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Abstract

Due to environmental and monetary concerns, it is increasingly important to reduce the energy consumption
in all areas, including parallel and high performance computing. In this article, we propose an approach to
reduce the energy consumption needed for the execution of a set of tasks computed in parallel in a fork-join
fashion. The approach consists of an analytical model for the energy consumption of a parallel computation
in fork-join form on DVFS processors, a theoretical specification of an energy-optimal frequency-scaled state,
and the energy minimization by computing optimal scaling factors. For larger numbers of tasks, the approach is
extended by scheduling algorithms which exploit the analytical result and aim at a reduction of the energy. Energy
measurements of a complex numerical method and the SPEC CPU2006 benchmarks as well as simulations for a
large number of randomly generated tasks illustrate and validate the energy modeling, the minimization and the
scheduling results.

1 Introduction

In parallel computing for scientific applications, the performance and a fast computation has long been the major
concern. A large variety of programming and optimization techniques such as scheduling algorithms have been
developed to achieve a low or even minimal parallel execution time for parallel programs. Today, also the energy
efficiency is taken into account when designing parallel application software [49]. This leads to a bi-critical design
goal for the software, considering both a smaller execution time and a lower energy consumption. There are several
possibilities to influence the energy consumption of a program, including software programming techniques as well
as new hardware capabilities of recent processors, such as dynamic voltage scaling or dynamic frequency scaling.
In this article, we exploit the technique of dynamic voltage frequency scaling (DVFS) for energy savings of task-
based programs.

The DVFS technique enables processors to dynamically adjust the voltage and the frequency of the processor
aiming at a reduction of the power consumption. When reducing the frequency, however, the execution time usually
increases, which has to be taken into account for the actual energy consumption. In order to exploit frequency
scaling for calculated energy saving, the influence of the frequency used for the execution of an application program
on the power consumption and the execution time is studied. More precisely, we pursue an approach to model the
power and the energy consumption at the level of tasks and to minimize the energy consumption with an analytical
approach, which is then extended to a scheduling approximation algorithm for assigning tasks to processors.

An effective way to structure parallel programs is the use of tasks [41, 53]. A task-based programming approach
enables a structuring of a parallel program according to the needs of an application algorithm and allows the use
of load balancing and scheduling techniques for an efficient exploitation of the sequential or parallel hardware
platform. It has been shown that a task-based programming model can also be advantageous for restructuring
programs in the context of reducing the energy consumption [37, 57]. We especially consider tasks arranged in
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a fork-join pattern starting their execution at the same time and finishing at a joint barrier synchronization. This
pattern can be considered to be similar to the bag of tasks problems of a set of independent tasks to be scheduled
to a fixed number of cores or processors. The fork-join pattern can also be extended to larger structures consisting
of nested fork-join structures, which may be used to build larger task graphs with dependencies. In this article,
we concentrate on a single fork-join pattern of tasks and distinguish the following two cases: (i) the number of
tasks coincides with the number of execution units, i.e. processors or cores, or (ii) the number of tasks exceeds the
number of execution units.

In this article, we describe the power as well as the energy consumption of a task by a function depending on the
frequency used for its execution on a single execution unit. The tasks are assumed to be non-preemptive and use
the same frequency for their entire execution, thus the execution time of a task is modeled adequately without any
time penalty for a change of the frequency. For the case that the number of tasks equals the number of execution
units, frequency scaling factors leading to a minimal energy consumption are calculated in an analytical way.
The resulting execution scheme represents an optimal solution concerning the energy consumption. Naturally, the
execution time is increased with decreasing frequencies, however, there is an upper bound of the execution time
given by the longest running task and the interval of the frequencies possible, so that a compromise between a
good energy consumption and a good execution time can be chosen for the bi-objective optimization problem.
The approach assumes tasks of similar nature being compute-intensive and less memory-intensive so that the same
energy model applies to all tasks considered.

Based on the analytically optimal solution of frequency scaling for the case that the number of tasks coincides
with the number of cores in the fork-join pattern, scheduling algorithms are proposed which extend the approach
to numbers of tasks being larger than the number of cores. Two algorithms are presented: the first algorithm is a
greedy algorithm with the makespan as objective function and a subsequent step improving the energy consumption
with only a small penalty for the makespan bounded by the frequency interval. A second algorithm with the
minimization of the energy consumption as objective function and without time constraint is proven to lead to
the same schedule with an inherent upper bound for the time given by the dominant task with respect to the
unscaled execution time. The advantage of the scheduling algorithms presented is their combination with the
analytically optimal solution for the frequency to be used, which simplifies the bi-critical optimization problem for
the makespan and the energy consumption to mono-criterial problems for one of the criteria and captures the other
criteria with analytical methods.

In the evaluation section, we present simulation results illustrating the influence of the frequency scaling factors
on the energy consumption and on the execution time for the fully parallel execution of tasks with one task per
execution unit as well as for higher numbers of tasks exceeding the number of execution units, thus requiring
scheduling. We also present energy measurements of a complex application for solving a system of ordinary
differential equations. The measurements give rise to an actual validation of the energy consumption model on
recent Intel processors providing hardware counters for measuring the energy consumption. For the validation,
standard benchmarks from the SPEC CPU2006 benchmark suite are also considered and it is shown that the
frequencies computed indeed lead to the smallest energy consumption. The contribution of this article is to combine
analytical as well as scheduling methods in a two-step method to minimize the energy consumption by exploiting
the method of frequency scaling and to accompany the theoretical results with simulations as well as experimental
results.

The rest of the article is organized as follows: Section 2 describes the task-based programming model. Section 3
summarizes the energy model used for capturing the energy consumption of individual tasks based on frequency
scaling factors. Section 4 derives energy consumption functions for the parallel execution of tasks as well as
corresponding optimal frequency scaling factors. Section 5 proposes scheduling algorithms that also take the
energy consumption into consideration for the task mapping. Section 6 presents an experimental evaluation with
simulations and measurements. Section 7 discusses related work and Section 8 concludes the article.

2 Task-based Programming Model

In parallel programming, task-based programming models are popular programming abstractions that assume ap-
plications to be composable of tasks, which represent well-defined portions of calculations and are often expressed
as functions or procedures. Depending on the specific programming environment, tasks may have different form
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and granularity, such as statements, functions, or entire sub-programs, and they may be independent or may ex-
change information. This captures general task models as they are used by many modern libraries and languages,
such as OpenMP [6, 7, 42], X10 [12], Fortress [3], and Chapel [11], see also [16, 18, 23] for an overview. The
advantage of task-based programming models it to provide a suitable representation of the internal structure of an
application which allows a flexible way to execute the application on a parallel machine by assigning the tasks to
processors or cores. Programming goals, such as low execution time or high throughput, can then be achieved by
load balancing or scheduling techniques.

In this article, we consider a task-based programming model in which the parallel program to be executed consists
of a set of tasks that can be executed by any of the processors or cores provided by the parallel execution platform.
A homogeneous parallel platform with p identical processing units (processors or cores) is considered. Several
tasks can be executed in parallel, each one on a separate processor or core, and a processor can fetch the next task
for execution as soon as it becomes idle. The fork-join pattern is often used to include sections of independent tasks,
in which new independent tasks are created (fork) and the creating task waits until all these tasks are terminated
(join). The fork-join pattern ends with an implicit barrier operation involving all tasks of a fork-join construct, so
that subsequent tasks can only be started after all tasks of the preceeding fork-join pattern have been terminated.
The fork-join pattern can be used to build larger coordination structures for tasks such as nested or hierarchical
fork-join structures or more general task graphs.

The overall execution time of the program is calculated from the execution times of the single tasks. Assuming that
the program consists of a set T of tasks, the overall execution time depends on the execution time of the individual
tasks T ∈ T and the coordination and waiting times of the tasks. The execution time of a task T ∈ T is given
as a cost function CT depending on the task T . The cost function CT can express different kinds of costs, such
as the actual execution time on a specific hardware platform measured in seconds, a predicted time with a suitable
analytical prediction technique, see [35], or relative values expressing the execution time in relation to other task
costs. Usually, the execution time also depends on other parameters, such as a problem size or parameters of the
parallel execution platform. When considering a specific problem instance, these other parameters can assumed to
be fixed.

