
Energy Measurement, Modeling, and Prediction for Processors
with Frequency Scaling

Thomas Rauber1 Gudula Rünger2 Michael Schwind2 Simon Melzner1

Haibin Xu2

1: Computer Science Department, University Bayreuth, Germany
2: Computer Science Department, Chemnitz University of Technology, Germany

to appear in: The Journal of Supercomputing. Springer ISSN 0920-8542, December 2014,
Volume 70, Issue 3, pp 14511476

Abstract

The energy consumption is an important aspect of today’s processors and a large variety of research ap-
proaches deal with reducing the energy consumption for specific application codes on different platforms under
certain constraints. These research approaches are based on energy information acquired by very different means,
such as hardware settings with power-meters, software methods with hardware counters available for more recent
CPUs, or simulations based on theoretical models. In this article, all of these energy acquisition methods are
investigated and compared. As application programs, we consider the SPEC CPU2006 integer and floating-point
benchmark collections, which represent a large variety of applications from different areas. The investigations
are done for single multicore CPUs with the goal to get more insight into their energy consumption behavior. An
experimental evaluation is performed on three recent processor types with dynamic voltage frequency scaling.
The article compares the measured energy and the energy provided by hardware counters with the energy pre-
dicted by simulation models. The comparison shows that the simulation models are able to capture the energy
consumption quite accurately.

1 Introduction

Energy-aware computing and the efficient use of compute resources are now accepted to be as important for
application codes as performance aspects. Energy efficiency has already been a critical concern in digital circuit
design for the last two decades. This has led to several power-aware system features, including multicore-on-a-chip
processors, core-independent functional units, dynamic frequency and voltage scaling, or clock gating, which are
mainly aimed at a reduction of the energy consumption of the processors. To fully exploit the hardware capabilities
for decreasing the energy consumption of application software running on that hardware, information about the
energy consumption has to be available. Reliable energy models and measures are needed to plan and evaluate the
software energy behavior on specific hardware.

One of the most effective hardware energy minimization techniques is dynamic voltage and frequency scaling
involving a dynamic adjustment of the clock frequency and the corresponding supply voltage. Dynamic voltage-
frequency scaling (DVFS) reduces the dynamic power consumption which is that part of the power needed to make
a processor work. The static power is the power of the processor when it is not active and mainly includes the
leakage power. There is also a considerable amount of power consumed by the entire hardware system and all its
devices. The energy consumption of application code can be reduced by either decreasing the execution time, e.g.,
by algorithmic methods, which may result in a smaller energy consumption, or by scaling the frequency to decrease
the power consumption, which may however increase the execution time. Since a low execution time is still an
important goal, for instance when simulating large applications or when a predefined response time is required,
energy-awareness and performance awareness have to be treated together. Thus, in addition to performance data,
the availablility of reliable energy data is a prerequisite to tune application code towards energy efficiency.

1

Measuring, evaluating or modeling energy consumption for either single specific applications on selected hardware
platforms or an entire range of applications emphasizing more on the hardware facility is an active research area.
The goal is to acquire information about the energy consumption with the aim to understand, to reduce or even
to minimize the energy consumption under specific constraints. This requires a very solid foundation of energy
data which are reliable in the sense that they reflect the reality qualitatively and quantitatively. Thus, the challenge
is how to get good quality energy data. The methods used for gathering energy information of application codes
running on modern hardware platforms are quite different and three main categories have evolved, which are
hardware measurements with specific power-meters, software measurements with hardware counters available in
more recent processors, and simulations based on theoretical energy models.

In this article, we consider all three methods for gathering energy data with the goal to investigate the corre-
spondence or difference of the energy data provided by the methods. A contribution of the article is a detailed
comparison of the energy measurement using power-meters and using the RAPL (Running Average Power Limit)
interface of recent Intel processors. As application we have chosen the SPEC CPU2006 benchmarks, which are
well-known to the community and reflect properties of typical application codes. The measurements with both
of measurement techniques show a good correspondence, which allows us to use the energy information gathered
by the faster and easier-to-use hardware counters. In contrast to earlier work, such as presented in [12, 29], the
comparison focuses on the frequency scaling feature of the processors and is performed for a large set of complete
application programs (the SPEC CPU2006 integer and floating-point programs). The correlation of the data ac-
quired by these two measurement methods is crucial for getting experimental data on which a power prediction
method can be based. A second contribution of the article is the comparison of the measured energy values with the
energy values provided by different DVFS energy models. In particular, a physical and a heuristic energy model
are investigated. These energy models can be used for an a priori energy estimation and as a basis for simulating
the energy consumption of application programs.

The rest of the article is structured as follows. Section 2 describes measurement techniques for the energy con-
sumption of processors and compares these techniques and their resulting energy values for the SPEC CPU2006
benchmarks. Section 3 presents energy measurements for the SPEC benchmarks on different modern processors.
Section 4 describes different models for capturing the energy consumption of DVFS processors. Section 5 inves-
tigates how well these energy models are suited for predicting the energy consumption of processors. Section 6
discusses related work. Section 7 concludes the paper.

2 Measurement techniques for the energy consumption of DVFS proces-
sors

In this section, we describe the techniques with which we have measured the power and energy consumption
of DVFS processors and present the resulting energy data. Hardware measurement techniques using specialized
power-meters are described in Section 2.1. A software-based measurement technique based on accessing the
hardware counters of the processors is described in Section 2.2. A comparison of the measured energy data is done
in Section 2.3.

Modern microprocessors, such as the Intel Core i7 processors, incorporate a power management technology which
supports different power management states: performance states (P-states), throttle states (T-states), idle states (C-
states) and sleep states (S-states) [17]. P-states are predefined sets of paired frequency and voltage combinations
at which an active core can operate [3]; the various P-states supported are implemented by using a combination of
dynamic frequency scaling (DFS) and dynamic voltage scaling (DVS). A C-state is an idle state in which parts of
the processor are powered down to save energy. Various C-states are supported by Intel processors, and a higher
numbered C-state indicates more power savings.

For the experiments, three different Intel Core i7 processors have been used: (i) an Intel Core i7-2600 processor
with the Sandy Bridge architecture; (ii) an Intel Xeon CPU E3-1225 V2 processor with the Ivy Bridge architec-
ture; (iii) an Intel Core i7-4770 with the Haswell architecture. Table 1 describes some details of the processor
architectures.

2

Core i7-2600 Xeon Core i7 4770
E3-1225V2

architecture Sandy Bridge Ivy Bridge Haswell
minimum frequency 1.6 GHz 1.6 GHz 0.8 GHz
maximum frequency 3.2 GHz 3.2 GHz 3.4 GHz

TDP 95 W 77 W 84 W
step size frequency 100 MHz 100 MHz 200 MHz

physical cores 4 4 4
hyperthreading yes no yes

virtual cores 8 4 8
L1 data cache 32 KByte 32 KByte 32 KByte

L2 cache 256 KByte 256 KByte 256 KByte
L3 shared cache 8 MByte 8 Mbytes 8 MByte

RAM size 8 GByte 8 GByte 8 GByte

Table 1: Characteristics of the processors used for the experimental evaluation.

V

C
o
m

p
o
n
en

t to

b
e m

easu
red

R=0,01 Ohm

cc

current sensing
resistor

Voltmeter
NI 9205

Figure 1: Illustration of the power measurement using the NI9205 device for measuring the supply voltage Vcc for
the different wires.

2.1 Power measurement with power-meter

A precise method to capture the power consumption of computer systems is the direct measurement using a power-
meter. We have implemented this approach using the data acquisition system National Instruments NI9205, which
has been integrated into an NI CDAQ9181 chassis to enable the transfer of the measured power values via Ethernet
to a separate system for data analysis, see Fig. 1 for an illustration of the overall configuration and Fig. 2 for a photo
of the experimental setup. The power measurement technique is similar to the technique used by the PowerPack
framework [13].

