
Published: Proc. of HPCN’01, S. 363-372, Springer LNCS 2110, 2001.

Orthogonal Processor Groups for Message-Passing
Programs

Thomas Rauber�, Robert Reilein�, Gudula Rünger�

� Institut für Informatik, Universität Halle-Wittenberg, 06099 Halle(Saale), Germany,
rauber@informatik.uni–halle.de

� Fakultät für Informatik, Technische Universität Chemnitz, 09107 Chemnitz, Germany,
�reilein,ruenger�@informatik.tu-chemnitz.de

Abstract. We consider a generalization of the SPMD programming model to
orthogonal processor groups. In this model different partitions of the processors
into disjoint processor groups can be exploited simultaneously in a single par-
allel implementation. The parallel programming model is appropriate for grid
based applications working in horizontal or vertical directions as well as and for
mixed task and data parallel computations[2]. For those applications we propose a
systematic development process for message-passing programs using orthogonal
processor groups. The development process starts with a specification of tasks
indicating horizontal and vertical sections. A mapping to orthogonal processor
groups realizes a group SPMD execution model and a final transformation step
generates the corresponding message-passing program.

1 Introduction

Parallel machines with distributed memory organization are a popular platform for
the implementation of applications from scientific computing because it is now well-
understood how to get portable efficient programs. For typical grid-based computation
structures of scientific applications, the SPMD programming model usually leads to
good efficiency. But there are also applications which can benefit from a parallel pro-
gramming model that allows more general but still regular communication and depen-
dence patterns.

In this paper, we consider a group SPMD programming model with multiple pro-
cessor groups in orthogonal directions where different directions are active at differ-
ent points of the execution time. This programming model is suitable for applications
which consist of independent disjoint computations with varying structure. Theoretical
investigations have shown that it can be useful to exploit this kind of parallelism pat-
tern in a parallel program with disjoint processor sets which concurrently execute the
program in SPMD mode [7, 8]. The advantage is that collective communication opera-
tions performed on smaller processor groups lead to smaller execution times due to the
logarithmic or linear dependence of the communication times on the number of pro-
cessors. Moreover, the message sizes are usually smaller and different communication
operations can often be executed concurrently on disjoint processor groups without in-
terference. Disjoint processor groups can be expressed in the communication library
MPI, but the direct coding of orthogonal processor groups may lead to intricate and
error-prone message-passing programs. Therefore, it seems to be appropriate to pro-
vide a way to specify programs with orthogonal processor groups on a more abstract
level and to generate the corresponding MPI program by a compiler tool.

The contribution of this paper is to propose a transformation approach to develop
appropriate message-passing programs in a group SPMD programming model in sev-
eral steps. The approach comprises a structuring of the potential parallelism, a mapping
onto orthogonal processor groups and a final transformation step into a corresponding
MPI program. The structuring is given by a specification program indicating sections
of horizontal, vertical, or global interaction structures which are identified by analyzing
the potential parallelism of the computations. The mapping onto processor groups leads
to a structured parallel program in a group SPMD model with changing or alternating
group structure. Different partitions of the processors into disjoint processor groups can
be exploited in a single parallel implementation, but at each time of the execution only
one partition can be active. The final MPI program realizes the horizontal and verti-
cal sections with group operations. The paper outlines the transformation approach and
illustrates the transformation steps for appropriate application programs.

The rest of the paper discusses orthogonal structures and its specification in Sections
2 and shows the mapping onto orthogonal processor groups in Section 3. Runtime tests
with orthogonal group structures are given in Section 4. Section 5 discusses related
work and Section 6 concludes.

2 Orthogonal structures of computations in scientific applications

An application has an orthogonal structure of computation and communication with
varying directions, if the computations and the data dependencies exhibit regular pat-
terns in a horizontal or vertical direction of the task organization.

Describing orthogonal computation structures For the organization of the compu-
tations and the assignment to processors, we use the following abstraction: A parallel
application program is composed of a set � of � one-processor tasks which are orga-
nized in a two-dimensional way. The tasks are numbered with two-dimensional indices
in the form ��� , � � �� � � � � ��� � � �� � � � � ��, with � � �� ���. Each single task � � �
consists of a sequence of computations and communication commands. Data needed
from other tasks or required by other tasks form a dependence structure between the
tasks.

