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Abstract

Ordinary differential equations (ODEs) are important for modelling many problems
from science and engineering and efficient ODE solvers are required, for example when
solving time-dependent partial differential equations (PDEs) with the method of lines.
Since an ODE solver may perform a large number of iteration steps, the execution time
for solving an ODE problem might be quite large. Thus, a reduction of the execution
time is desirable and should affect each iteration step of the simulation. Programming
techniques to reduce the execution time of ODE solver are parallelism and modifica-
tion of the memory access structure such that the memory access time decreases. In
this article, we investigate multithreaded solution methods for ODEs with different
memory access behavior and their influence on the performance. Additionally the en-
ergy consumption is considered. The parallelism is implemented as shared memory
program for multicore processors. The memory access behavior is investigated using
different program variants which result from application-specific program transforma-
tions changing the memory access order while guaranteeing the numerical correctness.
For the investigation of the performance, experimental data have been gathered on five
different recent multicore processors. Additionally, an analytical power and energy
model for modeling the performance and energy consumption is introduced. As ODE
solver, the popular embedded Runge-Kutta methods with error correction is used. The
simulation problems are two different ODEs resulting from discretized PDEs. The ex-
perimental data give insight into the quite diverse performance behavior of the ODE
solver variants solving the same problem on different platforms.
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1. Introduction

Power and energy awareness are important aspects for the design of modern pro-
cessors. Several features, such as frequency scaling or power capping, have been devel-
oped and are integrated in power management units (PMUs) to control the power and
energy consumption at hardware level. Recent processors have several performance
states (P-states) and CPU operating states (C-states) which allow the hardware to re-
act to different workloads or to turn off unused components to save power. Dynamic
voltage and frequency scaling (DVFS) is supported by most processors to reduce the
energy consumption.

Besides the importance of hardware mechanisms to control the energy consump-
tion, software aspects are also of high interest, since the software behavior may have
a large influence on the resulting energy consumption and execution time. Thus, it
is essential to design software such that the resulting energy consumption meets the
given requirements, e.g. be as small as possible. Program transformations may play
an important role in this context, since they may lead to program versions with a dif-
ferent performance, power or energy consumption. A crucial step towards designing
energy-aware software using program transformations is the ability to assess the en-
ergy and performance effects of specific program transformations. A final goal is to
quantitatively understand which transformation has which effect on the resulting en-
ergy and performance behavior. In this article, we contribute to this goal in the context
of ODE solvers. In particular, we apply program transformations to create new pro-
gram versions and explore the effects of several application-specific transformations
on the performance and energy consumption of the new program versions on several
recent multicore processors. The transformations applied are difficult to find by a com-
piler due to the complex program structure with intertwined loops and function calls.
We also show that power and energy models can help to get insight into the observed
performance and energy behavior.

The solution of ordinary differential equations (ODEs) is an important area in sci-
entific computing and, thus, their performance and energy consumption is of large in-
terest. In this article, we investigate embedded Runge-Kutta (RK) methods, which are
popular ODE solvers for a broad range of application problems, including discretized
time-dependent PDE problems, often resulting in large systems of ODEs [20]. Since
embedded RK methods are one-step methods possibly performing a large number of
iteration steps with function evaluations of the right-hand sinde function of the ODE
system, it is crucial to design each iteration step such that it is efficient in terms of
execution time and energy consumption.

To provide a suitable basis for the investigation of the effect of program transforma-
tions, we have developed several implementation versions for embedded RK methods
resulting from the usage of a series of consecutive application-specific program trans-
formations. The final RK version implements an RK method with delayed function



evaluations of the right-hand side of the ODE system. For each solver version, we have
developed a multithreaded implementation which exploit the size of the ODE system
for an execution on multicore processors in each iteration. However, synchronization
is needed between iterations due to data dependencies. The interaction of the multi-
threaded implementations and the loop transformations lead to further requirements for
synchronization points within the individual iterations, which are necessary to guar-
antee the numerical correctness. This issue is discussed together with the program
transformations.

The contributions of this work are in the area of application-specific program trans-
formations and the investigation of their effect on the resulting performance, power,
and energy consumption of ODE solvers for five different multicore processors. Sev-
eral influencing factors are analyzed in detail:

• The effect of the computational demands and the memory access characteristics
of the specific ODE problem to be solved: Two ODE problems with different
characteristics are considered and used as test cases and an experimental evalua-
tion on different desktop and server processors is performed.

• The effect of the number of threads used to solve the ODE problems: It is shown
that the program transformations may have different effects for a varying num-
ber of threads. The resulting performance scalability and energy consumption
strongly depends on the computational characteristics of the specific ODE prob-
lem to be solved.

• The effect of frequency scaling using DVFS on the resulting performance: For
different operational frequencies, different performance, power, and energy ef-
fects can be observed for the ODE solver versions resulting from the program
transformations.

• The effect of the processor architecture: The experimental evaluation is per-
formed on five multicore systems with different numbers of cores. It is shown
that different multicore systems may have quite different power consumption,
resulting in large differences in the overall energy consumption.

The rest of the paper is structured as follows. Section 2 describes the different mul-
tithreaded implementation versions of ODE solution methods. Section 3 introduces
the power and energy model used for DVFS. Section 4 contains the experimental eval-
uation on different hardware systems. Section 5 uses the models from Section 3 for a
modeling of execution time and energy consumption. Section 6 discusses related work.
Section 7 gives some concluding remarks.

2. Solution methods for ODEs

The program transformations are applied to the explicit RK method, which is
briefly summarized in Subsect. 2.1. The series of transformations is described in 2.2
and the resulting multithreaded implementations are given in Subsect. 2.3.