The NI9205 enables a fine-grain power measurement of different components of a computer system. In particular,
it is possible to isolate the power consumption of the CPU, the main memory, disks, fans etc. by accessing
the corresponding connectors used for the supply voltage of an individual component and measuring the power
consumption at this connector. For example, the CPU is powered through a +12VDC pin whereas the memory is
powered through a +3.3VDC pin. The overall power consumption of the computer system is the sum of the power
consumption of the individual components.

For the actual power acquisition and profiling, the software tool LabView [23] has been used for which we have
configured several modules operating in a client-server fashion so that the collection of the power data is automated.
The client program initiates the LabView server program to acquire power data and then starts the application pro-
gram for which the power profile is requested. After the termination of the application program, the LabView
module saves the collected power consumption data to disk and initiates the post-processing of the data. LabView
modules were also needed for the synchronization of the power profiling process with the running application
program. The software modules developed are also able to capture the power consumption of specific parts of the
application program to be analyzed and to determine which part of a computer system has which power consump-
tion at which point of program execution. As example, Fig. 3 shows the power consumption of the SPEC CPU2006

3

Figure 2: Photo of the power measurement experimental setup using the NI9205 device.

 0

 5

 10

 15

 20

 25

 50 50.1 50.2 50.3 50.4 50.5

p
o
w

e
r

[w
a
tt

]

time [s]

Power Hardware Measurement libquantum

Mainboard 24 PIN 3.3V (memory)
Mainboard 24 PIN 12V

Mainboard 24 PIN 5V
Mainboard EPS 12V (CPU)

Harddisk (5V+12V)

Figure 3: Detailed results of the power measurement for a specific time interval of the SPEC benchmark libquantum
using the NI9205 device on an Intel Ivy Bridge processor.

benchmark libquantum running on a Core i7 Ivy Bridge architecture measured with the NI9205 power-meter. The
time interval between 50 and 50.5 sec is shown, which has been selected arbitrarily. Other intervals show a sim-
ilar behavior. The total runtime of the benchmark is 292 sec in the turbo mode at 3.6 GHz. The following five
connectors have been measured: (i) the 24 pin ATX 3.3V main-board connector supplying the memory modules;
(ii) the 24 pin ATX 12V main-board connector supplying peripheral devices and the CPU; (iii) the 24 pin ATX
5V main-board connector also supplying peripheral devices and the CPU; (iv) the main-board 12V EPS connector
which is mainly used by the CPU; (v) the 12V and 5V supply lines for the hard disk. Figure 3 shows that the
power consumption of the memory modules is quite small compared to the power consumption of the CPU, and
the power consumption due to disk accesses is even smaller.

Figure 4 shows the power consumption for the different connectors for the SPEC CPU2006 benchmark libquantum
depending on the frequencies. Especially the power consumption of the 12V EPS connector, which is the main
power supply of the CPU, is significantly increasing with the frequency. The power consumption of the ATX 5V
main-board connector, which is also partly used by the CPU, also increases slightly. The power consumption of the
remaining connectors remains nearly constant over the range of available frequencies, since they are not affected
by the frequency change.

The power-meter approach can be extended to capture the power consumption of parallel systems, such as clusters,
by measuring the power consumption of the nodes of the cluster system separately and adding up the measured
power consumption of the nodes. However, this would require a significant amount of measuring devices, espe-
cially for larger parallel systems. An alternative approach is to use software techniques with hardware counters as
described in the next Subsection 2.2 requiring much less overhead. The question arises how accurate the measure-
ment with hardware counters is in comparison with a measurement with a power-meter. We address this question
in Subsection 2.3.

4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1.5 2 2.5 3 3.5 4

av
g.

 p
ow

er
 [w

at
t]

Frequency [GHz]

Power Hardware Measurement libquantum

Mainboard 24 PIN 3.3V (memory)
Mainboard 24 PIN 12V

Mainboard 24 PIN 5V
Mainboard EPS 12V (CPU)

Harddisk (5V+12V)

Figure 4: Detailed power measurement for the SPEC benchmark libquantum executed at different frequencies;
measurement using the NI9205 device on an Intel Ivy Bridge processor.

 200

 400

 600

 800

 1000

 1200

 1400

 1.5 2 2.5 3 3.5 4

ru
nt

im
e

[s
]

Frequency [GHz]

libquantum
bwaves
cactus

wrf
gemsFDTD

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

E
n
e
rg

y
 [

kJ
o
u
le

]

Frequency [GHz]

libquantum
bwaves
cactus

wrf
gemsFDTD

Figure 5: Runtime and energy consumption of selected SPEC CPU2006 benchmarks with varying frequencies.
For the energy, the total energy consumption is shown, collected with the NI9205 device on an Intel Ivy Bridge
processor.

5

 0

 50

 100

 150

 200

 250

 1.5 2 2.5 3 3.5

e
n
e
rg

y
 c

o
n
u
m

p
ti
o
n
 [
J
o
u
le

]

frequency [GHz]

energy measurement for SPEC benchmark libquantum on an Core i7 SandyBridge

RAPL MSR
NI 9205 powermeter

Figure 6: Comparison of the results of the energy measurement with power-meters and the energy measurement
using RAPL for the SPEC benchmark libquantum on an Intel Core i7 Sandy Bridge processor.

2.2 Power measurement with RAPL sensors

Many recent processors provide hardware counters which capture the energy consumption. Starting with the
Sandy Bridge architecture, Intel has introduced the Running Average Power Limit (RAPL) feature, which provides
sensors that allow the measurement of the power consumption of CPU components [29, 17]. The Core i7 processor
family has two power planes on chip, which are PP0 containing the processor cores and all caches, and PP1, also
referred to as Uncore, containing additional devices, such as graphics devices or the Package Control Unit (PCU)
[29]. The corresponding RAPL sensors are RAPL PPO and RAPL PP1 measuring the power consumption of the
processor core and the processor uncore. In addition, there are the RAPL sensors RAPL DRAM and RAPL PKG
for measuring the power consumption of the memory controller and the whole CPU package, respectively.

RAPL sensors can be accessed by control registers, known as Model Specific Registers (MSRs), which are updated
in intervals of about 1 ms [17]. The MSR can be accessed by a pair of instructions rdmsr and wrmsr. These
instructions are privileged (privilege level 0) and are to be executed in kernel mode. The MSRs provide information
about the energy status of the PP0 and PP1 power planes using the specific registers MSR PP0 ENERGY STATUS
and MSR PP1 ENERGY STATUS. The MSR MSR PKG ENERGY STATUS captures the energy status of the
whole CPU package. The corresponding energy status unit is obtained via the MSR RAPL POWER UNIT MSR;
the default value is 15.3 micro-Joule.

Our investigations include power and energy measurements exploiting RAPL sensors for the SPEC CPU2006
benchmarks. For the RAPL-based experiments, we have used the likwid tool-set (Version 3.0) [33], which provides
access to the MSRs introduced above. In the following subsection, the measurement methods with power-meters
and the measurement method with RAPL sensors are compared and evaluated. The goal is to clarify the influence
of the measurement overhead on the measurement results.

2.3 Comparison of the measurement techniques

Hardware counters, such as the MSR registers, can capture only the power consumption of the CPU. On the other
hand, measurements with specialized devices, such as the NI9205 system, enable a more detailed measurement that
can also take the memory system, fans, and peripheral devices into account. However, a significant hardware and
software overhead is required to perform accurate power-meter measurements with such a device. One might argue
that the main contribution to power consumption comes from the CPU and that the measurement with hardware
counters is good enough to capture the relevant effects. In this context, it is interesting to investigate how accurate
the power measurement with hardware counters is compared with detailed measurements using special power-
meter devices. We address this issue in this section and present a comparison for selected application programs.