The execution time for the entire parallel program consisting of task set T is built up from the functionsCT , T ∈ T ,
according to the structure of the tasks and the processor assignment used. Accordingly, the execution time of a
single fork-join pattern Tfork-join is described by the formula

CTfork-join = max
i=1,...,p

CTi
,

assuming that p tasks T1, . . . , Tp are created (fork) and that a join requires a barrier synchronization, waiting for all
tasks T1, . . . , Tp to be completed before continuing. Thus, the execution time is dominated by the execution time
of the task Tm that has the longest execution time, i.e., CTm

= maxi=1,...,p CTi
. Processors may have waiting

times, since the processors executing other tasks must wait for the completion of the dominating task Tm. For
the parallel execution time, these waiting times are insignificant. However, the situation might be different when
investigating the energy consumption as it is done in this article. This issue is investigated in the following section
and starts with an energy model for task-based executions.

3 Frequency-scaling energy model for sequential executions

Practical as well as theoretical investigations of the energy behavior of computer systems or applications are often
based on power and energy models which capture the power or energy consumption as a function of suitable
parameters. In this article, we are mainly concerned with the influence of the frequency on the energy consumption
and we exploit a well-accepted energy model that uses power and energy functions depending on the frequency for
the sequential case. This model has already been used for embedded systems [57], for heterogeneous computing
systems [37], or for shared-memory architectures [33]. We summarize and introduce the basic functions of the
model in Sect. 3.1 to 3.3 and formulate a first lemma about the solution of the time-constraint optimization of the
energy consumption for a sequential execution in Sect. 3.4.
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3.1 Modeling power consumption

The energy model from [57] distinguishes between the dynamic power consumption and the static power con-
sumption. For the dynamic power consumption, the formula Pdyn = α · CL · V 2 · f is used where α is the
switching probability, CL is the load capacitance, V is the supply voltage, and f is the operational frequency. The
dynamic power consumption Pdyn ignores the energy consumption of memory accesses or I/O, so that this model
is especially suited for non-memory intensive programs.

For DVFS processors, the frequency f can be scaled down within a predefined interval [fmin, fmax] where fmax is
the normal operational frequency that can be scaled down. The scaling can be expressed by a dimensionless scaling
factor s ≥ 1 which describes a smaller frequency f̃ as f̃ = f/s. Since the operational frequency f depends linearly
on the supply voltage V , i.e., V = β · f with some constant β, the dynamic power consumption decreases by a
factor s−3 when reducing the frequency by a scaling factor s ≥ 1. In the following, the scaling factor s is used as
a parameter of the dynamic power consumption, denoted as Pdyn(s), and Pdyn(s) = s−3 · Pdyn(1) holds where
Pdyn(1) is the power consumption for frequency fmax, i.e., the dynamic power consumption decreases cubically
with increasing s.

For many years, the dynamic power consumption has been the predominant factor in CMOS power consumption,
but for recent technologies, leakage power has an increasing impact and represents roughly 20 % of power dissi-
pation in current processor designs [30]. Leakage power consists of several components, including sub-threshold
leakage, reverse-biased-junction leakage, gate-induced-drain leakage, gate-oxide leakage, gate-current leakage,
and punch-through leakage. According to [57], we make the assumption that Pstatic is constant and is independent
of the scaling factor s. which is justified by the close match between the data sheet curves of DVFS processors and
the analytical curves obtained by using this assumption, see [57]. Our own experiments from Sect. 6 support these
results.

3.2 Energy consumption for a sequential execution of tasks

When the frequency f is scaled down using a factor s, i.e., frequency s−1 · f is used, the sequential execution time
CT of a task T ∈ T increases linearly with the scaling factor s, resulting in a larger execution time CT · s. Thus,
the dynamic energy consumption of a task T executed on a single processor can be modeled as a function of s by:

ET
dyn(s) = Pdyn(s) · (CT · s) = s−2 · ET

dyn(1) (1)

with ET
dyn(1) = Pdyn(1) · CT . Analogously, the static energy consumption can be modeled as:

ET
static(s) = Pstatic · (CT · s) = s · Estatic(1) (2)

with Estatic(1) = Pstatic · CT . The resulting total energy consumption for the sequential execution of task T is:

ET (s) = ET
dyn(s) + ET

static(s) = (s−2 · Pdyn(1) + s · Pstatic) · CT . (3)

3.3 Optimal scaling factor for a single task

The optimal scaling factor minimizing the energy consumptionET (s) of a task T executed sequentially is obtained
by computing the minimum of the convex function

Q(s) := s−2 · Pdyn(1) + s · Pstatic, (4)

which is

sopt =

(
2 · Pdyn(1)

Pstatic

)1/3

. (5)

Figure 1 shows Q(s) for typical values of Pdyn(1) and Pstatic, see [25] for a detailed description of power man-
agement issues. The figure shows that a larger power consumption results for (a) s < sopt because the dynamic
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Figure 1: Optimal scaling factor for a processor with Pstatic = 4W and Pdyn(1) = 20W . According to Equ. (5),
sopt = 2.15 results.

part Qdyn(s) = s−2 · Pdyn(1) dominates and for (b) s > sopt because the static part Qstatic(s) = s · Pstatic

dominates.

In the following, we assume that all scaling factors including sopt are greater than or equal to 1. According to
Equ. (5), this assumption is fulfilled for sopt if Pstatic ≤ 2 · Pdyn(1), which is the case for current processors.
Since DVFS processors only provide a fixed set of predefined frequencies, only a finite number of frequency
scaling factors is available in practice, and sopt has to be rounded to the neighboring scaling factor available, for
which Q(s) is at a minimum.

3.4 Time-constraint energy optimization

Computing the optimal scaling factor can be considered in the context of solving the bi-critical problem of mini-
mizing the energy consumption and the execution time in the form of an energy optimization problem with time
constraint. The analytical solution in Equ. (5) actually minimizes the energy consumption without assuming any
constraints for the execution time. However, there is an implicit upper bound for the execution time induced by the
frequency scaling interval supported by the processor. Because of the scaling factors being in the interval [1, sm]
with scaling factor sm corresponding to the smallest frequency fmin, the execution time of a specific task T lies
in the interval [CT , smCT ], providing the inherent upper bound smCT for the execution time. If the bi-critical
optimization problem has to be solved with a time constraint Cctr

T , then one of the following four cases applies: (i)
if Cctr

T ≥ smCT then the constraint is inherently fulfilled; (ii) if soptCT ≤ Cctr
T ≤ smCT then the time constraint

is fulfilled for the optimal scaling factor; (iii) if CT ≤ Cctr
T ≤ soptCT , then a suboptimal energy solution with

s̄ ≤ sopt and Cctr
T = s̄ · CT can be chosen to get the minimal solution of the energy consumption with time

constraint; (iv) the last case of a time constraint Cctr
T ≤ CT would not define a feasible problem. This gives rise to

the following result:

Lemma 1 (Time-constraint minimization of the energy consumption) The energy consumption minimization
problem under time constraint Cctr

T for a task T with execution time CT in the unscaled case executed sequentially
on a processor providing frequency scaling is solved by s̃ = min(s̄, sopt) with s̄ · CT = Cctr

T and s̄ ≥ 1.

4 Frequency scaling for concurrent tasks

In this section, we investigate the energy consumption in the case that separate scaling factors are used for the
concurrent execution of tasks. Section 4.1 shows that in order to obtain a minimum energy consumption, the
scaling factors for the different processors should be selected such that no idle times occur. Section 4.2 computes
the resulting energy consumption for two concurrently executed tasks, and Section 4.3 generalizes the result to an
arbitrary number of concurrent tasks.
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4.1 Necessary condition for energy optimal scaling factors

We consider the situation that n ≥ 2 tasks T1, . . . , Tn are executed in parallel on n different processors P1, . . . , Pn,
each processor executing one task. The processors may use different frequency scaling factors s1, . . . , sn for the
execution of their corresponding tasks. According to the fork-join semantics, all processors are busy for the same
amount of time before they can start another computation. The execution time for processor Pi consists of the
execution time for the task Ti and the idle time Ii elapsed before all other processors finish their execution. Thus,
the time for processor Pi is

CPi
(si) = CTi

· si + Ii (6)

The energy optimal execution is achieved by a set of frequency scaling factors s1∗, . . . , sn∗ for which the overall
energy consumption

ET1‖...‖Tn(s1
∗, . . . , sn

∗) =

n∑
i=1

(CTi
·Q(si) + Ii · Pstatic) (7)

is minimized. It is now shown that such an optimal solution has the property Ii = 0 for i = 1, . . . , n.