For applications exhibiting orthogonal interaction structures the horizontal and ver-
tical computations and communications are clearly separated, i.e., at each point in time,
a task is either involved in operations in the vertical or the horizontal direction, but not
both. This can be formalized using an interaction matrix which is the adjacency matrix
of the dependence graph of a task array � . An interaction matrix � � for a task array
� has size � � � with � � �� � ��. The row � � �� � ���� � � of matrix �� shows
the interactions of task ��� . The columns of the matrix �� are also associated with the
tasks of � , where column 	 � �
������ � is associated with task ���. The matrix ��

has a nonzero entry in �� ��� 	�, �� 	 � �� ���� �, if task ��� associated with row � has an
interaction with task ��� associated with column 	. If task ��� has no interaction with
task ��� then there is no entry in �� ��� 	� for � � ��� ����� � and 	 � �
� ����� �.

Figure 1 shows the pattern of an interaction matrix with horizontal and vertical
interactions (in the middle) and two matrices which show the interactions separately.
The matrix on the left, depicting horizontal dependencies, consists of � � blocks of size
�� � �� where each block indicates the dependencies within one row of the task array

x
x

x
x

x

x

x

x

x
x x

x

x
x

x
x x

x
x

x

x
x

x
x

x
x

x x

x

x
x x

x

x

x x

x

x

n

1

1

x

1 2
1
2

nn

n

horizontal interactions

x

x

x
x

x

x

x

x

x

x
x

x
x

x

x

x

x

x

x

x

x

x

x x

x x

x

x
x x

x

x
x

x
x x

x
x

x

x
x

x
x

x
x

x x

x

x
x x

x

x

x x

x

x

1

1

1 2 n
1
2

n

n

n
x

x

x
x

x

x
x

x

x

x

x

x

x

x

x

vertical interactions

x

x

x

x

x

x

x

x

x

n

1

1

x

x

x

1 2
1
2

n

n

n

Fig. 1. Interaction matrices of size ��� for task arrays of size ������ � � ����, showing
the nonzero pattern for horizontal and vertical (middle), horizontal (left) or vertical (right)
dependencies.

� . Since there are no nonzero elements outside those blocks the dependency graph of
the corresponding task array consists of �� independent subgraphs. The matrix on the
right, depicting vertical dependencies, has nonzero entries in the main diagonal and
the diagonals with distance ��. The nonzero elements in all rows with distance ��

correspond to computations within one column of a task array; e.g. the set of items
with circles indicate the pattern for vertical dependencies in the first column of the task
array. The nonzero pattern of the illustration in Figure 1 express the maximal set of
dependencies for a single vertical or horizontal computation structure which means that
an orthogonal program part can have less nonzero elements than depicted but not more
or in other positions. To express SPMD computations in horizontal or vertical direction,
we can define the interaction matrix in a more general way, such that a nonzero element
means that the two tasks associated with the corresponding row and column perform
similar computations in an SPMD style.

To exploit orthogonal process structures, an application is not required to have a de-
pendence graph with corresponding interaction matrix for the entire program. Rather,
we consider a much larger class of applications for which the orthogonal structures
are only given for parts of the program and define orthogonal application structures in
the following sense: If an application program can be decomposed into program parts
and the program parts have either a dependence graph with only horizontal interactions
(Figure 1 left) or only vertical interactions (Figure 1 right), then the application exhibits
an orthogonal structure with the potential parallelism suitable for a group SPMD pro-
gram with varying orthogonal groups. Thus, different program parts may have different
interaction matrices. Also program parts with general interaction matrix are allowed but
cannot benefit from the specific orthogonal group implementation.

Specification of orthogonal structures The entire task program is specified in a group
SPMD style with explicit constructions for horizontal or vertical executions, which we
call horizontal sections and vertical sections, respectively. In horizontal sections, a task
��� has interactions to a set of tasks ����� ��� � �� ���� ��� �

� 	� �
. In vertical sections,
a task ��� has interactions to a set of tasks ����� ��� � �� ���� ��� �

� 	� �
. To indicate that
a task participates in an SPMD-like operation together with other tasks in horizontal or
vertical direction we use the commands:

– vertical section(k) � statements � : Each task in column
 executes statements in
an SPMD-like way together with the other tasks in column
; statements may

contain computations as well as collective communication and reduction operations
involving tasks ���� � � � � �����. Tasks ��� with � 	�
 perform a skip-operation.

– horizontal section(k) � statements � : Similar to vertical section(k), but using a hor-
izontal organization.