To set the frequencies of the cores to a fixed value, we have used the cpufreq set tool; the minimum and the
maximum core frequencies have been set to the same value. During program execution, the frequency of each
core can be observed with the i7z tool. The runtime experiments have been performed with no other application

6

 6

 8

 10

 12

 14

 16

 18

 1.5 2 2.5 3 3.5 4

av
g.

 p
ow

er
 [w

at
t]

Frequency [GHz]

Power MSR-Measurement

libquantum
bwaves
cactus

wrf
gemsFDTD

 4

 6

 8

 10

 12

 14

 16

 1.5 2 2.5 3 3.5 4

av
g.

 p
ow

er
 [w

at
t]

Frequency [GHz]

Power Hardware-Measurement

libquantum
bwaves
cactus

wrf
gemsFDTD

Figure 7: Comparison of power measurement with MSR registers (top) and NI9205 device (bottom) on an Intel Ivy
Bridge processor.

program running on the machine, i.e., interferences can only come from jobs of the operating system. To reduce
the effect of such interferences, the runtime experiments have been performed several times.

For the Sandy Bridge architecture, the operational frequency can be set between 1.6 GHz and 3.4 GHz in 100 MHz
steps. The same holds for the Ivy Bridge architecture with the exception that the maximal frequency is 3.2 GHz.
For the Haswell architecture, the frequency can be set between 0.8 GHz and 3.4 GHz; the stepsize is usually 200
MHz with two exceptions (1.4/1.5 GHz and 2.7/2.8 GHz).

Figure 6 compares the two energy measurement techniques described above. The measurement has been performed
for the SPEC benchmark libquantum on an Intel Core i7 Sandy Bridge processor. The benchmark runs have been
repeated 20 times with the ”test” input. The power measurement shown in Figure 6 using the NI 9205 acquisition
system takes only the main-board 12V EPS connector into consideration, which is the main power supply of the
CPU. The 12V ATX and the 5V ATX connector, which also partially supply the CPU, but also other periperal
devices, are not taken into consideration, as it cannot be determined which part of the power actually goes to the
CPU. On the other hand, the measurement with the RAPL interface captures the complete power consumption of
the CPU. The diagram shows a good match of the energy values obtained with both techniques for some of the
frequencies. For other frequencies, the energy values obtained with RAPL are up to about 20% larger than the
energy values obtained with the NI 9205 device. A reason for these deviations could be that there is an additional
power flow to the CPU via the 12V and the 5V ATX connectors, which is not captured. Our investigations have
shown that these deviations are smaller for most of the other SPEC benchmarks on the Sandy Bridge architecture.
The differences in the deviations for different frequencies are not present for the Ivy Bridge processor as described
in the following.

Figure 7 shows the power consumption obtained with the two measurement methods for the Core i7 Ivy Bridge
architecture using five selected SPEC benchmarks. The figure shows that the power consumption increases more
than linearly when the frequency is increased. Both measurement techniques can capture this behavior. The figure
also shows that the two measurement methods lead to similar values for the power consumption. In particular, the
relative order of the power consumption of the different benchmarks is the same for both measurement techniques.
However, the power values obtained with RAPL are systematically larger than the power values obtained with the

7

NI 9205 device for the same reason as mentioned for Figure 6. In particular, the power measured with the RAPL
interface is typically about 3 Watt larger than the power measured with the NI 9205 device using only the 12V
EPS connector. Adding the power consumption of the 12V ATX and 5V ATX connectors to the power measured
with the NI 9205 device would lead to larger values as measured with the RAPL interface. In summary, it can be
concluded that the power measurement via RAPL is accurate enough to replace the usage of power-meters.

3 Energy consumption of the SPEC CPU benchmark programs

In this section, we present results of power and energy measurements for the entire set of applications in the the
SPEC CPU2006 benchmark suite, see Figs. 8 - 10. Based on the findings of the previous section, the RAPL
interface has been used to obtain the power and energy values. The likwid toolset [33] has been used to access the
MSR registers of the different architectures.

The SPEC CPU2006 benchmark suite has been developed with the goal to capture the performance of desktop
systems and single-processor servers. The benchmark suite consists of integer and floating-point benchmarks,
which are real programs covering different application areas for computer systems. The benchmarks are sequential
C, C++, or Fortran programs. The integer programs include, for example, a compression program (bzip2), a C
compiler (gcc), a video compression program, a chess game, and an XML parser. The floating point programs
include, for example, several simulation programs from physics, a speech recognition program, a ray-tracing pro-
gram (povray), as well as programs from numerical analysis and a linear programming algorithm (soplex), see,
e.g., [15] and www.spec.org for more details. In the experimental evaluation, the benchmarks have been com-
piled with gcc 4.7.2 using the compiler option -ftree-parallelize-loops=4, enabling an automatic parallelization at
loop level.

Figure 8 shows the runtimes (top) in seconds, the energy consumption (middle) in Joule, and the power consump-
tion (bottom) in Watt as functions of the frequency for the SPEC CPU2006 integer benchmarks on an Intel Core i7
Sandy Bridge architecture. All available frequencies are shown. The figure shows that the runtime decreases nearly
linearly with increasing frequencies for all benchmarks. Only for smaller frequencies, the increase of the execution
time with a reduced frequency is more than linear. The diagram shows that for most of the SPEC CPU2006 integer
benchmarks, there is only a slight variation of the energy consumption for the entire range of the frequencies pos-
sible. The power consumption values P have been calculated from the energy values E obtained from the MSR
registers and the runtime t measured also with hardware registers using E[Joule] = P × t[Watt · s]. Looking
at the power consumption, it can be observed that different applications lead to slightly different power consump-
tions, i.e., there is a small dependence of the power consumption from the characteristics of the application. Two
benchmarks (gcc and libquantum) lead to a larger power consumption than the rest of the integer benchmarks.
This shows that in the case of the SPEC CPU2006 integer benchmarks, the power consumption mainly depends on
characteristics of the hardware and that the different energy consumptions for the different benchmarks are mainly
caused by the different execution times.

Figure 9 shows the runtimes (top), energy consumption (middle), and power consumption (bottom) for the SPEC
CPU2006 floating-point benchmarks for different frequencies on an Intel Core i7 Sandy Bridge architecture. The
SPEC CPU2006 floating-point benchmarks typically have a slightly larger execution time than the integer bench-
marks. Accordingly, a larger energy consumption results. The energy consumption shows a similar behavior as for
the integer benchmarks and there is no great variation of the energy consumption in dependence of the frequency.
Compared to the integer benchmarks, a slightly larger variation of the power consumption can be observed for the
different SPEC floating-point benchmarks. This suggests that there is a larger dependence of the power consump-
tion from the usage of processor resources by the specific application.