Theorem 1 (Necessary condition for energy-optimal frequency scaling) For an energy-optimal solution for n
tasks T1, . . . , Tn the scaling factors s1∗, . . . , sn∗ with si∗ ≥ 1 for i = 1, . . . , n must be selected such that CTi

·
si
∗ = CTj · sj∗ holds for all pairs of tasks Ti, Tj , i, j ∈ {1, . . . , n}, where CTi denotes the unscaled sequential

execution time of task Ti, i = 1, . . . , n.

Proof: The tasks Ti, i = 1, . . . , n, are assumed to be ordered in decreasing order of their execution time, i.e.,
CT1
≥ · · · ≥ CTn

. Let s1∗, . . . , sn∗ be the scaling factors of an energy-optimal execution of the tasks T1, . . . , Tn
on n processors. Let Copt be the execution time of the energy-optimal execution and Eopt the corresponding
energy consumption. Then, there exists at least one task Tj , j ∈ {1, . . . , n} with CTj · sj∗ = Copt. (Otherwise, all
tasks would have an idle time with a corresponding static power consumption, which could be avoided, and thus
Eopt would not be optimal.) If all other processors Pj also fulfill CTj

· sj∗ = Copt for their corresponding task Tj ,
the result is given.

Otherwise, we assume that there exists at least one task Ti with Copt > CTi · si∗ and idle time Ii∗ > 0. The
corresponding processor Pi uses static power during its idle time Ii∗ = Copt − CTi

· si∗ > 0, leading to an idle
power consumption of (Copt−CTi

·si∗)·Pstatic. Now consider the scaling factor s̃i 6= si
∗ withCopt−CTi

·s̃i = 0.
For this scaling factor s̃i = Copt/CTi

, the energy consumption of processor Pi would be

EPi
(s̃i) = (s̃−2i · Pdyn(1) + s̃i · Pstatic) · CTi

and corresponds to ETi(s̃i), since Ii = 0. It is s̃i > si
∗ because of CTi

· si∗ < Copt = CTi
· s̃i. For the resulting

energy consumption of processor Pi with scaling factor s̃i we get the following estimation:

EPi
(s̃i)

= s̃−2i · Pdyn(1) · CTi
+ s̃i · Pstatic · CTi

< si
∗−2 · Pdyn(1) · CTi

+ s̃i · Pstatic · CTi
, since s̃i > si

∗

= si
∗−2 · Pdyn(1) · CTi

+ (si
∗ + (s̃i − si∗)) · Pstatic · CTi

= ETi(si
∗) + (s̃i − si∗) · Pstatic · CTi

= EPi(si
∗)

since Ii∗ = (s̃i − si
∗) · CTi . This shows that using scaling factor s̃i for Pi would lead to a smaller energy

consumption of Pi than using si
∗. This contradicts the assumption that Ii > 0 for an energy-optimal si∗ is

possible. Thus, CTj
· sj∗ = Copt = CTi

· si∗. �

Theorem 1 shows that the energy consumption of a fork-join construct can be reduced by avoiding waiting times at
the barrier using an appropriate scaling of the waiting processors. Theorem 1 states a necessary condition that must
be fulfilled by a solution to be optimal. In the following, this necessary condition is exploited to derive an optimal
solution. This is first done for two concurrent tasks in Sect. 4.2 and then for an arbitrary number of concurrent
tasks in Sect. 4.3.
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Figure 2: Left: Comparison of the optimal scaling factor sopt from Equ. (5) and the scaling factor scopt from Equ. (11)
in dependence of CT1/CT2 for an example processor with Pstatic = 4W and Pdyn(1) = 20W . Right: Comparison
of the normalized energy consumption ET1‖T2(s1, s2)/CT1 of two concurrent tasks using different combinations of
scaling factors for the same example processor.

4.2 Optimal scaling factor for two concurrently executed tasks

For two concurrent tasks T1 and T2, i.e., n = 2, the scaling factors s1 and s2 have to fulfill s1 ·CT1
− s2 ·CT2

= 0
according to Theorem 1. Thus,

s2 = s1 ·
CT1

CT2

. (8)

Using Equ. (8) in the energy consumption equation for T1||T2

ET1‖T2(s1, s2) = (s−31 · Pdyn(1) + Pstatic)·s1 · CT1
+ (s−32 ·Pdyn(1) + Pstatic) · s2 · CT2

(9)

leads to

ET1‖T2(s1, s1 ·
CT1

CT2
) = s−21 ·Pdyn(1)

(
CT1

+
C3

T2

C2
T1

)
+ 2s1 ·Pstatic ·CT1

. (10)

The energy function (10) is differentiable and has a minimum at

scopt = 3

√
Pdyn(1)

Pstatic

(
1 +

C3
T2

C3
T1

)
(11)

which is computed by setting the derivative

d

ds1
ET1‖T2

(
s1, s1 ·

CT1

CT2

)
= −2s−31 Pdyn(1)

(
CT1

+
C3

T2

C2
T1

)
+ 2Pstatic ·CT1

to zero. Figure 2 (left) shows scaling factor scopt from Equ. (11) for varying values of CT1
/CT2

and compares
it with sopt from Equ. (5). Equation (11) is a generalization of sopt in Equ. (5), and for CT1 = CT2 , Equ. (11)
simplifies to Equ. (5).
Figure 2 (right) shows the normalized energy consumption for T1||T2 according to Equ. (9) for different scaling
factors s1 and s2. Again, no specific values are assumed for CT1

and CT2
, and the x-axis depicts different relative

sizes of CT1
compared to CT2

. The energy consumption shown is normalized with respect to CT1
, i.e., the values

ET1‖T2(s1, s2)/CT1 are depicted. Four different combinations of scaling factors are compared: (i) concurrent
scaling with scopt according to Equ. (11) and s2 chosen according to Equ. (8); (ii) scaling with s1 = s2 = sopt
according to Equ. (5); (iii) no scaling, i.e., s1 = s2 = 1, and (iv) no scaling for s1 and s2 adapted according to
Equ. (8). The figure illustrates that the smallest amount of energy is consumed for the scaling factors according to
Equ. (11) and (8). The resulting energy consumption is smaller than the energy consumption resulting when using
the optimal scaling factor sopt for both tasks. The reason is that sopt ignores the influence of the waiting time. For
CT1 = CT2 , the cases (i) and (ii) result in the same energy consumption, since scopt = sopt and s2 = sopt holds in
that case. The other two cases lead to a much larger energy consumptions.
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4.3 Arbitrary numbers of tasks

The result obtained for choosing the optimal scaling factors for two concurrently executed sequential tasks is now
generalized to an arbitrary number n of tasks. Let T1, . . . , Tn be a set of independent tasks that have been generated
by a fork statement and that are executed concurrently on n processors. We assume that the tasks are ordered in
decreasing order of their sequential unscaled execution time CTi , i = 1, . . . , n, i.e., T1 is the task with the largest
execution time. According to Equ. (8), the scaling factor for each task Ti ∈ {T2, . . . , Tn} is set to

si = s1 ·
CT1

CTi

(12)

to get an optimal energy result. Using Equ. (12) for si results in the following total energy consumption:

ET1‖...‖Tn(s1, . . . , sn) = s−21 ·Pdyn(1)

(
CT1

+

n∑
i=2

C3
Ti

C2
T1

)
+ n · s1 ·Pstatic ·CT1

. (13)

To compute the minimum, the derivative

d

ds1
ET1‖...‖Tn (s1, . . . , sn) = −2s−31 Pdyn(1)

(
CT1

+

n∑
i=2

C3
Ti

C2
T1

)
+ n · Pstatic ·CT1

is considered and set to zero. This yields that ET1‖...‖Tn is minimized, if the scaling factor

scopt(n) = 3

√√√√ 2

n

Pdyn(1)

Pstatic

(
1 +

n∑
i=2

C3
Ti

C3
T1

)
(14)

is used for s1. The scaling factors si, i = 2, . . . , n, are then determined according to Equ. (12). If all tasks
T1, . . . , Tn have the same execution time, scopt(n) from Equ. (14) simplifies to sopt from Equ. (5). Depending on
the distribution of the task execution times and the values of Pdyn(1) and Pstatic, a value smaller than 1 may result
for scopt(n) from Equ. (14). In that case, the value has to be rounded up to 1 in order to fulfill the constraints for
the scaling factors.