2.1. Explicit RK methods
An initial value problems for systems of ODEs of size n ≥ 1 is given by:

y′(x) = f(x,y(x)) with y(x0) = y0 (1)

where y0 ∈ Rn at start time x0 is an initial vector and f : R × Rn → Rn is the right
hand side function. Explicit RK methods are one-step methods executing a series of
consecutive time steps κ = 0, 1, 2, . . . in which new approximation vectors ηκ+1 ∈ Rn
for the unknown solution function y(xκ+1) at position xκ+1 are computed. For the
computation of one approximation vector ηκ+1, an s-stage RK method uses s stage
vectors v1, . . . ,vs ∈ Rn, which are computed according to:

v1 = f(xκ, ηκ),

v2 = f(xκ + c2hκ, ηκ + hκa21v1), (2)
...

vs = f(xκ + cshκ, ηκ + hκ

s−1∑
l=1

aslvl).

The number s of stage vectors is fixed for the specific method. The computation of the
next approximation vector ηκ+1 from the previous approximation vector ηκ+ includes
the computation of an additional approximation vector η̂κ+1 of lower order, which is
used for error control and stepsize adaption:

ηκ+1 = ηκ + hκ ·
s∑
l=1

blvl, (3)

η̂κ+1 = ηκ + hκ ·
s∑
l=1

b̂lvl.

The s–dimensional vectors b = (b1, . . . , bs), b̂ = (b̂1, . . . , b̂s) and c = (c1, . . . , cs) and
the s × s matrix A = (ail) are specific for a particular RK method. The order r of
the approximation ηκ+1 and the order r̂ of the approximation η̂κ+1 usually differ by 1,
i.e. r = r̂+1. The difference between the two approximations ηκ+1 and η̂κ+1 provides
an asymptotic estimate of the local error in the lower order approximation and is used
for stepsize control [12]. The approximation of the current time step is accepted, if a
suitable weighted norm of the local error estimate lies within a predefined tolerance
level. Several embedded RK methods have been proposed in the past. RK methods
that are often used include the methods of Dormand & Prince (e.g. DOPRI5 of order
5(4) or DOPRI8 of order 8(7)) and Verner’s methods DVERK of order 6(5) [20]. As
an example for a typical ODE solver, we consider explicit RK methods with an error
control and stepsize selection mechanism [20, 12].

An important source for performance improvements of RK methods are global re-
arrangements of the data accesses to the approximation and stage vectors. However,
the computation scheme (2), (3) restricts the potential evaluation order due to data de-
pendencies between the vectors v1, . . . ,vs, and ηκ+1, since all stage vectors have to be



computed before the computation of ηκ+1 and η̂κ+1 can be started. These data depen-
dencies have to be taken into account in order to preserve the numerical correctness.
Also, according to the form of the argument vectors of f in (2), the computation of
stage vector vi depends on v1, . . . ,vi−1, i = 2, . . . , s, so that the stage vectors have to
be computed one after another. For a general ODE solver, the dependence structure of
f of a specific ODE system is not known in advance and therefore the conservative as-
sumption that every component of f depends on all vector components of its argument
vector has to be made for a generally applicable implementation. Hence, the computa-
tion of one component of stage vector vi requires that all components of v1, . . . ,vi−1
have already been computed. Since f may access all these components, i vectors of
size n have to fit into the cache simultaneously to avoid capacity misses. The maxi-
mum size of data s · n required within one time step is reached when computing the
last stage vector vs. This volume of data is needed for the computation of ηκ+1 and
η̂κ+1 in Equ. (3).

2.2. Application-specific program transformations

The implementation of the RK methods proposed in this article have a generic form
as described by computation scheme (2), (3). Thus, the implementation is suitable for
arbitrary embedded RK methods, and several RK methods are implemented, includ-
ing RadauIA, LobattoIIIA, RadauIIA, LobattoIIIC, and DVERK of different order.
As hardware platform, we assume a shared address space as provided by multicore
processors. Based on the Pthreads library, we have developed several multithreaded
implementations that are applicable for arbitrary embedded RK methods. The imple-
mentations differ in their loop structure and the synchronizations that are needed to
guarantee the correct numerical behavior.

The main potential for a parallel execution by multiple threads is given by the ODE
system to be solved. Several arrays of size n capture the essential parameters of the RK
scheme (2), which are the stage vectors v1, . . . ,vs and the two approximation vectors
ηκ and η̂κ. All multithreaded implementations exploit this potential of parallelism by a
data parallel program structure in which several threads update the stage and approxi-
mation vectors in a block-wise fashion. The threads are created at the beginning of the
time steps of the RK method and are then used for the computation of separate blocks
of the argument vectors, stage vectors, and approximation vectors for all time steps
performed.

We have derived a series of multithreaded RK implementations, which are derived
from one another by applying application-specific program transformations. In the fol-
lowing, we describe four main program versions and omit intermediate implementation
versions resulting from minor transformation steps. The four main RK implementa-
tions can be summarized as follows:

1. The first implementation version results by a direct translation of the loop struc-
ture in computation scheme (2), (3) into program code. According to the loop
structure, the implementation version is named i-l-j, where i loops over the stage
vectors, l is used for the argument vectors and j is the loop over the dimension
of the vectors. The multithreaded implementations are based on a data-parallel
computation of the stage vectors and the approximation vectors. This kind of



parallelism is called parallelism across the system [16]. Since we aim at gen-
eral non-specialized RK implementations, parallelism across the method is not
exploited. The parallel computation of the stage and approximation vectors re-
quires the use of barrier synchronizations within the same time step.

2. Due to the order of computations in scheme (2), the stage vectors have to be
computed one after another, since vi is needed for the argument of the function
evaluation of f producing vi+1, i = 1, . . . , s− 1. To be able to change the com-
putation order and to enable transformations in the loop structure, we introduce
additional arrays that separately hold the argument vectors for the function eval-
uations needed to compute v1, . . . ,vs. This transformation enlarges the amount
of data structures to be stored and accessed during one time step. However,
besides the advantages to enable subsequent transformations, there is the addi-
tional advantage that less barrier synchronizations are needed, since the threads
can start the computation for the next stage vector earlier without affecting the
numerical correctness. This implementation version is called i-l-j-ext in the fol-
lowing.