Figures 10 and 11 show the runtimes (top), energy consumption (middle), and power consumption (bottom) of
the SPEC CPU2006 integer and floating-point benchmarks for different frequencies on an Intel Core i7 Haswell
architecture. Similar to the Sandy Bridge architecture, the figures show a decrease of the runtime of the different
benchmarks which is nearly linear to the operational frequency. For smaller frequencies, the more-than-linear
increase of the execution time with reduced frequency is stronger than on the Sandy Bridge architecture, since
the Haswell architecture allows smaller frequencies. Especially for larger frequencies, most of the benchmarks
are faster on the Haswell architecture than on the Sandy Bridge architecture, presumably due to the more recent
architecture with a larger L3 cache. Especially for small frequency values, the energy consumption increases more

8

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1.5 2 2.5 3 3.5

ru
n
ti
m

e
 [
s
e
c
]

frequency [GHz]

runtime of SPEC Integer benchmarks on Core i7 Sandy Bridge

gcc
perlbench

mcf
bzip2

gobmk
astar

hmmer
libquantum

sjeng
xalancbmk

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 1.5 2 2.5 3 3.5

e
n
e
rg

y
 c

o
n
u
m

p
ti
o
n
 [
J
o
u
le

]

frequency [GHz]

energy consumption of SPEC Integer benchmarks on i7 SandyBridge

gcc
perlbench

mcf
bzip2

gobmk
astar

hmmer
libquantum

sjeng
xalancbmk

 10

 12

 14

 16

 18

 20

 22

 24

 26

 1.5 2 2.5 3 3.5

p
o
w

e
r

c
o
n
u
m

p
ti
o
n
 [
W

a
tt
]

frequency [GHz]

power consumption of SPEC Integer benchmarks on i7 SandyBridge

gcc
perlbench

mcf
bzip2

gobmk
astar

hmmer
libquantum

sjeng
xalancbmk

Figure 8: SPEC CPU2006 integer benchmarks on an Intel Core i7 Sandy Bridge processor: runtime (top), energy
consumption (middle), and power consumption (bottom) for varying frequencies.

9

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1.5 2 2.5 3 3.5

ru
n
ti
m

e
 [
s
e
c
]

frequency [GHz]

runtime of SPEC FlPoint benchmarks on Core i7 Sandy Bridge

bwaves
cactusADM

calculix
dealII

gamess
GemsFDTD

gromacs
leslie3d

milc
namd

povray
soplex

sphinx3
wrf

zeusmp

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 1.5 2 2.5 3 3.5

e
n
e
rg

y
 c

o
n
u
m

p
ti
o
n
 [
J
o
u
le

]

frequency [GHz]

energy consumption of SPEC FlPoint benchmarks on i7 SandyBridge

bwaves
cactusADM

calculix
dealII

gamess
GemsFDTD

gromacs
leslie3d

milc
namd

povray
soplex

sphinx3
wrf

zeusmp

 10

 12

 14

 16

 18

 20

 22

 24

 1.5 2 2.5 3 3.5

p
o
w

e
r

c
o
n
u
m

p
ti
o
n
 [
W

a
tt
]

frequency [GHz]

power consumption of SPEC FlPoint benchmarks on i7 SandyBridge

bwaves
cactusADM

calculix
dealII

gamess
GemsFDTD

gromacs
leslie3d

milc
namd

povray
soplex

sphinx3
wrf

zeusmp

Figure 9: SPEC CPU2006 floating-point benchmarks on an Intel Core i7 Sandy Bridge processor: runtime (top),
energy consumption (middle), and power consumption (bottom) for varying frequencies.

10

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 1.5 2 2.5 3 3.5

ru
n
ti
m

e
 [
s
e
c
]

frequency [GHz]

runtime of SPEC Integer benchmarks on i7 Haswell

gcc
perlbench

mcf
bzip2

gobmk
astar

hmmer
libquantum

sjeng
xalancbmk

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.5 1 1.5 2 2.5 3 3.5

e
n
e
rg

y
 c

o
n
u
m

p
ti
o
n
 [
J
o
u
le

]

frequency [GHz]

energy consumption of SPEC Integer benchmarks on i7 Haswell

gcc
perlbench

mcf
bzip2

gobmk
astar

hmmer
libquantum

sjeng
xalancbmk

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.5 1 1.5 2 2.5 3 3.5

p
o
w

e
r

c
o
n
u
m

p
ti
o
n
 [
W

a
tt
]

frequency [GHz]

power consumption of SPEC Integer benchmarks on Core i7 Haswell

gcc
perlbench

mcf
bzip2

gobmk
astar

hmmer
libquantum

sjeng
xalancbmk

Figure 10: SPEC CPU2006 integer benchmarks on an Intel Core i7 Haswell processor: Runtime (top), energy
consumption (middle), and power consumption (bottom) for varying frequencies.

11

visibly than for the Sandy Bridge architecture, caused by the increase in execution time. The power consumption
on the Haswell architecture is typically smaller than on the Sandy Bridge architecture for the same frequency.
The same holds for the energy consumption, i.e., the Haswell architecture usually needs less energy for the same
benchmarks than the Sandy Bridge architecture using the same frequency.

For all SPEC CPU2006 benchmarks and both architectures, the diagrams of the runtime, the power and the energy
consumption show a similar qualitative behavior as a function of the frequency. The runtime is a decreasing,
slightly convec function with the highest runtime for the smallest available frequency and the smallest runtime
for the highest available frequency. The power consumption is a slightly convex, increasing function depending
on the frequency. As a result, the energy consumption, being the power integrated over the runtime, is a convex
function that is slightly descending for smaller frequencies and slightly ascending for higher frequencies. This
effect is more distinct for the Haswell processor. These energy functions have a minimum in the frequency range
between 2 GHz and 2.7 GHz, varying for the different benchmarks and architectures. Since the SPEC CPU2006
benchmarks cover a wide range of different applications, one may conclude that that it is a typical behavior to have
an energy minimum, and to achieve the minimum, a suitable frequency should be used. However, the minimum
of the runtime, being at the largest frequency, and the minimum of the energy consumption do not coincide. Thus,
the user has to decide whether to minimize the runtime or the energy consumption before selecting a frequency.

4 Energy models with frequency scaling

Many different energy models have been proposed and used for simulating the energy consumption of applica-
tion programs on CPUs, see [8, 20] for an overview. These models usually concentrate on the dynamic power
consumption, which used to be the most dominant part in earlier processors, and more recently also include the
static power consumption, memory power consumption or other significant power aspects of a specific CPU or
computer system. The dynamic power consumption is related to the supply voltage and the switching activity
during the computing activity of the processor. The static power consumption captures the leakage power con-
sumption as well as the power consumption of peripheral devices. The total power consumption includes both
power components.

For DVFS processors, the power consumption depends on the operational frequency f , see, e.g., Fig. 8 for an
experimental evaluation of this dependence. In this section, we investigate two models simulating the energy
consumption, a physically based model which has been proposed in the literature and a heuristic model that is
derived from the experimental results in Section 3.

4.1 Physical energy model with frequency scaling

Analytical energy models describe the power consumption of a processor by power models developed for digital
circuits used for the construction of the processors. The energy consumption is calculated by a multiplication with
the runtime of an application program. This class of energy models is typically derived from physical considera-
tions of the expected power behavior, and the models are used within optimization or scheduling methods which
are aimed at the minimization of the energy consumption. In the following, we exploit a physical energy model
that has been proposed in the literature, see [8, 20]. In this article, we use this model and determine parameters for
the SPEC benchmarks.

The specific energy model that we consider approximates the dynamic power consumption by Pdyn = α · CL ·
V 2 · f , where α is the switching probability, CL is the load capacitance, V is the supply voltage, and f is the
operational frequency. The static power consumption is intended to capture the leakage power consumption which
consists of several components, including sub-threshold leakage, reverse-biased-junction leakage, gate-induced-
drain leakage, gate-oxide leakage, gate-current leakage, and punch-through leakage [20]. The exact power values
for these components are varying and depend on the specific architecture considered; however, only approximations
are needed. Such an approximation has been proposed by [7], modeling the static power consumption due to
leakage power as Pstat = V ·N ·kdesign · Ileak, where V is the supply voltage, N is the number of transistors, kdesign
is a design dependent parameter, and Ileak is a technology-dependent parameter.