– vertical section() � statements � : Each task executes statements in an SPMD-like
way together with the other tasks in the same column. A task in column
 may per-
form computations as well as collective communication and reduction operations
involving the tasks ���� � � � � ����� in the same column. Computations in a specific
column of the task array are executed in parallel with the other columns in a group
SPMD programming model. Thus, vertical section() corresponds to a parallel loop
over all columns
 where each iteration executes vertical section(k).

– horizontal section() � statements � : Similar to vertical section(), but using a hori-
zontal organization.

The gray parts in the following illustration depict active computation parts in the task
array:

vertical_section()horizontal_section()

k

k

horizontal_section(k) vertical_section(k)

Commands outside of horizontal or vertical sections are executed in SPMD style which
also includes task specific operations. The approach can be generalized to more than
two dimensions in an analogous way by introducing orthogonal section() commands
specifying subspaces of the task grid in which the communication is performed.

Example: LU factorization For an illustration we use the well-known LU factoriza-
tion for the solution of linear equation systems �� � which has been investigated in
great detail in the past. The optimal computational structure for the LU decomposition
results from a double-cyclic distribution that distributes the rows and columns of the
coefficient matrix � � ������ cyclically among the processors [7, 8]. Each entry � ��
of the coefficient matrix is assigned to a task ��� , �� � � �� � � � � ��, that is responsible
for the computations of this entry in the elimination steps. Each elimination step
,
� �
 � ��, consists of the following computation phases:

1. vertical section(k): The tasks in column
 of the task array cooperate to determine
the global pivot element ��� � ��������� ���� �.

2. horizontal section(): The entries of the pivot row � are distributed in the columns
of the task array such that element ��� is distributed to all tasks ��� with � � �.
Moreover, if � 	�
 the tasks ��� and ��� exchange elements ��� and ��� .

3. vertical section(k): The tasks in column
 of the task array computes the elimination
factors ��.

4. horizontal section(): The tasks ��� in column
 distribute the elimination factors ��
in the corresponding rows �,
 � � � � � ��.

5. SPMD section: The tasks ��� for
 � � � � � �� compute new values for their
associated entries of the coefficient matrix.

3 Mapping to orthogonal processor groups

For the mapping of the tasks to the processors, we assume that the number of proces-
sors is smaller than the number of tasks. In order to exploit the potential parallelism of
orthogonal computation structures, we map the computations onto a two-dimensional
processor grid of size �� � �� for which we provide two different partitions that exist
simultaneously. For the assignment of tasks to processors, we use parameterized map-
pings similar to parameterized data distributions [3, 7] which describe the data distribu-
tion for arrays of arbitrary dimension, i.e., a task is assigned to exactly one processor,
but each processor might have several tasks assigned to it.

Assignment of tasks to processors A double-cyclic mapping of the two-dimensional
task array to the processor grid is specified by block-sizes � and � in each dimension,
which determine the number of consecutive rows and columns that each processor ob-
tains of each cyclic block. For a total number of � processors, the distribution of the
task array � of size �� � �� is described by an assignment vector of the form

����� ��� ���� ��� (1)

with � � �� ��� and � � � � �� for � � �� �. For simplicity we assume ������ ��� � �.
To describe a double-cyclic distribution, we logically arrange the processors in a two–
dimensional grid of size �� � �� by specifying a grid function � 	 � �

� where �
is the set of available processors. This defines �� row groups �	 , � � � � ��, and ��
column groups �	 , � � � � ��,

�	 � �� � � � ���� � ��� ��
 �	 � �� � � � ���� � ��� ��

with ��	 � � �� and ��	 � � ��. The row and column groups build separate orthogonal
partitions of the set of processors � , i.e.,

��
	��

�	 �

��
	��

�	 � � and �	 ��	� � � � �	 � �	� for � 	� ���

The row groups �	 and the column groups �	 are orthogonal processor groups. Using
distribution vector (1), row � of the tasks � is assigned to the processors of a single row

group ����� � �� with
 �
�
���
��

�

�� �� � �. Similarly, column � is assigned to

the processors of a single column group ����� � �� with
 �
�
���
��

�

�� �� � �.

A program mapped to processors refers to the row and column groups by ����� and
�����, i.e., it uses the original task indices. Thus, after the mapping, the task structure
is still visible and the orthogonal processor groups according to the given mapping are
known implicitly.