3. A variation of the preceding implementation i-l-j-ext results by a loop exchange
with the dimension loop, which carries the parallel execution. More precisely,
the iterative computation of

∑i−1
l=1 ailvl, which is part of the argument vectors in

Equ. (2), is exchanged with the dimension loop, so that each thread has a differ-
ent computation order. The number of barrier synchronization needed remains
unchanged.

4. The next implementation version is derived from the i-j-l-ext Version by exploit-
ing that the additional vectors decouple the computations and make a loop ex-
change possible. This computation strategy has the effect that each newly com-
puted value is used immediately after its computation to update all dependent
values which leads to an improved temporal locality of the memory references.
In the resulting loop nest, the inner loop is exchanged with the dimension loop.
Thus, each thread computes its portion in a different order and the data access
pattern is modified. A final optimization leads to an implementation that only
needs one scalar variable to hold all stage vectors components of one time step
one after another. This value is needed to update several data structures.

2.3. Pseudocodes of multithreaded implementations

In this subsection, pseudocodes for the main intermediate implementation versions
of the RK method are given. Since the loop order of the imperfectly nested loops are
main characteristics of the versions, the order of the loop indices are given as names to
indicate the current loop nest.

2.3.1. Vector version
The straightforward implementation of the embedded RK scheme (2), (3) has the

loops over the vector dimension as innermost loop. This has the advantage to provide
a good spatial locality of the memory references, since the innermost loop implements
the computations over vectors of length n. The initial implementation version can
therefore be written in vector notation. Vectors are implemented as one-dimensional



arrays and are written in boldface notation in the following. Omitting the error control
and stepsize selection, the computations of one time step can be abbreviated as follows:

Version i-l-j (Version 1):
(1) for ( i = 0; i < s; i++ ) {
(2) z = 0.0;
(3) for ( l = 0; l < i; l ++ )
(4) z = z + a[i][l] * vl;
(5) z = h * z + ηκ;

barrier synchronization;
(6) vi = f( x + c[i] * h , z );

barrier synchronization;
(7) }
(8) z1 = 0.0; z2 = 0.0;
(9) for ( i = 0; i < s; i++ ) {
(10) z1 = z1 + bbs[i] * vi;
(11) z2 = z2 + b[i] * vi;
(12) }
(13) ηκ+1 = ηκ + h* z2;
(14) err = h* z1;

barrier synchronization;
(15) error control;

The vectors z, z1, z2, err denote temporary vectors that are used to compute the
arguments for the function evaluations and to compute the next approximation vector
or the error vector. The computation order in the i, l = 1, ...s iteration space is shown
in Fig. 1 (top, left). The multithreaded implementation requires barrier synchroniza-
tions before and after the function evaluations as well as before the error control. The
synchronization before the function evaluation is needed to ensure that the complete
argument vector has been computed before any component of f is evaluated. The syn-
chronization after the function evaluation is needed to avoid threads to continue updat-
ing vector z too early, since other threads might still need the previous values of all
components of z for evaluating their components of f. The synchronization before the
error control is required to ensure that the complete error vector err is available and
all components of err can be used to decide whether the current time step should be
accepted or needs to be repeated using a smaller step size. Moreover, err is used to
compute the step size for the next time step. In summary, 2 · s+1 barrier synchroniza-
tions are needed in each time step.

2.3.2. Separation of argument vectors
The first set of transformations modifies the computation of the argument vectors

in program lines (2)–(5) of Version i-l-j: Separate argument vectors z[i] are introduced
and replace z in the stage vector computations in order to decouple the dependencies.
This modification will be exploited further for later loop restructuring. The initial-
ization and the computation of the vectors z[i] are modified slightly so that the com-
putation of the components of the argument vectors are implemented within a single



nested loop. These transformations result in the program Version 2 with lines (1)–(6)
replacing lines (1)–(7) of Version 1.

Version i-l-j-ext (Version 2):
(1) for ( i=0; i<s; i++ ) {
(2) z[i]= ηκ;
(3) for ( l=0; l<i; l++ )
(4) z[i] = z[i] + h* a[i][l] * vl;

barrier synchronization;
(5) vi = f( x + c[i] * h , z[i] );
(6) }

barrier synchronization;
(7) z1 = 0.0; z2 = 0.0;
(8) for ( i=0; i<s; i++ ) {
(9) z1 = z1 + bbs[i] * vi;
(10) z2 = z2 + b[i] * vi;
(11) }
(12) ηκ+1 = ηκ + h* z2;
(13) err = h* z1;

barrier synchronization;
(14) error control;

The computation order in the iteration space over the indices i, l = 1, . . . , s of the
Butcher tableau is illustrated in Fig. 1 (top, right). The multithreaded implementation
still needs a barrier synchronization before the function evaluation. However, no syn-
chronization is needed after the function evaluation, since separate argument vectors
are used so that no race conditions can occur. Another barrier is needed after the entire
i-loop and before the error control. This results in s + 2 barrier synchronizations for
each time step.

2.3.3. Loop interchange with dimension loop
The next version is a slight modification of Version 2, which results by changing

the loop structure in lines (3) and (4) of the code. More precisely, the implicit loop
in code line (4) is made explicit and is interchanged with the l-loop in line (3). This
results in the following implementation with the new lines (3) - (5):

Version i-j-l-ext (Version 3):
(1) for ( i=0; i<s; i++ ) {
(2) z[i]= ηκ;
(3) for ( j=0; j<n; j++ )
(4) for ( l=0; l<i; l++ )
(5) zj[i] = zj[i] + h* a[i][l] * (vl)j;

barrier synchronization;
(6) vi = f( x + c[i] * h , z[i] );
(7) }

barrier synchronization;



(8) z1 = 0.0; z2 = 0.0;
(9) for ( i=0; i<s; i++ ) {
(10) z1 = z1 + bbs[i] * vi;
(11) z2 = z2 + b[i] * vi;
(12) }
(13) ηκ+1 = ηκ + h* z2;
(14) err = h* z1;

barrier synchronization;
(15) error control;

The position of the barrier synchronizations remains unchanged.