For DVFS processors, we are interested in investigating the dependence of the power consumption on the oper-
ational frequency, which can be scaled within a predefined interval [fmin, fmax]. The scaling can be expressed

12

 500

 1000

 1500

 2000

 2500

 3000

 1 1.5 2 2.5 3 3.5

ru
n
ti
m

e
 [
s
e
c
]

frequency [GHz]

runtime of SPEC FlPoint benchmarks on i7 Haswell

bwaves
cactusADM

calculix
dealII

gamess
GemsFDTD

gromacs
leslie3d

milc
namd

povray
soplex

sphinx3
wrf

zeusmp

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.5 1 1.5 2 2.5 3 3.5

e
n
e
rg

y
 c

o
n
u
m

p
ti
o
n
 [
J
o
u
le

]

frequency [GHz]

energy consumption of SPEC FlPoint benchmarks on i7 Haswell

bwaves
cactusADM

calculix
dealII

gamess
GemsFDTD

gromacs
leslie3d

milc
namd

povray
soplex

sphinx3
wrf

zeusmp

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.5 1 1.5 2 2.5 3 3.5

p
o
w

e
r

c
o
n
u
m

p
ti
o
n
 [
W

a
tt
]

frequency [GHz]

power consumption of SPEC FlPoint benchmarks on Core i7 Haswell

bwaves
cactusADM

calculix
dealII

gamess
GemsFDTD

gromacs
leslie3d

milc
namd

povray
soplex

sphinx3
wrf

zeusmp

Figure 11: SPEC CPU2006 floating-point benchmarks on an Intel Core i7 Haswell processor: runtime (top), energy
consumption (middle), and power consumption (bottom) for varying frequencies.

13

by a dimensionless scaling factor s ≥ 1 which describes a smaller frequency f̃ < fmax as f̃ = fmax/s. The
following functional dependencies have to be considered: The frequency f depends linearly on the supply voltage
V , i.e., V = β · f with some appropriate constant β. Thus, the dependence of the dynamic power consumption
on the frequency f can be expressed as Pdyn(f) = γ · f3 with γ = α · CL · β2 or with the corresponding scaling
factor s as Pdyn(s) = s−3 ·Pdyn(1) where Pdyn(1) is the dynamic power consumption in the un-scaled case. This
means that the dynamic power increases cubically with the operational frequency, which can be used to study the
change of the dynamic power consumption with respect to varying frequency values. Using V = β · f for the
static power consumption Pstat leads to a linear dependence of the static power on f , i.e., Pstat(f) = δ · f with
δ = N · kdesign · Ileak · β or Pstat(s) = s ·Pstat(1) where Pstat(1) is the static power consumption in the un-scaled
case.

Reducing the operational frequency of a processor by a scaling factor of s usually decreases the power consump-
tion, however, it also increases the execution time TP (1) of a program P by the same factor compared to an
un-scaled execution, i.e., TP (s) = s · TP (1). This has to be taken into consideration for the time integration to
compute the energy consumptionEP (s) = (Pdyn(s)+Pstat(s))·s·TP (1) = (s−3·Pdyn(1)+s·Pstat(1))·s·TP (1).
Runtime experiments on an Intel Sandy Bridge show that the linear dependence of the runtime on the frequency
scaling factor can more or less be observed. However, for smaller frequencies the runtime increases more than
linearly, see Figs. 8 and 9. This effect is even stronger for the Core i7 Haswell architecture, see Figs. 10 and 11,
since this architecture supports smaller frequencies.

4.2 Heuristic energy model

The second energy model considered in this article is derived by an approximation approach based on the discrete
energy data measured. This model considers the entire power consumption of the CPU processing one of the
benchmarks and uses data fitting to derive a closed formula. Thus, the derivation of this energy model applies the
opposite approach compared to the model in Section 4.1: it starts with the discrete data from the experimental
setting and uses curve fitting methods with the purpose of getting a continuous approximation of the discrete data.
The heuristic model described in the following is new and has not been used before.

Due to the power data that we have collected in our experimental setup, e.g. given in Figs. 10 and 11, we assume an
almost linear dependence of the power from the frequency f with unknown parameters, i.e. we assume the power
to be approximated by Ptotal(f) = a+ bf1+ε with parameters a and b to be determined by curve fitting. Although
these parameters do not correspond to physical constants, but are the result of a mathematical calculation, the
parameter a can be interpreted as a static part of the power consumption that does not change with the frequency,
whereas b captures a dynamic part of the power consumption that increases with the operational frequency of the
CPU. For the parameter ε, several fixed values can be used so that the parameters a and b can be determined by
applying the least squares method. The values of a and b reflect the characteristics of the specific CPU. However,
different benchmarks may have different values for the parameters a and b due to their specific computational and
memory access behavior, leading to a different usage of the processor resources and different power requirements.
The results of the curve fitting are included in the next section reporting the comparison of the predicted and
measured energy values.

5 Evaluation of the energy models

In this section, we investigate to which extent the energy models presented in the last section are able to capture
the power and energy consumption of standard benchmark programs on recent processors. The emphasis lies
on a modeling of the energy consumption as a function of the frequency in the frequency range provided by
the processor. For those frequencies, we quantitatively and qualitatively compare the measured energy values
as reported in Section 3 with energy values provided by the models from Section 4. Subsection 5.1 considers
an application-specific energy modeling and Subsection 5.2 addresses an application-independent modeling and
discusses the differences.

14

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

G
e
m

sF
D

T
D

h
m

m
e
r

sp
h
in

x3
g
o
b
m

k
ca

ctu
sA

D
M

b
w

a
ve

s
w

rf

g
cc

le
slie

3
d

g
ro

m
a
cs

sje
n
g

ca
lcu

lix
a
sta

r
ze

u
sm

p
p
o
vra

y
m

ilc

m
cf

b
zip

2
p
e
rlb

e
n
ch

xa
la

n
cb

m
k

d
e
a
lII

n
a
m

d
lib

q
u
a
n
tu

m
g
a
m

e
ss

so
p
le

x

e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

measured vs predicted energy consumption f=1.6 GHz SandyBridge

measured
predicted 1
predicted 2

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

G
e
m

sF
D

T
D

h
m

m
e
r

sp
h
in

x3
g
o
b
m

k
ca

ctu
sA

D
M

b
w

a
ve

s
w

rf

g
cc

le
slie

3
d

g
ro

m
a
cs

sje
n
g

ca
lcu

lix
a
sta

r
ze

u
sm

p
p
o
vra

y
m

ilc

m
cf

b
zip

2
p
e
rlb

e
n
ch

xa
la

n
cb

m
k

d
e
a
lII

n
a
m

d
lib

q
u
a
n
tu

m
g
a
m

e
ss

so
p
le

x

e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

measured vs predicted energy consumption f=2.5 GHz SandyBridge

measured
predicted 1
predicted 2

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000
G

e
m

sF
D

T
D

h
m

m
e
r

sp
h
in

x3
g
o
b
m

k
ca

ctu
sA

D
M

b
w

a
ve

s
w

rf

g
cc

le
slie

3
d

g
ro

m
a
cs

sje
n
g

ca
lcu

lix
a
sta

r
ze

u
sm

p
p
o
vra

y
m

ilc

m
cf

b
zip

2
p
e
rlb

e
n
ch

xa
la

n
cb

m
k

d
e
a
lII

n
a
m

d
lib

q
u
a
n
tu

m
g
a
m

e
ss

so
p
le

x

e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

measured vs predicted energy consumption f=3.4 GHz SandyBridge

measured
predicted 1
predicted 2

Figure 12: Intel Core i7 Sandy Bridge processor: Comparison of measured and predicted energy consumption of
the SPEC CPU2006 integer and floating-point benchmarks for the frequencies f = 1.6 GHz (top), f = 2.5 GHz
(middle), and f = 3.4 GHz (bottom).

