed have also to be held in cache. Thus, for the DO-
PRI5 method with s = 7 stages, at most 65 blocks would
have to be kept in cache to minimize the number of cache
misses. Depending on the grid size N, this is only a small
part on the IV blocks of size 2N that each stage vector con-
tains. Taking 7,.+1 and 7,41 into consideration, the propor-
tion of the total number of blocks that have to be held in
cache is

s(s+2)+2 _ s 2
(s+2)N ~ N ' (s+2)N

with usually s << N. For the computation of the first
s blocks and the last s blocks of 7,41 and 741, less than
5(s+2) blocks of w1, ... ,ws have to be accessed because the
corresponding values are at the grid boundaries. After the
computation of block i of 7.4+1 and 7.+1, the computation
of block ¢+ 1 accesses many blocks of wi,... ,w, that have

already been accessed for the computation of block i. Only
one block of each of the stage vectors will be newly accessed.
Correspondingly, one block of each stage vector that has
been accessed for the computation of block i of n.+1 and
flk+1 will not be accessed for the computation of block i+ 1.

This example shows that the access structure and also the
storage scheme used might affect the locality behavior for a
specific ODE system resulting from, e.g., the discretization
of a specific PDE. The knowledge of the specific access struc-
ture can be used to structure the code of the ODE method
such that a better locality can be obtained than for the
general case. If such an application-specific restructuring
is used, the resulting ODE solver can only be used for this
application. Applying this specific ODE solver to an ODE
system that does not exhibit the required access behavior of
f may lead to incorrect code if f accesses more elements of
its argument vector than expected.

6. RELATED WORK

Because of their large impact on the performance, op-
timizations to increase the locality of memory references
have been applied to many methods from numerical linear
algebra including factorization methods like LU, QR and
Cholesky [6] and iterative methods like 2D Jacobi [9] and
multi-grid methods [16]. Many popular scientific libraries
like LAPACK [1] are based on the BLAS (Basic Linear Al-
gebra Subprograms), which can be considered as a de facto
standard for the formulation of vector and matrix based nu-
merical algorithms. The BLAS themselves are just a speci-
fication of the syntax and semantics of the operations, but
many computer vendors provide efficient implementations of
the BLAS for specific machines, in particular making effec-
tive use of the memory hierarchy of the machine.

Based on BLAS, there are efforts like PHiPAC (Portable
High Performance ANSI C) [3] and ATLAS (Automatically
Tuned Linear Algebra Software) [18] to provide efficient im-
plementations of BLAS routines. ATLAS for example aims
at the automatic generation of efficient BLAS routines by
providing a code generator for the automatic creation of
optimized on-chip (L1 cache) BLAS operations for specific
platforms. The code generator determines the optimal block-
ing and loop unrolling factors by timings on the specific
architecture. BLAS operations for larger arrays or matri-
ces are built up from the fixed-size on-chip operations by
architecture-independent code which partitions the matrix
or vector operands into blocks of the given fixed size and
arranges the computations such that L2 cache usage is opti-
mized. PHiPAC takes a similar approach as ATLAS, but in-
stead of forcing all problems to an independently optimized
fixed format, PHiPAC directly optimizes each individual op-
eration.

As mentioned earlier, there are also approaches for other
dense linear algebra algorithms or grid based methods [6, 9]
but not for ODE solvers. The cache performance of two-
and three-dimensional multigrid algorithms is investigated
in [17]. In particular, a 2D red-black Gauss-Seidel relax-
ation method as the most time-consuming part of a multi-
grid method is considered and a blocking technique and ar-
ray padding are applied to reorder the data accesses for in-
creasing the temporal locality. The increased data locality
leads to significantly larger MFLOPS rates especially for
grids with a fine discretization and many grid points.

7. CONCLUSIONSAND FUTURE WORK

In this paper, we have investigated the locality behavior of

embedded RK methods. Embedded RK methods are popu-
lar ODE-solvers and exhibit the typical iterative structure of
one-step methods for the solution of initial value problems.
We have presented program transformations motivated by
the goal to improve the temporal locality in each time step
without affecting the good spatial locality of standard RK
implementations. The resulting program has been gener-
ated from the standard method by a sequence of correctness
preserving transformation steps. The transformation steps
were guided by the aim to improve the temporal locality
of the stage vector computations which requires several in-
termediate transformations to make other transformations
possible. We have shown that the optimized program shows
better efficiency on several processors. It can be observed
that the locality improvements have a larger effect for recent
processors, like the Pentium III processor or the Athlon pro-
Cessor.