2.3.4. Loop interchange of i and l loops
The next set of transformations are also based on program version 2 and applx two

different transformations. Our aim to use stage vector components as soon after their
computation as possible can be reached by interchanging the i-loop and the l-loop in
the lines (1)–(6) of Version 2. Starting with Version 2 several transformation steps
have to be applied to lines (1)-(6) to get the equivalent implementation version with
interchanged i-loop and l-loop. The resulting program version is the following:

Version l-i-j:
(1) for ( i=0; i<s; i++ )
(2) z[i]= ηκ;
(3) z1 = 0.0; z2 = 0.0;
(4) for ( l=0; l<s; l++ ) {
(5) v = f( x + c[l] * h , z[l] );
(6) z1 = z1 + bbs[l] * v;
(7) z2 = z2 + b[l] * v;
(8) for ( i=l+1; i<s; i++ )
(9) z[i] = z[i] + h* a[i][l] * v;
(10) }
(11) ηκ+1 = ηκ + h* z2;
(12) err = h* z1;

The computation order in the i, l plane of this intermediate code version is depicted
in Fig. 1 (bottom, left). This version is not investigated independently, but it is used as
basis for the next transformation.

A further improvement of the temporal locality of memory references is possible
by a loop interchange with the innermost dimension loop. The innermost loop for
the vector computations (now shown explicitly) and the loop for updating the argu-
ment vectors are interchanged and the resulting dimension loops are combined with
the vector loops computing the vectors z1 and z2 by loop fusion. The resulting pro-
gram exhibits no interleaved use of different stage vector components. Consequently,
the stage vector computations can be represented by a single scalar variable fx that is
used to store the components of all stage vectors one after another. This results in the
following program version l-j-i:



Version l-j-i (Version 4):
(1) for ( i=0; i<s; i++ )
(2) z[i]= ηκ;
(3) z1 = 0.0; z2 = 0.0;

barrier synchronization;
(4) for ( l=0; l<s; l++ ) {
(5) for (j=0; j<n ; j++) {
(6) fx= fj ( x + c[l] * h , z[l] );
(7) z1j = z1j + bbs[l] * fx;
(8) z2j = z2j + b[l] * fx;
(9) for ( i=l+1; i<s; i++)
(10) zj[i] = zj[i] + h* a[i][l] * fx;
(11) }

barrier synchronization;
(12) }
(13) ηκ+1 = ηκ + h* z2;
(14) err = h* z1;

barrier synchronization;
(15) error control;

The computation order in the iteration space is illustrated in Fig. 1 (bottom, right),
omitting the dimension over the vector components. A barrier synchronization is
needed before the l loop to ensure that all vectors z[i] are initialized before they are
used for the following function evaluations. Similarly, a synchronization is needed af-
ter each iteration of the l loop to ensure that all components of vector z[l] are available
for the evaluation of the components of f in the next iteration of the l loop. In summary,
the same number of synchronizations in needed in each time step as for Versions 2 and
3.

2.4. Parallel implementation and synchronization

For the four program versions described above have been implemented as mul-
tithreaded programs library the Pthread library. In the implementations, the compu-
tations of the components of the argument vectors, stage vectors, and approximation
vectors are distributed in a block-wise way over different threads. The error control and
stepsize selection for the next time step at the end of the previous time step is performed
by a single thread. If the error control observes that the error is too large, the previous
time step is repeated with a smaller step size [31]. Synchronization operations are in-
cluded to ensure numerical correctness. A first barrier synchronization is used after the
computation of each stage vector so that the computation of the next stage vector uses
the most recent values of the preceding stage vectors. A barrier synchronization is also
used before and after the error control and stepsize selection, which ensures that the
approximation vectors ηκ+1 and η̂κ+1 are completely computed before the error con-
trol and stepsize selection are performed and that all threads start the next time step not
before the previous time step has been completed by all threads. Thus, the numerical
behavior of the parallel versions and the sequential versions are identical.
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Figure 1: Illustration of the computation order in the iteration space of the i, l plane for the
different program versions.

Comparing the number of synchronization for the different versions, each time step
of Version 1 requires 2s+1 barrier synchronizations where s is the number of stages of
the RK method. In contrast, Versions 2 - 4 require only s+2 barrier synchronizations.
Concerning the number of vectors required, the situation is the following: Version 1
has one vector z for computing the argument vectors and s stage vectors. Version 2 has
s vectors z[i] for computing the argument vectors and s stage vectors. Version 3 also
has s vectors z[i] for computing the argument vectors and s stage vectors, but uses a
different access order. Version 4 has s vectors z[i] for computing the argument vectors,
but only one vector for computing the stage vectors which reduces to one scalar value
fx in the final Version 4 due to an optimized data access order.

3. Power and energy model

A power and energy model can help to identify the crucial factors of the power and
energy consumption. After giving the terminology in Subsect. 3.1, the modeling of the
power and energy consumption using DVFS is briefly described in Subsect. 3.2.

3.1. DVFS and frequency scaling factors
The energy E =

∫ tend

t=0
P (t)dt consumed for the execution of an application code

depends on the execution time T = tend on the given hardware platform and the power



drawing P during the execution. The power consumption P may vary during the ex-
ecution. Analytical modes for the power consumption distinguish the dynamic power
consumption Pdyn and the static power consumption Pstat. The dynamic power con-
sumption is related to the supply voltage and the switching activity during the comput-
ing activity of the processor. The static power consumption is intended to capture the
leakage power consumption as well as the power consumption of peripheral devices.
The total power consumption is the sum of the dynamic power consumption and the
static power consumption.