5.1 Application-specific energy modeling

The physical energy model based on frequency scaling from Section 4.1 contains the parameters γ in the equation
for the dynamic power and δ in the equation for the static power consumption. The values for γ and δ have
been determined by curve fitting with the least-squares method using the measured power values for the different
frequencies for each individual application of the SPEC CPU2006 benchmark suite. The resulting parameters γ
and δ are application-specific and can be used for a modeling of the energy consumption of the specific application
as described in Section 4.1.

15

For the heuristic model from Section 4.2, ε = 0.2 has been used. This value has been determined by experiments
which have shown that this value is well suited for all applications investigated. The model again contains pa-
rameters a and b, and as just described, we have applied curve fitting to determine these parameter values for the
individual application of the SPEC CPU2006 benchmark suite. Based on these application-specific parameters,
Figure 12 compares the measured and predicted energy consumption for the different SPEC CPU2006 benchmarks
for the Sandy Bridge architecture using selected frequencies. The smallest and the largest frequency as well as a
medium frequency have been selected for the diagrams. The entry predicted 1 corresponds to the physical en-
ergy model from Section 4.1, and the entry predicted 2 corresponds to the heuristic energy model from Section
4.2. Figure 13 shows the same comparison for the Haswell architecture and also includes a comparison with an
application-independent modeling to be discussed in the next subsection.

From Figures 12 and 13 it can be observed that for the application-specific modeling both energy models are well
suited to describe the energy consumption of most benchmark programs and both architectures. The correspon-
dence between modeled and measured energy consumption is especially good for medium and large frequencies,
as shown for frequencies f = 2.5 GHz and f = 3.4 GHz. Similar results are obtained for other frequencies
between these frequency values. The deviations usually lie below 10%.

The comparison of the modeling quality using the two different models shows that for the Sandy Bridge processor,
see Figure 12, there is no significant difference between the energy values provided by the two models. On the
Haswell architecture, larger deviations between the measured and predicted values can be observed for smaller
frequencies, when the physical energy model from Section 4.1 is used, see the results for frequency f = 0.8
GHz in Figure 13 (top) as example. These deviations are much smaller for the heuristic energy model. For small
frequencies, the physical energy model systematically underestimates the energy consumption for both the Sandy
Bridge and the Haswell processor. The reason for this underestimation is assumed to be an underestimation of the
static power consumption when using Pstat(f) = δ · f . Other energy models [24, 38] propose to use Pstat(f) =
constant for all frequencies, but this would lead to a significant overestimation of the total energy consumption for
small frequencies (not shown in a figure), leading to even bigger deviations from the measured energy consumption.
In contrast, the heuristic energy model captures the dynamic and the static energy consumption together as one
physical entity in one formula, and this seems to be better suited for the whole range of frequencies. Thus, the
heuristic model provides energy values that are better suited for a prediction than those provided by the physical
energy model from Section 4.1.

Averaging over all frequencies and benchmarks, the average percentage difference between the measured energy
values and the predicted values using the heuristic model with application-specific parameters is 1.8% with a
minimum difference of 0.9% and a maximum difference of 6.0%. Using the physical model, the average percentage
difference is 5.6% with a minimum difference of 4.4% and a maximum difference of 10.7%.

5.2 Application-independent energy modeling

One goal for modeling the energy consumption values is to provide a prediction model for the energy consumption
of application programs. Such a model suitable as prediction model has to be easy to use and has to be application-
independent. Both the models introduced in Section 4 are represented by energy functions that are quite easy to
evaluate. So both models meet the goal of simplicity. However, so far we have performed an application-specific
modeling due to the parameters γ, δ, a, and b, respectively. An application-independent model requires parameters
which are independent from a specific benchmark application but may depend on the processor architecture. In
this subsection, we propose to use the average of the parameter values γ and δ or a and b over all benchmarks
executed on the same processor.

For the different programs of the SPEC CPU2006 benchmark suite, the values of the parameters γ and δ resulting
from the physical energy model are quite close to each other for most of the benchmarks on the same architecture;
their difference is typically below 10 %. Thus, using the average values of the parameters also leads to a good
correspondence between measured and modeled values. This represents an energy modeling that is independent
from the specific application but is still architecture-dependent. For the different architectures, different values for
the parameters γ and δ result.

The modeling with the average parameter values is additionally included in Figure 13. The entry ”predicted 1
av” corresponds to the modeling with the physical energy model from Section 4.1 using the average values for

16

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

G
e
m

sF
D

T
D

h
m

m
e
r

sp
h
in

x3
g
o
b
m

k
ca

ctu
sA

D
M

b
w

a
ve

s
w

rf

g
cc

le
slie

3
d

g
ro

m
a
cs

sje
n
g

ca
lcu

lix
a
sta

r
ze

u
sm

p
p
o
vra

y
m

ilc

m
cf

b
zip

2
p
e
rlb

e
n
ch

xa
la

n
cb

m
k

d
e
a
lII

n
a
m

d
lib

q
u
a
n
tu

m
g
a
m

e
ss

so
p
le

x

e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

measured vs predicted energy consumption f=0.8 GHz Haswell

measured
predicted 1
predicted 2

predicted 1 av
predicted 2 av

 2000

 4000

 6000

 8000

 10000

 12000

 14000

G
e
m

sF
D

T
D

h
m

m
e
r

sp
h
in

x3
g
o
b
m

k
ca

ctu
sA

D
M

b
w

a
ve

s
w

rf

g
cc

le
slie

3
d

g
ro

m
a
cs

sje
n
g

ca
lcu

lix
a
sta

r
ze

u
sm

p
p
o
vra

y
m

ilc

m
cf

b
zip

2
p
e
rlb

e
n
ch

xa
la

n
cb

m
k

d
e
a
lII

n
a
m

d
lib

q
u
a
n
tu

m
g
a
m

e
ss

so
p
le

x

e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

measured vs predicted energy consumption f=2.5 GHz Haswell

measured
predicted 1
predicted 2

predicted 1 av
predicted 2 av

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

G
e
m

sF
D

T
D

h
m

m
e
r

sp
h
in

x3
g
o
b
m

k
ca

ctu
sA

D
M

b
w

a
ve

s
w

rf

g
cc

le
slie

3
d

g
ro

m
a
cs

sje
n
g

ca
lcu

lix
a
sta

r
ze

u
sm

p
p
o
vra

y
m

ilc

m
cf

b
zip

2
p
e
rlb

e
n
ch

xa
la

n
cb

m
k

d
e
a
lII

n
a
m

d
lib

q
u
a
n
tu

m
g
a
m

e
ss

so
p
le

x

e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

measured vs predicted energy consumption f=3.4 GHz Haswell

measured
predicted 1
predicted 2

predicted 1 av
predicted 2 av

Figure 13: Intel Core i7 Haswell processor: Comparison of measured and predicted energy consumption of the
SPEC CPU2006 integer and floating-point benchmarks for the frequencies f = 0.8 GHz (top), f = 2.5 GHz (middle),
and f = 3.4 GHz (bottom).

17

the parameters γ and δ taken over all SPEC CPU2006 applications on the Haswell processor. Similarly, the entry
”predicted 2 av” corresponds to the modeling with the heuristic model using the average values for the parameters a
and b. Using the average parameter values for the modeling leads to energy values that are slightly less close to the
measured energy values than for the application-specific modeling, but the deviations are still acceptable. However,
in some cases, especially for smaller frequencies, using the average parameter values for the modeling even leads
to better predictions than the application-specific modeling. This is due to the strongly convex behavior of the
measured energy values for frequencies between 0.8 GHz and 1.6 GHz, see Figures 10 and 11, which indicate a
high overhead of the runtime even though the power function remains linear. The architectural effects are difficult
to capture in one continuous functional pattern. However, the modeling with a piecewise continuous function
would result in a too complex prediction model. For some benchmarks, the averaging of the parameters seems to
level off extreme values. The heuristic energy model using the average parameter values for the modeling leads to
slightly better predictions than the physical energy model with the average parameter values for the modeling.