Execution model for orthogonal processor groups The mapping of the tasks to the
processors defines the computations that each processor has to perform. Computations
of tasks that are outside a vertical or horizontal section are executed in SPMD style.
Horizontal and vertical sections require the coordination of the participating proces-
sors. A vertical section(k) operation is performed by all processors in column group

���
�. Similarly, a horizontal section(k) operation is performed by all processors in
���
�. A vertical section() operation is performed by all processors, but each proces-
sor is only exchanging information with the processors in the same column group. A
horizontal section() is executed analogously.

Mapping the tasks to processors may cause that a single processor executes more
than one task of a specific row or column of the tasks array. Therefore, the communica-
tion operations within a horizontal or vertical section have to be transformed from a row
or column oriented communication to a mixed local and global communication on the
assigned processor set. For a reduction operation, for example, each processor performs
the reduction for its local tasks and then participates in a global communication with
the other processors in its row or column group, respectively, assuming an associative
reduction operation.

Transformation to MPI programs Each orthogonal section is translated separately
into a corresponding MPI program fragment. This is possible since the specification of
orthogonal sections is compositional. MPI supports the organization of the communica-
tion in orthogonal groups by the concept of communicators and group objects. The row
and column group for a row � and column � of the task array � can be obtained by�����
= RoGroup[i/b1 % p1] and ����� = CoGroup[j/b2 % p2], if block-sizes �
and � are used. The row (column) group of an arbitrary processor with a global rank �
can be computed efficiently by defining a virtual two-dimensional process topology of
size ��� �� and by using MPI Cart coords() to obtain the corresponding grid po-
sition ��� ��. Then RoGroup[x] is the corresponding row group and CoGroup[y]
is the corresponding column group. Based on predefined row and column groups and
their corresponding communicators, the definition of horizontal and vertical sections
can be translated into executable MPI programs.

Example: Iterated RK methods Iterated Runge-Kutta (RK) [5, 9] methods are explicit
one-step methods for the solution of systems of ordinary differential equations (ODEs)
of the form ����

�� � ���� �����, ����� � ��, �� � � � ���� where � 	 � �
� is the

unknown solution function and � 	 � � �
� �

� is an application-specific function
which is nonlinear in the general case; � is the size of the ODE-system. The predefined
vector �� � �

� specifies the initial condition at ��. An 	-stage iterated RK method per-
forms a fixed number � of iterations per time step to compute an approximation of the
solution function (denoted by � ���

���) according to the following computation scheme:

����� � ����� for � � �� � � � � 	

����� � ���� � ��

��
���

����
�
������ for � � �� � � � � 	� � � �� � � � �� (2)

�
���
��� � �� � ��

��
���

� �
�
����

The advantage of iterated RK methods for parallel execution is that the iteration system
(2) of size 	 �� consists of 	 independent systems to determine the approximations � �

���,
� � �� � � � ��. These function evaluations can be performed in parallel by 	 indepen-
dent, disjoint processor groups ��� � � � � �� in a programming model with mixed task

and data parallelism [6]. Group �� � ������ � � � � �����
 with �� processors is responsi-
ble for the computation of one sub-vector � �

���, � � ��� � � � � 	
. Figure 2 illustrates the
computations for one time step.

(s,1)

s
1

μ

μ

group-broadcast

group-broadcast

(1,1)μ

1
1μ

group-broadcast

group-broadcast

1μ μ1 1
s. . .

1
mμ

(1,m)μ

group-broadcast

μ (s,m)

group-broadcast

μ s
m

group-broadcast group-broadcast

μ μm m
1 s. . .group-exchange

y κ + 1

+ 1κymulti-broadcast

p Processors

Group 1 Group s
T

im
e

group-exchange

initialize ����� � ����� � � �� � � � � �;
for � � �� � � � �� do sequentially �

forall groups ��, � � ��� � � � � �� do in parallel �
forall processors 	 � �� do in parallel �

compute �����	 elements of
����� �� � � � ��

�
�
��� ����

�
����� ;

make ����� �� available to all processors of ��;
compute �����	 elements of ����� � ������� ���; ��

forall processors 	 do
exchange the computed components of ����� ;

�
forall processors 	 do �

compute ���
	 el. of ��� � � � ��
�

�
��� �� �

�
��� ;

compute ���
	 el. of 	��� � � � ��
��

��� �� �
�
����� ;

�
make ��� available to all processors;
compute new stepsize;

Fig. 2. Parallel execution of a time step of the iterated RK method.