The choice of the scaling factor scopt(n) according to Equ. (14) for the task with the largest execution time in
the unscaled state and with the scaling factors according to Equ. (12) for the other tasks minimizes the energy
consumption for the case n = p, i.e. the number n of tasks is exactly the same as the number p of processors. This
means that the largest task determines the overall execution time scopt(n) · CT1

, which also represents an implicit
time bound. Due to the choice of the scaling factors for the other n− 1 tasks, their scaled execution time is just the
same as scopt(n) ·CT1 . If a time constraint Cctr

T is explicitly given, the same procedure can be applied as described
at the end of Sect. 3, however now using scopt(n) instead of sopt, i.e., min(s̄, scopt) with Cctr

T = s̄CT1 is chosen
as scaling factor.

For the case that the number n of tasks is larger than the number of processors p, i.e. n > p, the situation might
change, since some of the processors now execute more than one task. In the next section, we propose a scheduling
procedure for the case n ≥ p, which extends the solution of the minimization of the energy consumption that we
have presented so far.

5 Energy-based Scheduling Algorithms for Tasks

This section addresses the energy-aware scheduling of n independent tasks T1, . . . , Tn that are created by a fork-
join construct and are to be computed on p processors P = {P1, . . . , Pp} with n ≥ p. Two scenarios are consid-
ered. In the first scenario, a conventional scheduling algorithm based on the execution time as objective function
is used and it is shown how the scaling factor scopt from Equ. (14) can be applied to derive a schedule with a
smaller energy consumption. In the second scenario, a new scheduling algorithm is proposed that uses the energy
consumption as objective function.

8



ALGORITHM 1: Time-based scheduling algorithm.

1 begin
2 Sort tasks {T1, . . . , Tn} such that CT1 ≥ CT2 ≥ . . . ≥ CTn ;
3 for (j = 1, . . . , n) do
4 Assign Tj to processor Pi with T[1:j−1](Pi) minimal;

5 Compute M(1) = max1≤i≤p T[1:n](Pi);
6 Let Pe be the processor with T[1:n](Pe) = M(1);
7 Compute scopt(Pe) according to Equ. (15);
8 Compute scaling factors for Pi 6= Pe according to Equ. (16);

5.1 Time-based scheduling with energy improvement

The tasks T1, . . . , Tn are assigned to the processors with a greedy scheduling algorithm [45, 48] that uses the min-
imization of the execution time as objective function. The tasks are ordered according to their unscaled execution
time in decreasing order, i.e., we assume CT1

≥ CT2
≥ . . . ≥ CTn

. The assignment of a task Tk to a processor
Pi ∈ P is denoted by A(k) = Pi. The greedy scheduling is based on the accumulated execution times of the pro-
cessors P ∈ P: when the tasks T1, . . . , Tj have already been assigned to processors, the accumulated execution
time T[1:j](P ) of a processor P ∈ P is defined as

T[1:j](P ) =
∑

1 ≤ k ≤ j
A(k) = P

CTk
.

The greedy scheduling algorithm assigns the tasks in decreasing order of their execution time one after another, see
Algorithm 1. The next task Tk is assigned to the processor Pi ∈ P for which the accumulated time T[1:k−1](Pi)
is smaller than all other accumulated times T[1:k−1](Pj) for j 6= i. The resulting overall execution time without
scaling, i.e., for scaling factor s = 1, is denoted as

M(1) = max
1≤i≤p

T[1:n](Pi).

The time M(1) is determined by the processor Pe that finishes its work last. An experimental comparison of
this greedy scheduling algorithm with other scheduling algorithms using the overall execution time (makespan) as
objective function is included in [17, 36].

From an energy-consumption perspective, the resulting schedule can be improved by applying the results from
Sect. 4:

1. For processor Pe, the scaling factor

scopt(p) = 3

√√√√√2

p

Pdyn(1)

Pstatic

1 +

n∑
i=1,i6=l

T[1:n](Pi)

T[1:n](Pe)

, (15)

is chosen, which is a straightforward generalization of Equ. (14). This leads to an overall execution time
M(scopt) = scopt ·M(1).

2. For all other processors Pi 6= Pe, the idle time T[1:n](Pe) − T[1:n](Pi) can be avoided by using a scaling
factor

si = scopt
T[1:n](Pe)

T[1:n](Pi)
, (16)

which is a generalization of Equ. (12). By using the scaling factors (16), the resulting energy consumption
is reduced without further increasing the overall execution time M(scopt).
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ALGORITHM 2: Energy-based scheduling algorithm.

1 begin
2 Sort tasks {T1, . . . , Tn} such that ET1(sopt) ≥ . . . ≥ ETn(sopt);
3 for (k = 1, . . . , n) do
4 Assign Tk to processor Pi with E[1:k−1](Pi) minimal;

5 Compute E =
p∑

i=1

E[1:n](Pi);

6 Compute M(sopt) = max1≤i≤p T[1:n](Pi)
7 let Pe be the processor with T[1:n](Pe) = M(sopt);
8 Compute scopt(Pe) according to Equ. (15);
9 Compute scaling factors for Pi 6= Pe according to Equ. (16);

The greedy scheduling Algorithm 1 uses the makespan as objective function [48] and has a worst-case subopti-
mality bound of 4/3 − 1/(3p) [20]. This result holds for Algorithm 1 in the unscaled case. Using scaling factor
scopt for the longest-running processor Pe increases the execution time of Pe by a factor of scopt. Using scaling
factor si according to Equ. (16) for the rest of the processors Pi 6= Pe does not increase the execution time. Thus,
Algorithm 1 leads to a suboptimality bound of (3/4−1/(3p)) ·scopt for the makespan in the scaled version. Again,
if a time constraint Cctr is given for the resulting schedule, the scaling factor min(s̄, scopt) with Cctr = s̄ ·M(1)
is used as scaling factor for Pe, see Subsect. 4.3.
If more than one task is assigned to a processor, Algorithm 1 executes all its tasks assigned with the same frequency.
In [15, 39] it has been shown that this indeed leads to the smallest dynamic energy consumption, i.e., the energy
consumption of a single processor cannot be reduced by using different frequencies for the different tasks of this
processor.

5.2 Scheduling based on power consumption

The approach in the last subsection modifies an existing schedule that has been generated by a scheduling algorithm
using the execution time as objective function. An alternative approach is to use the minimization of the energy
consumption as objective function, which is considered in this subsection. The energy consumption of a task
according to Equ. (3) with sopt according to Equ. (5) is used to define an accumulated energy consumption of a
processor Pi ∈ P which executes several tasks one after another:

E[1:j](Pi) =
∑

1 ≤ k ≤ j
A(k) = Pi

ETk(sopt).

The minimization of the accumulated energy consumption is now used as objective function in a modified greedy
scheduling algorithm. This algorithm assigns the tasks to processors in decreasing order of their energy consump-
tion: Task Tk is assigned to the processor Pi ∈ P , denoted as A(k) = Pi, for which E[1:k−1](Pi) is smaller than
all E[1:k−1](Pj), i 6= j. The algorithm is given in Algorithm 2.
The resulting overall energy consumption is the accumulated energy consumption over all processors, i.e.,

E =

p∑
i=1

E[1:n](Pi).