From these observations it can be concluded that both energy models considered, although different, are able to
capture the energy consumption and its dependence on the operational frequency with reasonable accuracy for
most situations. Thus, both energy models can be used for an a priori prediction of the energy consumption as
it is needed when solving problems such as optimization or scheduling. Compared to the physical model, the
heuristic model leads to better predictions in most situations and should therefore be preferred. This is due to a
better modeling of the leakage power, which may not be best represented by the linear term in the physical model.
Other models proposed in the literature use constant, quadratic, or even exponential terms for the leakage power
consumption. However, these models are usually not validates for a wide range of application programs.

6 Related Work

Today, power-management mechanisms are integrated in computer systems of almost every size and class, from
handheld devices to large servers [31]. Correspondingly, the analysis, measurement, or simulation of power and
energy consumption is an active research area. An important feature is the DVFS technique, which trades off
performance for power consumption by lowering the operating voltage and frequency if this is possible, see [3, 34,
38] for an overview. Frequency scaling due to the DVFS technique has been applied in practical programming as
well as in theoretical investigations, optimizing or minimizing the energy consumption under certain constraints.

Approaches to determine the frequency scaling factor that minimizes the total CPU energy consumption by taking
both the dynamic power and the leakage power into consideration have been discussed in [18, 19, 38] for sequential
programs. Voltage scaling has also be considered in [21].

Energy simulation models are often used in approaches to minimize the energy consumption by scheduling algo-
rithms or other heuristics. Algorithmic research on speed scaling processors and related scheduling algorithms
using the total energy consumption as objective function has been initiated by the article [36]. Many different
scenarios and algorithms have been investigated in the literature, see [1, 5, 10] for an overview. For example, the-
oretical foundations of scheduling algorithms in a setting with dynamic speed scaling processors are investigated
in [2], considering the scheduling of n jobs on m identical variable speed processors working in parallel, where
each job is specified by a release date, a deadline, and a processing volume. Different scenarios concerning the job
size, release dates and deadlines are considered and approximation algorithms for the resulting NP-hard scheduling
problems are presented. In most of the articles in this research line, the emphasis lies on a theoretical investiga-
tion of the approximation algorithm derived and no simulations or measurements on real hardware systems are
provided.

A comparison of energy measurements using PowerPack and RAPL (accessed via PAPI) for dense linear algebra
algorithms is given in [12], showing that the RAPL measurements are a good alternative to physical power-meters.
However, frequency scaling has not been taken into consideration in [12]. The power management architecture of
the Sandy Bridge processor is described in [29] and includes a comparion of the actual measured power and the
so-called architectural power-meter which predicts the active power consumption. The dependence of the power
and the frequency is not directly investigated nor is the modeling with a theoretical power model included. An
approach using RAPL for memory power estimation is discussed in [11]. The correspondence with simulation
methods and prediction possibilities has also not been considered in the publication. A detailed comparison of
power measurement techniques including RAPL has been given in [14]. However, the DVFS features with a

18

variation of the frequency and the resulting impact on the power are not investigated. The performance API
PAPI now also covers the report of energy and power values based on RAPL assumed that the code is previously
instrumented, see [35]. The PAPI approach corresponds to the software approach accessing hardware counters in
our work. [35] also lists state-of-the-art measurement techniques based on power-meters and hardware counters,
but does not provide a comparison.

Performance prediction for DVFS processors is addressed in [30] with an emphasis on green supercomputing. The
energy consumption of parallel algorithms for shared memory architectures based on the parallel external memory
(PEM) model [4] has been discussed in [22]. [32] proposes a system-level iso-energy-efficiency model to analyze,
evaluate and predict energy-performance of data intensive parallel applications running on cluster systems. Based
on measurements from smaller configurations, the power performance for larger systems with increasing number
of nodes is predicted and analyzed. As example applications, the FT, EP, and CG benchmarks of the NAS Parallel
Benchmarks are used. A scalability analysis shows a good correspondence of the predictions of the model. The
interaction between the parallel execution time and the energy consumption is considered in [9] by partitioning
a parallel algorithm into sequential and parallel regions and computing optimal frequencies for these regions.
Approaches for an energy complexity metric are discussed in [6]. The application of a physical energy model and
its usage for the scheduling of sequential tasks in fork-join patterns with energy as objective function has been
addressed in [27]; the energy-based scheduling of parallel tasks has been considered in [28].

In the domain of real-time scheduling, many techniques for utilizing available waiting times based on DVFS have
been considered, see, e.g., [16, 26, 37]. These approaches are usually based on heuristics and are not based on
an analytical model as presented in this work. The effects of dynamic concurrency throttling (DCT) and DVFS
in the context of a hybrid MPI/OpenMP programming model are considered in [25]. In particular, frequency
selection is formulated as a variant of the 0-1 knapsack problem and dynamic programming is used to compute an
approximation.

7 Conclusions

In this article, we have investigated and evaluated measurement methods providing energy consumption values for
recent DVFS processors. The article reports the experimental setting for the hardware as well as for the software
measurement approach and presents the resulting measurement data. The CPUs investigated are the Intel Core
i7 Sandy Bridge, Ivy Bridge and Haswell architectures. The application codes measured are the SPEC CPU2006
benchmarks. The analysis of the energy data gathered with the power-meter based and the RAPL based energy
measurements show a good correspondence across all frequency values, CPUs and benchmarks, leading to the
insight that both measurement methods are suitable and interchangeable. We consider this result to be especially
valuable for research projects concerned with bigger applications as well as larger machines based on these recent
CPUs. A second result of our investigations is that physical and heuristic energy models are well suited for an
early prediction of the energy consumption of application programs. Thus, these energy models can be used as a
basis for simulation approaches of the energy consumption of application programs.

References
[1] Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010). DOI 10.1145/1735223.1735245. URL

http://doi.acm.org/10.1145/1735223.1735245

[2] Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proc. of the 19th Annual ACM
Symp. on Parallel Algorithms and Architectures, SPAA ’07, pp. 289–298. ACM, New York, NY, USA (2007). DOI
10.1145/1248377.1248424. URL http://doi.acm.org/10.1145/1248377.1248424

[3] Anshumali, K., Chappell, T., Gomes, W., Miller, J., Kurd, N., Kumar, R.: Circuit And Process Innovations to Enable
High-Performance, and Power and Area Efficiency on the Nehalem and Westmere Family of Intel processors. Intel
Technology Journal 14, 104–127 (2010)

[4] Arge, L., Goodrich, M., Nelson, M., Sitchinava, N.: Fundamental parallel algorithms for private-cache chip multiproces-
sors. In: SPAA ’08: Proc. of the 20th Ann. Symp. on Parallelism in Algorithms and Architectures, pp. 197–206. ACM
(2008). DOI http://doi.acm.org/10.1145/1378533.1378573

19

[5] Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), 3:1–3:39 (2007).
DOI 10.1145/1206035.1206038. URL http://doi.acm.org/10.1145/1206035.1206038

[6] Bingham, B., Greenstreet, M.: Computation with Energy-Time Trade-Offs: Models, Algorithms and Lower-Bounds. In:
ISPA ’08: Proc. of the 2008 IEEE Int. Symp. on Parallel and Distributed Processing with Applications, pp. 143–152.
IEEE Computer Society (2008). DOI http://dx.doi.org/10.1109/ISPA.2008.127

[7] Butts, J., Sohi, G.: A static power model for architects. In: In Proc. of the 33rd Int. Symp. on Microarchitecture (MICRO-
33) (2000)

[8] Chen, H., Shi, W.: Power Measurement and Profiling. In: I. Ahmad, S. Ranka (eds.) Handbook of Energy-Aware and
Green Computing, pp. 649–674. CRC Press (2012)