We consider DVFS processors with pmax cores and operational frequencies f be-
tween a minimum frequency fmin and a maximum frequency fmax. Frequency scaling
for DVFS processors can be expressed by a dimensionless scaling factor s ≥ 1, which
describes a smaller frequency f ≤ fmax relative to the maximum frequency fmax
as f = fmax/s. The maximum scaling factor is smax = fmax/fmin. The power
consumption P depends on the number of threads p used for the execution and the
operational frequency f chosen.

3.2. Power and energy models for DVFS

The power model used in the following approximates the dynamic power con-
sumption by Pdyn = α · CL · V 2 · f , where α is the switching probability, CL is
the load capacitance, V is the supply voltage, and f is the operational frequency. The
static power consumption is especially intended to capture the leakage power consump-
tion which consists of several components, including sub-threshold leakage, reverse-
biased-junction leakage, gate-induced-drain leakage, gate-oxide leakage, gate-current
leakage, and punch-through leakage [24]. The exact power values for these compo-
nents may vary and depend on the specific architecture considered. However, only
approximations are needed for the power model. Such an approximation has been
proposed by [7], modeling the static power consumption due to leakage power as
Pstat = V · N · kdesign · Ileak, where V is the supply voltage, N is the number of
transistors, kdesign is a design dependent parameter, and Ileak is a technology-dependent
parameter.

For DVFS processors, the power consumption depends on the operational fre-
quency, which can be scaled within a predefined interval [fmin, fmax]. The following
functional dependencies have to be considered: The frequency f depends linearly on
the supply voltage V , i.e., V = β · f with some appropriate constant β. Thus, the
dependence of the dynamic power consumption on the frequency f can be expressed
as

Pdyn(f) = γ · f3 (4)

with γ = α ·CL ·β2. Usually, analytic power models are expressed as a function of the
scaling factor s = fmax/f , which results in Pdyn(s) = s−3 · Pdyn(1) where Pdyn(1)
is the dynamic power consumption of the un-scaled case s = 1. This means that the
dynamic power increases cubically when the operational frequency is increased, which
can be used to study the change of the dynamic power consumption with respect to
varying frequency values. Using V = β · f also for the static power consumption
Pstat leads to a linear dependence of the static power on f , i.e., Pstat(f) = δ · f with
δ = N · kdesign · Ileak · β or Pstat(s) = s−1 · Pstat(1) where Pstat(1) is the static



power consumption in the un-scaled case. In total, the following equation results for
the overall power consumption:

Ptotal(s) = s−3 · Pdyn(1) + s−1 · Pstat(1) (5)

The reduction of the operational frequency of a processor by a scaling factor of s usu-
ally decreases the power consumption. However, it also increases the un-scaled execu-
tion time T (1), leading to the scaled execution time T (s). Assuming a constant part
Tconst that does not depend on the frequency scaling, the scaled execution time can be
modeled as T (s) = s · T (1) + Tconst. The constant part Tconst captures, for example,
accesses to the main memory or to peripheral devices that are not affected by the scal-
ing. Using the scaled execution time T (s) and the modeled power consumption from
Equation (5) yields the following model for the scaled energy consumption:

E(s) = (Pdyn(s) + Pstat(s)) · T (s) (6)
= (s−3 · Pdyn(1) + s−1 · Pstat(1)) · T (s)

Equation (6) can be considered as a general model for the energy consumption of ap-
plication codes depending on frequency scaling. This general model is the basis for the
application-specific energy model to be developed in Section 5.

4. Experimental evaluation

The performance and energy behavior of the program versions derived in Section
2 are investigated in the following experimental evaluation using five multicore pro-
cessors with different architecture. The evaluation considers the execution time, the
power consumption P , and the energy consumption E. Since the energy E is defined
as E =

∫ tend

t=0
P (t)dt, assuming that the program is executed from time t = 0 to time

t = tend, the power consumption P (t) at time t may have a strong influence on the
overall energy consumption.

4.1. Experimental setup
Five multicore systems with different architectures (Haswell, Broadwell, Skylake,

Coffee Lake, Cascade Lake) have been used for the experimental evaluation, see Ta-
ble 1 for an overview of the characteristics of the systems. Three of the processors
(Haswell, Skylake, Cascade Lake) and two are desktop processors (Broadwell, Coffee
Lake). The compilation of the different program versions has been performed with
gcc (version 4.8.5 on Broadwell, version 4.3.4 on Xeon, and version 7.5.0 on the other
systems). The optimization level -O3 has been used, which ensures that the compiler
can perform all useful transformations for the different RK versions.

Two ODE systems with different computational demands have been chosen as ap-
plication problems to be solved by the RK methods: (i) The Brusselator ODE system
[20], results from a spatial discretization of a two-dimensional time-dependent par-
tial differential equation describing a reaction-diffusion problem of two chemical sub-
stances. Different discretization lead to different sizes of the resulting ODE system:
Using N discretization points in each space dimension leads to an ODE system of size



Xeon E5 Xeon i7 Core i9 Core i7 Xeon Gold
2690 6950X 9980XE 9700 6248

architecture Haswell Broadwell Skylake Coffee Lake Cascade Lake
year of release 2014 2016 2018 2019 2019

minimum frequency 1.8 GHz 1.2 GHz 1.2 GHz 0.8 GHz 1.0 GHz
maximum frequency 2.9 GHz 3.0 GHz 3.0 GHz 3.0 GHz 2.5 GHz

TDP 130 W 140 W. 165 W 65 W 150 W
physical cores 24 10 18 8 20
hyperthreading no yes yes no no
L1 data cache 32 KB 32 KB 32 KB 32 KB 32 KB

L2 cache 256 KB 256 KB 1 MB 256 KB 1 MB
L3 shared cache 30 MB 25 MB 25 MB 12 MB 28 MB

RAM size 64 GB 32 GB 64 GB 16 GB 376 GB

Table 1: Characteristics of the processors used for the experimental evaluation.

n = 2N2. The resulting Brusselator ODE system has the property that each component
of the right-hand side function f has a constant evaluation time that is independent of
the size of the ODE system. Thus, the evaluation time of the entire function f increases
linearly with n. (ii) The Schrödinger–Poisson ODE system results from applying a
spectral method to a time-dependent 1D partial differential equation describing the
behavior of a collisionless electron plasma. The resulting Schrödinger–Poisson ODE
system has the property that the evaluation time of each component of f increases lin-
early with n. Thus, the evaluation time of the entire function f increases quadratically
with n. The different program versions are used to solve these ODE systems. As ex-
ample for an ODE solution method, the popular DOPRI5 method has been used for all
experiments. We expect that other RK methods lead to similar results.