The resulting processor assignment A(k) for k = 1, . . . , n leads to an accumulated execution time

T̃[1:n](P ) =
∑

1 ≤ k ≤ n
A(k) = P

CTk
(sopt)

for each processor P ∈ P , yielding an overall execution time

M(sopt) = max
1≤i≤p

T̃[1:n](P )
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Theorem 2 (schedules produced by Algorithms 1 and 2) The greedy energy-based scheduling Algorithm 2 yields
the same processor assignment as the greedy scheduling Algorithm 1 based on the execution time. Moreover, the
same scaling factors are computed for the individual processors.

Proof: When assigning the tasks, the same scaling factor sopt is used for each task. Also, sopt is independent of
the execution times of the individual tasks. Thus, for each task T , ET (sopt) is a multiple of the unscaled execution
time CT of task T , and the same multiplication factor sopt is used for each task. In consequence, in each step of
the processor assignment algorithm the accumulated energy consumption values are multiples of the accumulated
execution times. Therefore, in each step Algorithm 2 chooses the same processor assignment as Algorithm 1. The
scaling factors computed after the processor assignment are therefore also the same in both algorithms. �

The execution time of the scheduling Algorithms 1 and 2 is dominated by the time to sort the tasks in the order of
decreasing runtime or energy consumption, which is O(n · log n). After the sorting, the tasks are assigned in turn
to the processors. When keeping the processors sorted according to their accumulated execution time or energy
consumption, determining the new processor with the currently smallest execution time or energy consumption can
be done in time O(log p) in each of the n steps. Hence, the overall execution time of both scheduling algorithms
is O(n · (log n+ log p)).

5.3 Integration into a dynamic execution environment

The scheduling Algorithms 1 and 2 are based on the assumption that the tasks and their execution times are known
before starting the scheduling. Although this situation is not given in the general case, many applications from
scientific computing are amenable for this kind of scheduling because of their regular structure of computations.
For these regular applications, two different methodologies for providing task execution times can be identified.

First, for many applications from scientific computing, the number of computations to be performed by each
task can be estimated a priori because of their regular computation structure. Based on such an estimation, the
corresponding execution time of the tasks can be predicted using a suitable prediction model [31, 34, 54]. If such
a prediction model is not available, the tasks can be ordered according to the amount of computations performed.
Interpreting these computations as a virtual time unit, the scheduling algorithms can be based on these virtual time
units, and for each task a corresponding virtual energy consumption can be computed. This approach is justified,
since the scheduling algorithms require only a relative ordering of the tasks.

A second methodology for providing task execution times can be suitable for time-stepping methods. Time-
stepping methods iteratively compute an approximation by applying the same computations to more and more
precise intermediate results. An example is the extrapolation method for solving ordinary differential equations
that is used in our experimental evaluation, see Sect. 6.4. For such applications, the task execution times can be
measured during the first time steps and these measured execution times can then be used to perform the scheduling
of the tasks for the remaining time steps.

6 Experimental evaluation

The experimental evaluation of the effects of frequency scaling includes simulations as well as actual energy mea-
surements. In Subsect. 6.1, simulations based on randomly generated task sets illustrate the quantitative effects of
the analytically computed optimal scaling factors. Subsection 6.2 studies the effect of the scheduling algorithms
from Section 5 for different task scenarios. Subsection 6.3 describes the experimental setup for the energy mea-
surements to be used in the subsequent subsection for a solver of ordinary differential equations, see Subsect. 6.4,
and the SPEC CPU2006 benchmarks, see Subsect. 6.5.

6.1 Scaling factor variations

For the scaling factor experiments, the task sets are generated using different distribution functions (uniform dis-
tribution, Gaussian tail distribution, Rayleigh distribution, and Beta distribution), which select the task execution
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Figure 3: Distribution of the task execution times for a task set with 100 tasks, selecting the task execution times
between 1s and 10000s using different distribution functions.

times randomly between 1 sec and 10000 sec. To generate the distributions the GNU Scientific Library has been
used. As example, Fig. 3 shows the randomly selected task execution times for a task set of 100 tasks using the
different distributions. It can be seen that the Beta distribution tends to select larger task execution times, whereas
the Gaussian tail distribution favors smaller task execution times. The Gaussian tail distribution results by cutting
off the Gaussian distribution at x = 0 and considering the resulting right part of the distribution function. For the
Gaussian and Rayleigh distribution, the versions with σ = 1 are used. For the Beta distribution, the version a = 4
and b = 1 is used.

Figure 4 (left) compares the percentage energy consumption of scaled systems with respect to the unscaled system.
The experiment has been performed for the following numbers of processors: p = 10, p = 100, p = 1000, and
p = 10000. Each processor is assumed to execute one task. The tasks are generated with randomly selected
execution times between 1 and 10000 seconds, leading to a uniform distribution of the task execution times. Each
experiment has been repeated 50 times to balance extreme situations caused by the random task creation. The
energy consumption has been computed according to Equ. (13) for an example processor with Pstatic = 4W and
Pdyn(1) = 20W . The following six choices of scaling factors for the different processors are compared (from left
to right in the diagram): (a) scaling factor s = 1 is used for all processors; (b) scaling factor s = sopt according to
Equ. (5) is used for all processors; (c) scaling factor s = scopt according to Equ. (14) is used for all processors; (d)
s = 1 is used for the processor with the largest execution time and Equ. (12) is used to adapt the remaining scaling
factors; (e) sopt according to Equ. (5) is used for the processor with the largest execution time and Equ. (12) is used
to adapt the remaining scaling factors; (f) scopt according to Equ. (14) is used for the processor with the largest
execution time and Equ. (12) is used to adapt the remaining scaling factors.

Figure 4 shows that the energy consumption can be considerably reduced by using the frequency scaling factors
sopt or scopt instead of s = 1. In particular, the scaling factor adaptation can be applied to reduce the total energy
consumption significantly. Using scopt for the processor with the largest execution time and adapted scaling factors
for the remaining processors leads to the smallest total energy consumption for all numbers of processors. The
resulting energy consumption lies below 60% of the energy consumption resulting for the unscaled case. Figure 4
(right) compares the choices of frequency scaling factors for a Gaussian tail distribution of task execution times,
which has a higher percentage of smaller tasks. For this task distribution, the scaling factor scopt is close to 1, and
therefore the adaptive scaling with 1 and scopt lead to similar energy consumptions. Figure 5 (left) uses a Rayleigh
distribution for the task execution times. In this case, the non-adapted scaling versions for sopt and scopt already
lead to significant energy savings. Figure 5 (right) uses a Beta distribution having a higher percentage of tasks with
a larger execution time. In this case, the energy consumption for sopt and scopt in the adapted and non-adapted
case are quite similar. Using s = 1, the energy consumption is much larger also in the adapted case.

Figure 6 compares the execution times of task sets and their resulting energy consumption for different numbers
of processors (p = 10, p = 100, p = 1000, p = 10000). Again, 50 sets of randomly generated tasks have
been used for the experiments, and the figure shows the average information. Each task in each task set has a
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Figure 4: Normalized energy consumption with task execution time created according to a uniform distribution
(left) and a Gaussian tail distribution (right). Percentage energy consumption of scaled systems with respect to the
unscaled system.
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randomly generated execution time between 1 and 10000 seconds using a uniform distribution. For each task set,
different scaling factors, the resulting execution times and energy consumptions are computed. The same scaling
versions as in Fig. 4 are compared. From the figures the following observations can be made: As expected, using
scaling factor 1 always results in the smallest execution time. However, adapting the scaling factors of the other
processors can significantly reduce the energy consumption without negatively affecting the overall execution time.
Using s = scopt for the processor with the largest execution time leads to a smaller energy consumption than using
s = 1, but it also increases the resulting execution time accordingly.

Figure 7 depicts the resulting execution times and energy consumptions for different distributions of the task ex-
ecution times and different choices of frequency scaling factors for each of these distributions. For p = 1000
processors, random task creations according to a uniform, a Gaussian, a Rayleigh, and a Beta distribution are
compared. The figure shows that the increase in execution time for the scaled versions compared to the unscaled
version strongly depends on the distribution of the task execution time. This increase is small for a Gaussian dis-
tribution, tolerable for a uniform and Rayleigh distribution, and large for a Beta distribution. Using the adapted
scaling versions always leads to a considerable reduction in energy consumption. The reduction is largest when
using s = 1 or s = scopt for the largest task and adapting the remaining scaling factors accordingly. The experi-
ments have shown that the effect of choosing frequency scaling factors strongly depends on the distribution of the
execution times of the tasks to be executed.
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Figure 6: Execution time vs energy consumption for different numbers of processors using a uniform distribution of
the task execution times.