Future work will include the investigation of similar trans-
formation steps for other important ODE solvers, like multi-
step solvers or implicit solvers for stiff ODEs. The goal will
be to improve the performance of standard library imple-
mentation but also to improve special purpose solvers of
specific application programs. One example is the Brussela-
tor equation mentioned in this paper. The transformation
process did not improve the performance in each step but
several intermediate transformations were needed to make
an improving optimization possible. So, another question is
which parts of transformation processes as described in this
paper can be automated and what measure can be used to
guide the transformations.

Acknowledgement

We thank the NIC Jiilich for providing access to the Cray
T3E and making the PCL library available.

q1] EBEnEeEran,E%I ga%% Bischof, L. S. Blackford,

J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarlin, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide, Third Edition. STAM, 1999.

[2] R. Berrendorf and B. Mohr. PCL - The Performance
Counter Library, Version 2.0. Research Centre Juelich,
September 2000.

[3] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel.
Optimizing Matrix Multiply using PHiPAC: a Portable,
High-Performance, ANSI C Coding Methodology. In 11th
ACM Int. Conf. on Supercomputing, 1997.

[4] R.W. Brankin, I. Gladwell, and L.F. Shampine. RKSUITE
release 1.0, 1991.

[5] K. Burrage. Parallel and Sequential Methods for Ordinary
Differential Equations. Oxford Science Publications, 1995.

[6] J. Choi, J.J. Dongarra, L.S. Ostrouchov, A.P. Petitet, D.W.
Walker, and R.C. Whaley. Design and Implementation of
the ScaLAPACK LU, QR and Cholesky Factorization
Routines. Scientific Programming, 5:173-184, 1996.

[7] Wayne H. Enright, Desmond J. Higham, Brynjulf Owren,
and Philip W. Sharp. A Survey of the Explicit
Runge-Kutta Method. Technical Report 94-291, University
of Toronto, Department of Computer Science, 1995.

[8] E. Fehlberg. Classical fifth—, sixth—, seventh— and eighth
order Runge-Kutta formulas with step size control.
Computing, 4:93-106, 1969.

[9] K.S. Gatlin and L. Carter. Architecture-Cognizant Divide
and Conquer Algorithms. In Proc. of Supercomputing’99
Conference, 1999.

[10] E. Hairer, S.P. Nogrsett, and G. Wanner. Solving Ordinary
Differential Equations I: Nonstiff Problems.
Springer—Verlag, Berlin, 1993.

[11] Francois Irigoin and Rémi Triolet. Supernode partitioning.
In 15th Annual ACM Symposium on Principles of

Programming Languages, pages 319-329, San Diego, Calif.,
January 1988.

[12] M. Kandemira, J. Ramanujam, and A. Choudhary.
Compiler algorithms for optimizing locality and parallelism
on shared and distributed memory machines. Journal of
Parallel and Distributed Computing, 60:924-965, August
2000.

[13] P.J. Prince and J.R. Dormand. High order embedded
Runge-Kutta formulae. J. Comp. Appl. Math., 7(1):67-75,
1981.

[14] T. Rauber and G. Riinger. Diagonal-Implicitly Iterated
Runge-Kutta Methods on Distributed Memory Machines.
Int. Journal of High Speed Computing, 10(2):185-207, 1999.

[15] T. Rauber and G. Riinger. Parallel Execution of Embedded
and Iterated Runge-Kutta Methods. Concurrency:
Practice and Ezperience, 11(7):367-385, 1999.

[16] L. Stals and U. Riide. Data Local Iterative Methods for the
Efficient Solution of Partial Differential Equations. In Proc.
of Computational Techniques and Applications, 1997.

[17] C. Wei}, W. Karl, M. Kowarschik, and U. Riide. Memory
Characteristics of Iterative Methods. In Proceedings of the
ACM/IEEE SC99 Conference, Portland, Oregon,
November 1999.

[18] R.C. Whaley and J.J. Dongarra. Automatically tuned
linear algebra software. Technical report, University of
Tennessee, 1999.

[19] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison Wesley, 1996.