The time and energy measurements have been performed using the Running Av-
erage Power Limit (RAPL) interface and sensors of the Intel architecture [37, 22].
RAPL sensors can be accessed by control registers, known as Model Specific Registers
(MSRs), which are updated in intervals of about 1 ms [22]. To access the MSRs, we
have used the likwid tool-set, especially the likwid-powermeter and the likwid-perfctr
tools in Version 4.1 (Haswell and Broadwell) or Version 5.1 (remaining systems)[43].
For all measurements, the threads are pinned to dedicated cores using likwid-pin. Ex-
periments have shown that the energy measurement with RAPL sensors are quite ac-
curate when compared to measurements with power-meters [37, 36].

4.2. Experiments with different ODE problems

Different ODE problems may have different computational requirements due to
the evaluation cost of the right hand side function f. This may strongly influence the
execution time and energy behavior of the parallel implementation versions.

4.2.1. Experiments with the Schrödinger ODE
Figures 2, 3 and 4 shows the execution time, energy consumption, and power

consumption resulting by executing 50 time steps of the DOPRI5 RK method for a



Schrödinger ODE system with discretization n = 5000 on two different hardware sys-
tems. The number of threads is increased until the total number of cores of the system
used has been reached (24 on the Haswell system and 20 on the Cascade Lake system,
see Table 1). The values for p = 1 are the values for a pure sequential implementation
without any thread overhead. For all measurements, the complete application has been
considered. This includes the allocation and initialization of the data structures, which
is performed by the master thread alone for the parallel versions before the generation
of the remaining threads, and, for the parallel versions, the generation of the threads.
Figure 2 shows that the execution time decreases with an increasing number of threads
for all versions on both systems, i.e., the method shows a good scalability on both sys-
tems. On the Haswell architecture using 24 threads, the speedup reached is 15.4. On
the Cascade Lake architecture, the speedup obtained with 20 threads is 14.0. All ver-
sions show a very similar behavior, i.e., the differences in the different implementation
versions are covered by the large evaluation cost of the right hand side Schrödinger
function. The good scalability can be explained by the fact that the Schrödinger ODE
system has a right hand side function with high evaluation cost, which can be perfectly
distributed among the threads. Comparing the two hardware systems, it can be seen
that execution times on the Haswell system are smaller than the execution times on the
Cascade Lake system due to the faster clock rate of the Haswell system.

Figure 3 shows that the energy consumption decreases with an increasing num-
ber of threads on both hardware systems. This decrease can be explained by the fact
that idle cores also consume power and energy during their idle time, however they do
not contribute to the computation of the result. Correspondingly, the evaluation time
for the application is longer if fewer cores are used, and thus the energy consumption
increases. Comparing the Haswell and Cascade Lake system, it can be seen that Cas-
cade Lake system requires less energy than the Haswell system for the same number of
threads. This can be attributed to the smaller power consumption of the Cascade Lake
system, see Fig. 4, which is caused by the smaller clock frequency used and the cubic
dependence of the dynamic power consumption on the clock frequency (see Equ. 4).
Additionally, the Cascade Lake processor has energy saving features that have not yet
been used for the Haswell processor, see [39] for a detailed treatment. The increase of
the power consumption with the number of threads can be explained by the fact that
idle cores use less energy than cores that contribute to the computation. Therefore, the
power consumption increases if the number of participating cores increases. This can
be observed in Fig. 4 for all versions.

Table 2 summarizes the performance and energy characteristics of the different
hardware systems when solving the Schrödinger ODE with discretization n = 5000.
For all hardware systems, the maximum energy consumption results for a sequential
execution, employing a single hardware core. Similarly, the minimum energy con-
sumption and the minimum execution time results when employing all hardware cores.
For the hardware systems with hyperthreading, no significant reduction of execution
time and energy consumption can be obtained when starting more threads than there
are hardware cores. Thus, the usage of hyperthreading does not lead to an advan-
tage, which can be expected due to the compute-intensive behavior of the Schrödinger
ODE. For all hardware systems, a sequential execution leads to the minimum power
consumption, and the maximum power consumption results when employing all hard-
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Figure 2: Parallel execution time of the different RK versions applied to 50 steps of the
Schrödinger ODE for system size n=5000 on the Haswell and the Cascade Lake architecture.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  5  10  15  20  25

e
n

e
rg

y
 [

J
o

u
le

]

number of threads

Energy to solution for 50 time steps solving Schrodinger

Haswell Version 1
Haswell Version 2
Haswell Version 3
Haswell Version 4

Cascadelake Version 1
Cascadelake Version 2
Cascadelake Version 3
Cascadelake Version 4

Figure 3: Parallel energy consumption of the different RK versions applied to 50 steps of the
Schrödinger ODE for system size n=5000 on the Haswell and the Cascade Lake architecture.



 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  5  10  15  20  25

p
o

w
e

r 
[W

a
tt

]

number of threads

Power consumption for 50 time steps solving Schrodinger

Haswell Version 1
Haswell Version 2
Haswell Version 3
Haswell Version 4

Cascadelake Version 1
Cascadelake Version 2
Cascadelake Version 3
Cascadelake Version 4

Figure 4: Parallel power consumption of the different RK versions applied to 50 steps of the
Schrödinger ODE for system size n=5000 on the Haswell and the Cascade Lake architecture.