6.2 Scheduling experiments

If there are more tasks available in a fork-join construct than there are processors, the scheduling Algorithms 1
or 2 can be applied. As stated by Theorem 2, both algorithms produce the same schedule. In the following, we
describe scheduling experiments for randomly generated task sets and consider the resulting energy consumption.
For a comparison with other scheduling algorithms using the makespan as objective function, we refer to [17, 36].

Figure 8 illustrates the result of the scheduling algorithms for the scheduling of 20 (left), 50 (middle), and 100
(right) tasks executed on 10 processors. The task execution times have been randomly selected between 0 ms and
10 ms using a Gaussian tail distribution with σ = 1. Other distributions lead to similar figures. From the figure it
can be seen that a large number of tasks compared to the number of processors leads to a quite even distribution
of the work between the processors such that the processors finish their execution at about the same time, see the
schedules for 50 and 100 tasks. In this case, the waiting times of the processors in the fork-join construct are
small and there is only a small potential for saving energy by avoiding the waiting times. However, the potential
of saving energy by using an optimal scaling factor for the longest-running processor remains. Larger deviations
in the finishing times of the processors can be observed, if the number of tasks is small compared to the number
of processors (Fig. 8 (left)) or if there are large differences in the task execution times. In the latter case, it can
happen that one processor has a long-running task and the execution of this task takes longer than the execution
of the tasks assigned to the other processors, resulting in a large difference of the finishing times. In this case,
avoiding waiting times by scaling factor adaptations can lead to significant energy savings.

Fig. 9 shows the energy consumption resulting when scheduling 100 tasks on 10 processors using different scaling
factors. The task execution times are randomly selected between 0 ms and 10 ms using different distributions
(uniform distribution, Gaussian tail distribution, Rayleigh distribution, Beta distribution) with the same parameters
as described above. Each scheduling experiment has been repeated 10 times. Since there is only a small difference
in the resulting finishing times of the processors, an adaptation of the remaining scaling factors only leads to a
marginal additional energy saving. This would be different if there were larger variations in the task execution
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Figure 7: Execution time vs energy consumption for a fixed number of processors (p = 1000) using different
distributions of the task execution times: uniform (top left), Gaussian tail (top right), Rayleigh (bottom left), and Beta
(bottom right).
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Figure 8: Example schedules produced by the scheduling algorithms for randomly generated task sets with 20
(left), 50 (middle), and 100 (right) tasks executed on 10 processors with task execution times randomly selected
between 0 ms and 10 ms using a Gaussian distribution.

times. The difference in the energy consumption of the different distribution function comes from a different
distribution of the task execution times in the predefined execution time interval. For example, a Gaussian tail
distribution favors small tasks whereas the Beta distribution usually produces more longer-running tasks.

6.3 Setup for energy measurements

Execution time and energy experiments have been performed on three Intel Core i7 processors: (i) An Intel Core
i7-2620M mobile (Sandy Bridge) processor with a maximum frequency of 2.7 GHz with two physical cores and
hyper-threading, leading to four logical cores. The memory hierarchy includes a 4 MB shared L3 cache as well as
a 256 KB L2 cache and a 32 KB L1 cache per core. The main memory size is 8 GB. The specified thermal design
power (TDP) is 35W. (ii) An Intel Core i7-2600 desktop (Sandy Bridge) processor with a maximum frequency of
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Figure 9: Result of scheduling experiments for executing 100 tasks on ten processors with task execution times
randomly selected using different distributions.

3.4 GHz with four physical cores and hyper-threading, leading to eight logical cores. The L1 and L2 cache sizes
and the main memory size are the same as for the Core i7-2620M, the L3 cache is 8 MB. The TDP is 95 W. (iii)
An Intel Core i7-4770 with the Haswell architecture, maximum frequency of 3.4 GHz, four physical cores with
hyper-threading, leading to eight logical cores. The cache and main memory sizes are the same as for (ii). The
specified thermal design power (TDP) is 84 W.

The Core i7 architecture incorporates a power management technology which supports four power management
states: performance states (P-states), throttle states (T-states), idle states (C-states) and sleep states (S-states) [26].
P-states are predefined sets of frequency and voltage combinations at which an active core can operate; the various
P-states are implemented by using a combination of dynamic frequency scaling (DFS) and dynamic voltage scaling
(DVS). A C-state is an idle state in which parts of the processor are powered down to save energy. Various C-states
are supported by Intel processors, and a higher numbered C-state indicates more power savings. The Core i7
processor has two power planes on chip: PP0 contains the processor cores and all caches, whereas PP1, also
referred to as Uncore, contains additional devices, such as graphics devices or the power control unit (PCU).

For measuring the energy consumption, we have used the RAPL (Running Average Power Limit) interface of the
i7 architecture, which provides mechanisms to measure and control the power consumption [26]. An alternative
hardware-based technique for obtaining energy values is the measurement with power-meters connected to the
pins used for the supply voltage of the CPU and other components of a computer system. Experiments have shown
that the energy measurement with power-meters and the energy measurement with RAPL show a good match
[47], meaning that the RAPL interface (to be used in our experiments) provides reliable energy information. The
RAPL interface allows the access to Model Specific Registers (MSRs), which provide information about the energy
status of the PP0 and PP1 power planes via the MSR PP0 ENERGY STATUS and MSR PP1 ENERGY STATUS
MSRs. The corresponding energy status unit is obtained via the MSR RAPL POWER UNIT MSR; the default
value is 15.3 micro-Joules. The MSR can be accessed by the rdmsr and wrmsr instructions (privilege level 0).
For accessing the MSRs in our experiments, we have used the likwid tool-set (Version 2.2) [52], which we have
modified slightly to obtain the energy consumption of the PP0 and PP1 power planes for our example application.

To set the frequencies of the cores to a fixed value, we have used the cpufreq set tool, see. e.g., wiki.archlinux.org;
the minimum and the maximum core frequencies have been set to the same value. During program execution, the
frequency of each core has been observed with the i7z tool, see, e.g., code.google.com/p/i7z/. The runtime
experiments have been performed with no other application program running on the machine, i.e., interferences can
only come from jobs of the operating system. To reduce the effect of such interferences, the runtime experiments
have been performed five times.

6.4 Energy measurements for the extrapolation method

As example application, we consider the extrapolation method [21, 32, 44], which is a solution method for initial
value problems (IVPs) of ordinary differential equations (ODEs). In each time step, the extrapolation method
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Figure 10: Task structure of one time step of the extrapolation method for r = 4.

computes several approximations with different step-sizes using a base method, such as the Euler method. Using
r different step-sizes, r different numerical approximations are obtained, which are combined by an extrapolation
table to get the approximation for that time step. The main computational work lies in the execution of the micro-
steps, which includes the evaluation of the right-hand side function f of the ODE system to be solved. The task
structure of one time step is illustrated in Fig. 10.

For a multi-threaded implementation with Pthreads, we use r worker threads w0, . . . , wr−1, where thread wi per-
forms the micro-steps for step-size hi. Worker thread w0 also computes the extrapolation table. A barrier synchro-
nization is used between the time steps. The threads are bound to a fixed logical core using pthread setaffinity np()
to ensure that the tasks assigned to a worker-thread are executed by the same (logical) core. The experiments
are performed using Linux Kernel 2.6.37. The multi-threaded versions are compared with on a purely sequential
version without thread generation.