[9] Cho, S., Melhem, R.: Corollaries to Amdahl’s Law for Energy. IEEE Comput. Archit. Lett. 7(1), 25–28 (2008). DOI
http://dx.doi.org/10.1109/L-CA.2007.18

[10] Chrobak, M.: Algorithmic Aspects of Energy-Efficient Computing. In: I. Ahmad, S. Ranka (eds.) Handbook of Energy-
Aware and Green Computing, pp. 311–329. CRC Press (2012)

[11] David, H., Gorbatov, E., Hanebutte, U., Khanaa, R., Le, C.: RAPL: memory power estimation and capping. In: Proc.
International Symposium on Low Power Electronics and Design (ISLPED), pp. 189–194. ACM (2010)

[12] Dongarra, J., Ltaief, H., Luszczek, P., Weaver, V.: Energy Footprint of Advanced Dense Numerical Linear Algebra Using
Tile Algorithms on Multicore Architectures. In: Proc. 2nd Int. Conf. on Cloud and Green Computing (CGC), pp. 274–281.
IEEE (2012)

[13] Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron, K.: PowerPack: Energy Profiling and Analysis of High-
Performance Systems and Applications. IEEE Transactions on Parallel and Distributed Systems 21(5), 658 –671 (2010)

[14] Hackenberg, D., Ilsche, T., Schöne, R., Molka, D., Schmidt, M., Nagel, W.: Power measurement techniques on standard
compute nodes: A quantitative comparison. In: 2013 IEEE International Symposium on Performance Analysis of Systems
& Software, pp. 194–204 (2013)

[15] Hennessy, J., Patterson, D.: Computer Architecture - A Quantitative Approach (5. ed.). Morgan Kaufmann (2012)

[16] Horvath, T., Abdelzaher, T., Skadron, K., Liu, X.: Dynamic Voltage Scaling in Multitier Web Servers with End-to-End
Delay Control. IEEE Trans. Comput. 56(4), 444–458 (2007). DOI http://dx.doi.org/10.1109/TC.2007.1003

[17] Intel: Intel 64 and IA-32 Architecture Software Developer’s Manual, System Programming Guide (2011)

[18] Irani, S., Shukla, S., Gupta, R.: Algorithms for power savings. ACM Trans. Algorithms 3(4), 41 (2007). DOI
http://doi.acm.org/10.1145/1290672.1290678

[19] Jejurikar, R., Pereira, C., Gupta, R.: Leakage aware dynamic voltage scaling for real-time embedded systems. In: DAC
’04: Proceedings of the 41st annual Design Automation Conference, pp. 275–280. ACM (2004)

[20] Kaxiras, S., Martonosi, M.: Computer Architecture Techniques for Power-Efficiency. Morgan & Claypool Publishers
(2008)

[21] Kim, T.: Power Saving by Task-level dynamic Voltage Scaling: A Theoretical Aspect. In: I. Ahmad, S. Ranka (eds.)
Handbook of Energy-Aware and Green Computing, pp. 361–383. CRC Press (2012)

[22] Korthikanti, V., Agha, G.: Towards optimizing energy costs of algorithms for shared memory architectures. In: SPAA
’10: Proceedings of the 22nd ACM symposium on Parallelism in algorithms and architectures, pp. 157–165. ACM, New
York, NY, USA (2010). DOI http://doi.acm.org/10.1145/1810479.1810510

[23] LabVIEW: LabVIEW Measurement data format, http://www.ni.com/white-paper/4139/en

[24] Lee, Y., Zomaya, A.: Minimizing Energy Consumption for Precedence-Constrained Applications Using Dynamic Voltage
Scaling. In: CCGRID ’09: Proc. of the 2009 9th IEEE/ACM Int. Symp. on Cluster Computing and the Grid, pp. 92–99.
IEEE Computer Society (2009)

[25] Li, D., de Supinski, B., Schulz, M., Nikolopoulos, D., Cameron, K.: Strategies for Energy Efficient Resource Management
of Hybrid Programming Models. IEEE Transaction on Parallel and Distributed Systems (2012)

[26] Mishra, R., Rastogi, N., Zhu, D., Mossé, D., Melhem, R.: Energy Aware Scheduling for Distributed Real-Time Systems.
In: IPDPS ’03: Proc. of the 17th Int. Symp. on Parallel and Distributed Processing, p. 21.2. IEEE Computer Society
(2003)

[27] Rauber, T., Rünger, G.: Energy-aware Execution of Fork-Join-based Task Parallelism. In: Proc. of the 20th Int. Symp. on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’12). IEEE (2012)

[28] Rauber, T., Rünger, G.: Towards an Energy Model for Modular Parallel Scientific Applications. In: IEEE Interna-
tional Conference on Green Computing and Communications (GreenCom 2012), pp. 523–532. IEEE (2012). DOI
10.1109/GreenCom.2012.79

20

[29] Rotem, E., Naveh, A., Ananthakrishnan, A., Rajwan, D., Weissmann, E.: Power-Management Architec-
ture of the Intel Microarchitecture Code-Named Sandy Bridge. IEEE Micro 32(2), 20–27 (2012). DOI
http://doi.ieeecomputersociety.org/10.1109/MM.2012.12

[30] Rountree, B., Lowenthal, D.K., Schulz, M., de Supinski, B.R.: Practical performance prediction under Dynamic
Voltage Frequency Scaling. In: Proc. of the 2011 Int. Green Computing Conference and Workshops, IGCC
’11, pp. 1–8. IEEE Computer Society, Washington, DC, USA (2011). DOI 10.1109/IGCC.2011.6008553. URL
http://dx.doi.org/10.1109/IGCC.2011.6008553

[31] Saxe, E.: Power-efficient software. Commun. ACM 53(2), 44–48 (2010). DOI
http://doi.acm.org/10.1145/1646353.1646370

[32] Song, S., Su, C.Y., Ge, R., Vishnu, A., Cameron, K.: Iso-energy-efficiency: An approach to power-constrained parallel
computation. In: Proc. of the 25th IEEE Int. Parallel and Distributed Processing Symp. (IPDPS 11). IEEE (2011)

[33] Treibig, J., Hager, G., Wellein, G.: LIKWID: A Lightweight Performance-Oriented Tool Suite for x86 Multicore Envi-
ronments. In: 39th International Conference on Parallel Processing Workshops, ICPP ’10, pp. 207–216. IEEE Computer
Society (2010)

[34] Usman, S., Khan, S., Khan, S.: A comparative study of voltage/frequency scaling in NoC. In: 2013 IEEE Int. Conf. on
Electro/Information Technology (EIT), pp. 1–5 (2013). DOI 10.1109/EIT.2013.6632716

[35] Weaver, V., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra, D., Moore, S.: Measuring Energy and
Power with PAPI. In: Proc. of the ICPP Workshop on Power Profiling and Evaluation, Workshop Proc. of ICPP 2012, pp.
262–268. IEEE Computer Society (2012)

[36] Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. of the 36th Annual Symp. on
Foundations of Computer Science, FOCS ’95, pp. 374–. IEEE Computer Society, Washington, DC, USA (1995). URL
http://dl.acm.org/citation.cfm?id=795662.796264

[37] Zhu, D., Melhem, R., Mossé, D.: Energy efficient redundant configurations for real-time parallel reliable servers. Real-
Time Syst. 41(3), 195–221 (2009). DOI http://dx.doi.org/10.1007/s11241-009-9067-8

[38] Zhuo, J., Chakrabarti, C.: Energy-efficient dynamic task scheduling algorithms for DVS systems. ACM Trans. Embed.
Comput. Syst. 7(2), 1–25 (2008)

21