Haswell Broadwell Skylake Coffee Lake Cascade Lake

number of threads 24 10 18 8 20
speedup 15.4 8.3 14.2 7.2 14.2

minimum time [s] 3.32 7.6 4.2 8.3 5.1
maximum time [s] 51.3 63.4 59.9 60.0 72.3

minimum energy [J] 649.9 468.3 472.3 331.8 519.3
maximum energy [J] 3533.6 605.3 2394.5 564.2 3626.1
minimum power [W] 68.7 9.5 37.9 8.9 50.1
maximum power [W] 198.8 62.8 112.8 39.9 101.3

Table 2: Performance, energy and power characteristics of the Schrödinger ODE on different processors.

ware cores. Comparing the different hardware systems, it can be observed that the
server processors (Haswell, Skylake, Cascade Lake) have a significantly larger power
consumption as well as a significantly larger maximum energy consumption than the
desktop processors (Broadwell, Coffee Lake).

4.2.2. Experiments with the Brusselator ODE
The situation changes if the Brusselator ODE system is considered, see Figures 5,

6, and 7 for the resulting execution time, energy consumption and power consumption
on three different hardware systems (Haswell, Skylake, Coffee Lake) when execut-
ing 50 time steps for the Brusselator ODE system using discretization N=4096. For
this ODE system, differences between the different implementation versions can be
observed, since the evaluation time of the right hand side function of the Brusselator
ODE system is quite small and the differences in the memory accesses of the different
implementation versions become more relevant.

Figure 5 shows that the execution time still decreases for an increasing number of
threads. However, the decrease is much smaller than for the Schrödinger ODE system
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Figure 5: Execution times of the different RK versions applied to 50 steps of the Brusselator ODE
using different numbers of threads for system size N=4096 on Haswell (left), Skylake (middle),
and Coffee Lake (right).

and different hardware systems show slightly different effects: On the Haswell system,
the smallest execution times are obtained if not all hardware cores are employed. On
the Skylake and the Coffee Lake systems, the smallest execution time results when all
hardware cores are used. Using p = 24 threads on the Haswell system, the largest
speedup observed is for Version 4, which reaches a speedup of 6.0. For comparison,
Version 1 reaches a speedup of only 4.1.

Comparing the sequential versions, it can be seen in Figure 5 that Versions 1 and
3 are the fastest sequential versions on all three hardware systems. Version 4 has a
sequential execution time which is significantly larger than the sequential execution
time of Version 3. The situation changes when the number of threads is increased, and
when using all hardware cores, Version 4 is the fastest version on all three hardware
systems. For example, on the Haswell system Versions 1 and 3 have execution times
which are 12.8 % and 17.8 %, respectively, larger than the execution time of Version 4.

Comparing Versions 1 and 2, it can be seen that these versions have similar exe-
cution times on the Skylake and the Coffee Lake systems, as well as on the Haswell
system for up to 14 threads. When using more than 14 threads of the Haswell sys-
tem, Version 2 is slower than Version 1. Thus, Version 2 cannot take advantage of the
reduced number of barrier synchronizations. Instead, the increase of the data volume
of Version 2 caused by the additional vectors outweighs the reduction caused by the
smaller number of synchronizations. On all three hardware systems it can be observed
that Versions 3 and 4 are the fastest versions when more than half the number of the
available hardware cores are employed. This effect is caused by the better scalability
of these two versions.

The energy consumption shows a slightly different behavior than the execution
time, see Figure 6. For the Haswell and Skylake systems, the energy consumption de-
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Figure 6: Energy consumption of the different RK versions applied to 50 steps of the Brusselator
ODE using different numbers of threads for system size N=4096 on Haswell (left), Skylake
(middle), and Coffee Lake (right).

creases with the number of threads until a certain number of threads is reached (about
14 threads on Haswell and about 10 threads on Skylake). When using more threads,
the energy consumption stays stable or may even increase, depending on the imple-
mentation version and the hardware system. For the Coffee Lake system, no reduction
of the energy consumption with the number of threads can be observed. Comparing the
amount of energy consumed, it can be seen that the two server systems (Haswell and
Skylake) consume significantly more energy than the desktop system (Coffee Lake).
Comparing the different implementation versions, it can be observed that for a se-
quential execution, Version 1 has the smallest energy consumption, especially on the
Haswell and the Coffee Lake systems. On these two systems, the sequential energy
consumption of Version 4 is about 40 % larger than the sequential energy consump-
tion of Version 1. This difference decreases with the number of threads. On all three
systems, either Version 3 or 4 lead to the smallest energy consumption when using a
larger number of threads. The difference in the behavior of the execution times and the
energy consumption can be explained by the increase of the power consumption with
the number of threads, see Figure 7. In particular for a larger number of threads, the
reduction of the execution time when using more threads is over-compensated by the
increase of the power consumption, leading to a stagnation or a slight increase of the
energy consumption.

Similar observations can be made for the other two processors that are not covered
in the diagrams. For the Broadwell system, the advantage of Version 4 over Versions 1
and 2 is even larger. This can also be seen in the next section. Table 3 gives informa-
tion about performance and energy consumption for all hardware systems considering
different numbers of threads up to the number of hardware cores available. Comparing
Tables 2 and 3 shows that the Brusselator ODE usually leads to smaller speedup val-
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Haswell Broadwell Skylake Coffee Lake Cascade Lake

number of cores 24 10 18 8 20
maximum speedup 6.0 10.4 5.3 3.6 7.2
minimum time [s] 48.0 45.7 50.5 75.3 42.6
maximum time [s] 287.0 620.8 268.0 269.1 315.8

minimum energy [J] 8100.4 2154.9 3622.6 1713.9 3753.43
maximum energy [J] 35333.5 5534.4 10651.8 2528.4 16535.8
minimum power [W] 115.0 8.9 39.6 9.4 52.3
maximum power [W] 176.8 59.2 77.1 28.6 88.6

Table 3: Performance, energy and power characteristics of the Brusselator ODE on different processors.

ues than the Schrödinger ODE, since the Brusselator ODE is less compute-intensive
than the Schrödinger ODE. The large speedup for the Broadwell systems is caused by
caching effect of Version 4 that lead to large sequential execution times. On all sys-
tems, the smallest execution times are caused either by Versions 3 or Version 4. In
contrast to the Schrödinger ODE, hyperthreading can help to further reduce the execu-
tion times of the Brusselator ODE (not covered in the table). Again, it can be seen that
the server processors (Haswell, Skylake, Cascade Lake) have a much larger power and
energy consumption than the desktop processors (Broadwell, Coffee Lake). This effect
is especially observable for the newer Coffee Lake system.