Figure 11 shows results of the energy measurement for an extrapolation method with r = 4 different step-sizes
executed on an Intel Core i7 2620M processor with two physical cores (four logical cores). The extrapolation
method is used to solve a Brusselator ODE system, which results from spatial discretization of a two-dimensional
partial differential equation describing the reaction with diffusion of two chemical substances [21]. The parameter
N determines the number of discretization points used in each dimension. The following experiments are based
on measurements with a fixed number of 10 time steps solving a system of size N = 2000. The following
three versions are compared: (i) a sequential execution of the four tasks executed on a single (logical) core in
each time step, i.e., the tasks are executed one after another, (ii) a concurrent execution of the four tasks on four
(logical) cores such that core i executes a different task Ti with step-size hi; this causes different load on different
(physical) cores, since Ti performs i micro-steps, (iii) a concurrent execution with a modified task assignment to
physical cores such that each (physical) core performs the same number of micro-steps. Using cpufreq-set, the
frequency of the cores is set to a fixed frequency (0.8 GHz, 1.4 GHz, 2.0 GHz, 2.7 GHz) corresponding to different
frequency scaling factors, or is allowed to vary between 0.8 GHz and 3 GHz. The diagrams in Fig. 11 show the
resulting execution times (top left), energy consumption (top right), power consumption (bottom left), and energy-
delay product (bottom right). The energy-delay product EDP is defined as the energy consumed by an application
program multiplied by its execution time [46]. It is used as a single metric to combine the effects of execution time
and energy consumption for different configurations of an application and captures the translation of energy into
useful work. Smaller EDP values indicate a better efficiency, i.e., a larger performance per energy unit [46].

It can be observed that the execution time of each of the versions decreases with increasing frequency. Corre-
spondingly, the energy consumption increases with the frequency. The parallel versions always lead to a faster
execution time than the sequential version, and also the energy consumption is reduced. Therefore, the parallel
versions have much smaller EDP values as the sequential version, showing a better energy efficiency. The large
energy consumption of the sequential version is caused by the fact that only one core transforms energy into useful
work, while the other cores still consume energy due of the static power consumption.

Comparing the two parallel versions, the smallest amount of energy is consumed by the extended task assignment
scheme, as this scheme assigns the same number of micro-steps to each physical core, thus avoiding idle times.
This conforms to our calculations in Sect. 4. A similar effect could be achieved by using different frequency
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Figure 11: Execution time (top left), energy consumption (top right), power consumption (bottom left), and energy-
delay product (bottom right) for an extrapolation method with four different stepsizes on Intel Core i7 2620M proces-
sor.

values for different cores, which was impossible for our experimental setup due to hardware restrictions. The
diagrams in Fig. 11 show that due to differences in the power consumption, a small energy consumption does
not necessarily correspond to a small execution time: for small frequency values, the extended task assignment
scheme is outperformed by the regular task assignment scheme. The bottom left diagram shows that the power
consumption increases with the frequency, and a sequential execution leads to the smallest power consumption.
Similar observations can be made for the Core i7-2600 processor, see Fig. 12 for an extrapolation method with
r = 8 different stepsizes, corresponding to eight tasks in each time step. As the Core i7-2600 is a desktop processor,
higher frequency values can be used. The maximum over-clocking frequency is set to 3.7 GHz in the BIOS. For
this processor, the extended task assignment scheme leads to the smallest EDP values for all frequencies due to the
avoidance of waiting times.

The measured power consumption shown in Fig. 11 and 12 (bottom left) can be exploited to determine the power
consumption values Pdyn(1) and Pstatic based on Equ. (3) or Equ. (4). For the Intel Core i7 2620M, using the
two largest frequencies f1 = 2.7 GHz and f2 = 2.0 GHz (corresponding to scaling factor s1 = 1 and s2 = 1.35,
respectively) the values Pdyn(1) = 13.65 W and Pstatic = 1.56 W result. For the Intel Core i7 2600 processor, the
same method yields Pdyn(1) = 45 W and Pstatic = 5.94 W.

The values for Pdyn(1) and Pstatic can be used to predict the energy consumption and the power consumption for
other frequencies according to Equ. (3) or Equ. (4). The comparison of these predicted values with the measured
values in Fig. 11 and 12 provides a good match for most frequencies, and the deviation lies below 10 % in most
cases. The deviation gets larger for smaller frequencies and only for the smallest frequencies, the predicted power
consumption values are significantly larger than the measured values, which might be caused by additional features
of the PCU to save even more power at low frequencies.

Using the values for Pdyn(1) and Pstatic in Equ. (5) yields the optimal scaling factors sopt = 2.6 for the Core i7
2620M, which corresponds to a frequency of 1.0 GHz, and sopt = 2.47 for the Core i7 2600, which corresponds
to a frequency of 1.5 GHz.
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Figure 12: Execution time (top left), energy consumption (top right), power consumption (bottom left), and energy-
delay product (bottom right) for an extrapolation method with eight different stepsizes on Intel Core i7 2600 proces-
sor.

6.5 Energy consumption of the SPEC benchmarks

For a further validation of the energy model from Sect. 2, we also have performed energy measurements for the
SPEC CPU2006 benchmarks on an Intel Core i7-4770 Haswell processor with four cores and hyperthreading.
For this processor, the frequency can be set between 0.8 GHz and 3.4 GHz. The frequency stepsize is 200 MHz
with two exceptions (1.4/1.5 GHz and 2.7/2.8 GHz). The SPEC CPU2006 benchmark suite consists of integer
and floating-point benchmarks, which are real programs covering different application areas. The benchmarks are
sequential C, C++ and Fortran programs, see, e.g., [22] and www.spec.org for more details. For the energy
measurements discussed in the following, the benchmarks have been compiled with the gcc 4.7.2 compiler using
the compiler option -ftree-parallelize-loops=4, enabling an automatic parallelization at loop level.

Figure 13 shows the energy values for the SPEC CPU2006 integer (top) and floating-point (bottom) benchmarks
executed on the Core i7 Haswell architecture using different frequencies. Again, the energy consumption values
have been obtained with the likwid toolset [52]. The figures shows that for each benchmark program there is a slight
variation of the energy consumption with the frequency. The energy consumption is large for small frequencies
and decreases with increasing frequencies. Starting with a frequency of about 2.5 GHz, the energy consumption
increases slightly with the frequency for most of the benchmarks. The minimum energy consumption is often
obtained at frequency values between 2.0 GHz and 2.5 GHz.

For each of the SPEC benchmarks, the measured energy values shown in Fig. 13 and the corresponding measured
execution times for each frequency value can be used to determine Pdyn(1) and Pstatic based on Equ. (3) with
the least squares method. The resulting values for Pdyn(1) lie between 9.73 W and 13.50 W for the different
benchmarks; the average value is 11.10 W. The values for Pstatic lie between 6.59 W and 8.52 W with an average
value of 7.20 W. Using the average values for computing the optimal scaling factor sopt results in sopt = 1.45,
which corresponds to a frequency of 2.34 GHz. For most of the benchmarks, this is quite near the frequency where
the minimum energy consumption can be observed, i.e., the energy model used is indeed able to determine the
operational frequency that leads to the smallest energy consumption.

The SPEC benchmarks have also been investigated for the the Sandy Bridge architecture (Core i7-2600). The
following values for Pdyn(1) and Pstatic can be determined from the execution times and energy measurements of
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Figure 13: Energy consumption of SPEC integer (top) and floating point (bottom) benchmarks on an Intel Core i7
Haswell processor using different frequencies.
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Figure 14: Schedule for the SPEC tasks executed on eight cores (left) and 16 cores (right).

the SPEC benchmarks (not shown in a figure): Pdyn(1) lies between 10.0 W and 14.19 W with an average value
of 11.26 W. Pstatic lies between 9.89 W and 11.87 W with an average value of Pstatic = 10.35. The average
values lead to an optimal scaling factor sopt = 1.29, which corresponds to a frequency of 2.6 GHz. Compared to
the power values Pdyn(1) and Pstatic determined for the extrapolation method, the values for Pdyn(1) determined
for the SPEC benchmarks are quite small. This can be explained by the fact that most SPEC programs produce
a sequential workflow for most of their execution time, i.e., only one of the four cores is working and the other
cores are set into sleep state, whereas the extrapolation method produces a parallel workflow with all four cores
performing computations. A sequential execution of the extrapolation method leads to similar power consumption
values as the SPEC benchmarks, see Fig. 12 (bottom left).