For the special case that all groups have exactly the same size � � ��	 and that �
divides �, the implementation can be optimized by using orthogonal groups� �� � � � � ��

with ���� � 	 and �� � ����� � �� � � � �� � � � � 	
.
The iteration steps are performed in the same way as in the general case. But since

each processor computes the same number of components, the exchange of the ele-
ments of ������ � � � � �

�
��� can be performed more efficiently: Instead of making all com-

ponents available to each processor, group-multi-broadcastoperations can be performed
on ��� � � � � �� in parallel with each processor ���� of �� contributing ��� components
of �����, thus making for each processor exactly those components of � �

���� � � � � �
�
���

available that are needed for the execution of the next iteration.

4 Runtime tests on Cray T3E

Figure 3 shows speedup results for the parallel LU decomposition on a Cray T3E-1200.
The diagrams compare three versions which are based on a row cyclic or column cyclic
data distribution on the global group of processors with an implementation which re-
sults from the use of orthogonal groups. The orthogonal groups are used for computing
the pivot element on a single column group, for making the pivot row available to all
processors by parallel executions on all column groups, for computing the elimination
factors on a single column group, and for broadcasting the elimination factors in the row
groups. Each processor only allocates the elements of the array that it has to compute.
This establishes spatial locality when a processor accesses its local elements of one row
of the coefficient matrix in storage order. The processor grid is chosen such that there is

an equal number of processors in each dimension, i.e., the row and column groups have
equal size. All versions result in a good load balance. The block-size in each dimension
has been set to 1. Runtime tests have shown that larger block-sizes lead to (slightly)
larger execution times.

For a larger number of processors, the implementation with orthogonal processor
groups shows the best runtime results and Figure 3 shows that this implementation has
also the best speedup values. For 16 processors and more, the global column-cyclic dis-
tribution leads to larger execution times than the global row-cyclic distribution, since
for the column-cyclic distribution, both the pivot element and the elimination factors
are computed by only one processor, whereas for the row-cyclic distribution, their com-
putation is distributed among all available processors, thus leading to smaller computa-
tion times. The additional advantage of the use of orthogonal processor groups shown in
Figure 3 comes from the replacement of the global communication operations by group-
based operations with fewer participating processors leading to smaller execution times.
This advantage increases with the number of processors because of the logarithmic de-
pendence of the execution time of broadcast operations on the number of processors on
the T3E [7]. For smaller numbers of processors, the column-cyclic distribution is com-
petitive, because the percentage of idle processors during the computation of the pivot
element and the elimination factors is relatively small and because the column-cyclic
distribution requires less communication operations and therefore less startup time for
these operations than the other variants. For the largest number of processors, the per-
centage difference of the runtime of the version with orthogonal processors groups to
the second best version is about 32%.

4

9

16

25

36

49

64

4 9 16 25 36 49 64

S
pe

ed
up

processors

LU decomposition for n = 2000 on Cray T3E

orthogonal processor groups
global processor group with row-cyclic distribution

global processor group with column-cyclic distribution

4

9

16

25

36

49

64

4 9 16 25 36 49 64

S
pe

ed
up

processors

LU decomposition for n = 4000 on Cray T3E

orthogonal processor groups
global processor group with row-cyclic distribution

global processor group with column-cyclic distribution

4

9

16

25

36

49

64

4 9 16 25 36 49 64

S
pe

ed
up

processors

LU decomposition for n = 6000 on Cray T3E

orthogonal processor groups
global processor group with row-cyclic distribution

global processor group with column-cyclic distribution

4

9

16

25

36

49

64

4 9 16 25 36 49 64

S
pe

ed
up

processors

LU decomposition for n = 8000 on Cray T3E

orthogonal processor groups
global processor group with row-cyclic distribution

global processor group with column-cyclic distribution

Fig. 3. Speedup values for the LU decompositions on a Cray T3E-1200.

Figure 4 shows speedup values for different parallel versions of the iterated RK
method on a Cray T3E-1200. As basic RK method, a LobattoIIIC6 method with four
stages has been used which results in a method of order 6. Each time step performs
five iterations. The method has been used for the solution of the Brusselator equation,
a time-dependent 2D reaction-diffusion equation. Performing a spatial discretization
with a uniform grid with � grid points in each dimension leads to an ODE system of
size ���. The figure shows the results for a �� � grid. The resulting right hand side
function � of the ODE system is a sparse function, i.e., the evaluation of each compo-
nent of � depends only on a fixed number of components of the argument vector, thus
leading to a linear dependence of the total evaluation time of � on the size of the ODE
system. The figure compares a pure data parallel realization of the iterated RK method
with a general task-parallel implementation which performs the computations of the ap-
proximations of the stage vectors concurrently by different groups of processors and a
task-parallel implementation which is optimized by using orthogonal groups. The pure
data parallel implementation is in general much faster than the mixed task and data par-
allel implementation. This is also the case for the implementation with the orthogonal
groups for a small number of processors. But the scalability properties are improved by
using orthogonal processor groups and for more than 32 processors, this implementa-
tion is getting better than the data parallel implementation. For 64 processors, it is twice
as fast as the data parallel implementation.