The SPEC benchmarks have been used for another scheduling experiment in which the execution of each individual
program of the SPEC benchmarks on a single core is considered as one task. This yields 25 tasks (with different
execution times), which can be executed in parallel on the cores of a multicore architecture. As task execution
times, the execution times of the SPEC benchmarks on a single un-scaled core of the Haswell architecture are taken.
Figure 14 shows the schedules for 8 and 16 cores resulting from the scheduling algorithms from Sect. 5. Since the
number of tasks is small, a significant idle time arises especially for 16 cores. Thus, applying frequency scaling is
beneficial for reducing the energy consumption. For the average values Pdyn(1) = 11.10W and Pstatic = 7.20
of the Intel Core i7-4770 Haswell processor, the optimal scaling factors scopt for the longest-running core are: (i)
scopt = 1.39 for p = 4 cores, (ii) scopt = 1.36 for p = 8 cores, and (iii) scopt = 1.25 for p = 16 cores. The
optimal scaling factor for a single task is sopt = 1.45 for all three cases. From the energy model from Sect. 3, the
energy consumptions (in Joules) given in the following table result for the different choices of the scaling factors:

number s = 1 s = sopt s = scopt s = 1 s = sopt s = scopt
of cores all all all adapt adapt adapt
p = 4 165982 144237 144320 158090 140512 140269
p = 8 167749 146809 147026 155429 140994 140374
p = 16 174867 157170 158179 150150 145502 142383

The table shows that the execution on four cores leads to the smallest energy consumption in the un-scaled case,
which is caused by the smaller idle times compared to an execution with 8 or 16 cores, see the first three columns
of the table. The adaptation of the scaling factors reduces the energy consumption by avoiding the idle times, so
that lower energy consumption values result for all cases, see the last three columns of the table. According to
the theoretical results, the last column shows the smallest energy values with the smallest value for p = 4 cores.
The corresponding parallel execution times, however, are smallest for 16 cores, so that there is a tradeoff between
execution time and energy consumption and the application programmer can select a suitable setting.
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7 Related Work

Energy consumption is emerging to be a dominant performance factor and there is an enormous amount of research
dealing with a reduction of the energy consumption on different levels, including technological power management
as well as application-oriented bi-critical optimization or scheduling. Power-management features are integrated in
computer systems of almost every size and class, from handheld devices to large servers [49]. An important feature
is the DVFS technique that trades off performance for power consumption by lowering the operating voltage and
frequency if this is possible [57]. The approach to determine the voltage scaling factor that minimizes the total
CPU energy consumption by taking both the dynamic power and the leakage power into consideration has been
discussed in [27, 28, 57] for sequential tasks.

The energy consumption of parallel algorithms for shared memory architectures based on the parallel external
memory (PEM) model [4] has been discussed in [33]. The interaction between the parallel execution and energy
consumption is considered in [13] by partitioning a parallel algorithm into sequential and parallel regions and
computing optimal frequencies for these regions. No task structuring of the parallel algorithms is considered. Ap-
proaches for an energy complexity metric are discussed in [9]. [51] proposes a system-level iso-energy-efficiency
model to analyze, evaluate and predict energy-performance of data intensive parallel applications. The energy con-
sumption of interconnection networks of chip multiprocessors (CMP) is addressed in [10, 19]. An energy-oriented
evaluation of communication optimization for networks is given in [29] with a focus on sensor networks which
have different characteristics as networks in high-performance computing.

The main paradigms in energy-aware scheduling are speed scheduling algorithms and power-down scheduling al-
gorithms [14]. Our approach belongs to the first paradigm. The survey of [50] discusses energy- and performance-
aware scheduling algorithms of the three possible ways to solve the bi-critical problem, i.e. performance-constrained
energy optimization, energy-constrained performance optimization, and dual energy and performance optimiza-
tion. Our approach can be considered to be in the first category, however, our specific approach is different from
the methods discussed, since we first compute an analytic solution for an optimal frequency scaling and then use
the results in a scheduling algorithm.

One of the main differences in energy-aware scheduling approaches is the energy model used. Most earlier articles
consider the dynamic power consumption but ignore the static power consumption [50]. The work in [39] seems
mostly related to our approach at first glance, since it combines analytical methods with scheduling methods.
However, the difference of both approaches originates from the power model considered, which consists only of
the dynamic power in [39] and a combination of dynamic power and static power in our case. This gives rise to
different methods and results. An analytically proven necessary condition of equal power for all processors on a
multiprocessor is used to formulate and solve a scheduling problem equivalent to the sum-of-bag problem in [39].
In contrast, our necessary condition of an optimal solution requires to eliminate idle times by different frequency
scales and an optimal frequency scale can be computed analytically and can then be exploited for scheduling. Also,
[39] provides only simulations of the results proven. In contrast, we were able to perform hardware measurements
for recent processor architectures of the energy which supports the energy model that we have used.

The scheduling of independent unit-size tasks on a heterogeneous master-worker platform with communication
costs using different energy models concerning switching overhead and memory constraints is considered in [43].
The goal is to maximize the throughput while minimizing the energy consumed. This is a different problem than
the problem we consider, since we investigate tasks with different execution times; moreover the energy model
in [43] assumes that the static energy consumption can be ignored. The scheduling of task graphs with different
dependency structures (tree, series-parallel, general DAG) is investigated in [5] for energy models with different
switching modes. Again the static energy consumption is not taken into account.

Algorithmic research on speed scaling processors and related scheduling algorithms using the total energy con-
sumption as objective function has been initiated by the article [55]. Many different scenarios and algorithms
have been investigated in the literature, see [1, 8, 14] for a good overview. For example, theoretical foundations
of scheduling algorithms in a setting with dynamic speed scaling processors are investigated in [2], considering
the scheduling of n jobs on m identical variable speed processors working in parallel, where each job is speci-
fied by a release date, a deadline, and a processing volume. Different scenarios concerning the job size, release
dates and deadlines are considered and approximation algorithms for the resulting NP-hard scheduling problems
are presented. In most of the articles in this research line, the emphasis lies on a theoretical investigation of the
approximation algorithm derived and no simulations or measurements on real hardware systems are provided.
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In the domain of real-time scheduling, many DVFS-based techniques have been considered for utilizing waiting
times, see, e.g., [24, 40, 56]. These approaches are usually based on heuristics and are not based on an analytical
model as presented in this work. The effects of dynamic concurrency throttling (DCT) and DVFS in the context of a
hybrid MPI/OpenMP programming model are considered in [38]. In particular, frequency selection is formulated
as a variant of the 0-1 knapsack problem and dynamic programming is used to compute an approximation. In
contrast, we propose an analytical solution using scaling factors to derive an optimal solution.

8 Conclusions

In this article, it has been demonstrated how an analytical energy model capturing frequency scaling can be used to
model and analyze the power consumption of applications which are formulated using a task-based programming
model with fork-join parallelism. The approach assumes that the task execution times are known, which can
be provided by a performance prediction or measurements of task execution times. For iterative methods, such
measurements can be performed by using the measured task runtimes of one iteration as estimation for the task
execution times in later iterations. Using the estimations for the task execution times, frequency scaling factors are
computed for each task in a fork-join construct such that waiting times are avoided at join points. We have shown
that this minimizes the energy consumption for a given assignment of tasks to processors.

The scaling factor technique derived in this article aims at a system software support and can be used in two ways:
For a given schedule with assignments of tasks to processors, the scaling factors can be used to reduce the energy
consumption without affecting the execution time (unscaled case for the longest-running processor) or to minimize
the energy consumption of the given schedule (using the optimal scaling factor for the longest-running processor).
Both techniques aim at a post-processing of given schedules to reduce the energy consumption, and the given
schedules can be computed with the makespan as objective function. Additionally, the energy model can be used
to employ the energy consumption directly as objective function in the scheduling algorithm.

Simulations with randomly generated task sets have been performed to illustrate the quantitative effects of different
scaling factors on the resulting execution time and power consumption. Energy measurements have been performed
for three Intel Core i7 processors executing a complex application program from numerical analysis and the SPEC
CPU2006 benchmarks to evaluate the power consumption for different frequencies and to validate the energy
model used.
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