1

4

8

16

1 4 8 16 32 64

S
pe

ed
up

number of processors

IRK with Lobatto IIIC6 for n=2048 on T3E

task parallel with orthogonal processor groups
pure data parallel

mixed task and data parallel

Fig. 4. Speedup values for the iterated RK method on a Cray T3E-1200.

5 Comparison to related work

Many environments for scientific computing are extensions to the HPF data parallel
language. An example is HPJava[10] which adopts the data distribution concepts of
HPF but uses a high level SPMD programming model with a fixed number of logical
control threads and includes collective communication operations The concept of pro-
cessor groups is supported in the sense that global data distributed over one process
group can be defined and that the program execution control can choose one of the
process groups to be active. In contrast, our approach provides processor groups which
can work simultaneously and, thus, can exploit the potential parallelism of the applica-
tion and the machine resources allocated more efficiently. Hence, orthogonal processor

groups seem to provide the right level for applications with medium or fine-grained
potential parallelism.

LPARX is a programming system for the development of dynamic, nonuniform
scientific computations supporting block-irregular data distributions [4]. KeLP extends
LPARX to support the development of efficient programs for hierarchical parallel com-
puters such as clusters of SMPs [1]. A KeLP program contains three programming lev-
els: a collective level executing on the entire parallel machine, a node level that manages
parallelism between SMP nodes, and a processor level capturing parallelism within a
single SMP node. In comparison to our approach, LPARX and KeLP are more directed
towards the realization of irregular grid computations whereas our approach considers
the mapping of regular task grids onto varying partitions of the same set of processors.

6 Conclusions and future work

We have outlined a transformation approach for developing efficient parallel programs.
The idea is to give the programmer the possibility to structure a program into horizontal
and vertical interaction sections according to the dependencies given by the algorithm
to be realized. Given this interaction specification, we propose a mapping step which
introduces orthogonal groups of processors and assigns the tasks defined by the appli-
cation algorithm to the processors according to a parameterized distribution that can be
chosen by the programmer. The mapping and the translation to the final MPI program
are designed in such a way that they can be performed automatically by a compiler
system, so the programmer can concentrate on the structure of the algorithm to be im-
plemented.

Acknowledgement

We thank the NIC Jülich for providing access to the Cray T3E.

References

1. S.B. Baden and S.J. Fink. A Programming Methodology for Dual-Tier Multicomputers.
IEEE Transactions on Software Engineering, 26(3):212–226, 2000.

2. H. Bal and M. Haines. Approaches for Integrating Task and Data Parallelism. IEEE Con-
currency, 6(3):74–84, July-August 1998.

3. A. Dierstein, R. Hayer, and T. Rauber. The ADDAP System on the iPSC�860: Automatic
Data Distribution and Parallelization. JPDC, 32(1):1–10, 1996.

4. S.R. Kohn and S.B. Baden. Irregular Coarse-Grain Data Parallelism under LPARX. Scientific
Programming, 5:185–201, 1995.

5. T. Rauber and G. Rünger. Parallel Execution of Embedded and Iterated Runge–Kutta Meth-
ods. Concurrency: Practice and Experience, 11(7):367–385, 1999.

6. T. Rauber and G. Rünger. A Transformation Approach to Derive Efficient Parallel Imple-
mentations. IEEE Transactions on Software Engineering, 26(4):315–339, 2000.

7. T. Rauber and G. Rünger. Deriving Array Distributions by Optimization Techniques. Journal
of Supercomputing, 15:271–293, 2000.

8. E. van de Velde. Data Redistribution and Concurrency. Parallel Computing, 16:125–138,
1990.

9. P.J. van der Houwen and B.P. Sommeijer. Parallel Iteration of high–order Runge–Kutta
Methods with stepsize control. J. Comp. Applied Mathematics, 29:111–127, 1990.

10. G. Zhang, B. Carpenter, G.Fox, X. Li, and Y. Wen. A high level SPMD programming model:
HPspmd and its Java language binding. Technical report, NPAC at Syracuse Univ., 1998.