4.3. Experiments with frequency scaling

For the experiments with frequency scaling, the two processors that provide hyper-
threading have been selected (Broadwell, Skylake). The number of threads used for
the execution has been set such that each thread can be mapped to a different logical



core, i.e., 20 threads are used for the Broadwell processor and 36 threads for the Sky-
lake processor. The operational frequencies of the cores are set to a fixed value using
likwid-setFrequencies. The uncore frequencies are not set explicitly. Figures
8, 9 and 10 depict the execution time, the energy consumption and the power con-
sumption of the different program versions from Section 2 on the Broadwell processor
(left) and the Skylake processor (right) for all possible frequencies that the processors
provide.

For the Broadwell processor, it can be observed that Version 3 has a smaller execu-
tion time and a smaller energy consumption than Version 1 and 2 for all frequencies,
although the difference is quite small. The behavior of Version 4 is most interesting:
For small frequencies, it has the largest execution time. However, when increasing
the frequency, the execution time decreases faster than for the other versions, and for
frequencies larger than 2.1 GHz, Version 4 is the fastest version. Moreover, for opera-
tional frequencies larger than 1.5 GHz, Version 4 uses the smallest amount of energy,
although the difference to Version 3 is not very large, see Fig. 6 (left). For all versions,
the smallest energy consumption results when using the smallest frequency available,
which is 1.2 GHz. The power consumption increases steadily when increasing the
operational frequency, see Figure 10 (left). For 3.0 GHz, Version 4 uses only about
79.5 % of the execution time of Versions 1 and 2. For the same frequency, the energy
consumption is only reduced to 85.5 %. The difference in savings of execution time
and energy is caused by the fact that Version 4 has a larger power consumption than
Versions 1 and 2 for frequencies larger than 2.5 GHz.

For the Skylake processor, the situation is slightly different. For all frequencies,
Versions 3 and 4 have a smaller execution time than Versions 1 and 2, and Version 4
is slightly faster than Version 3, see Figure 8 (right). For 3.0 Ghz, Version 4 has about
87 % of the execution time of Version 1, i.e., the percentage advantage is smaller than
for the Broadwell processor. Versions 3 and 4 consume less energy than Versions 1
and 2, see Figure 9 (right). For 3.0 Ghz, the percentage energy advantage of Version
4 over Version 1 is about 6 %. For smaller frequencies, the advantage is larger (up
to 10 %). For all versions, the smallest energy consumption is not obtained for the
smallest frequency. Instead, Versions 3 and 4 have their smallest energy consumption
for 1.4 GHz. The energy consumption of all version shows only slightly variations for
frequencies up to 2.2 GHz and rises significantly for the two largest frequencies 2.9
GHz and 3.0 GHz.

Comparing the Broadwell and the Skylake processor, it can be seen that the Skylake
processor has a significantly larger energy consumption than the Broadwell processor,
see Figure 9, although the execution times are quite similar, see Figure 8. This effect
is caused by the significantly larger power consumption of the Skylake processor, see
Figure 10.

4.4. Analysis of the power consumption
The diagrams in Figures 4, 7, and 10 have shown the average power consumption

observed for the entire execution of the different RK versions. However, there are vari-
ations of the power consumption during program execution that are now analyzed in
more detail by considering the dynamic development of the power during the course
of the execution of the RK versions. In particular, Versions 1 and 4 are compared.
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Figure 8: Parallel execution time of RK methods applied to 50 steps of the Brusselator ODE for
system size N=4096 on Broadwell (left) using 20 threads and Skylake (right) using 36 threads.
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Figure 9: Parallel energy consumption of RK methods applied to 50 steps of the Brusselator
ODE for system size N=4096 on Broadwell (left) using 20 threads and Skylake (right) using 36
threads.



 10

 15

 20

 25

 30

 35

 40

 45

 50

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

p
o

w
e

r 
[W

a
tt

]

frequency [GHz]

Power RD ODE on Broadwell

Version 1
Version 2
Version 3
Version 4

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

p
o

w
e

r 
[W

a
tt

]

frequency [GHz]

Power RD ODE on Skylake

Version 1
Version 2
Version 3
Version 4

Figure 10: Parallel power consumption of RK methods applied to 50 steps of the Brusselator
ODE for system size N=4096 on Broadwell (left) using 20 threads and Skylake (right) using 36
threads.

Figure 11 shows the dynamic development of the power consumption of Version 1 (red
lines) and Version 4 (green lines) for the Brusselator ODE system with discretization
N = 4096 on the Broadwell processor. The diagrams are obtained by monitoring the
execution of the entire program using the timeline mode of likwid-perfctr with
time frequency 100 ms. The execution has been performed with the highest opera-
tional frequency available. The upper and the lower diagram, respectively, show the
power consumption for 10 threads (on 10 cores) and for 20 threads (on 10 cores using
hyperthreading).

Each of the RK versions consists of an initialization phase that allocates the data
structures used for the computations and the actual computation phase that executes
the time steps of the RK method. The initialization phase is executed sequentially
by a single thread that starts the working threads after the initialization. The specific
integration interval used for the ODE system leads to the execution of nine consecutive
time steps of the RK method in the computation phase. In Figure 11, the initialization
phase and the computation phase of the program can clearly be distinguished. Due
to the sequential execution, the initialization phase takes the same amount of time in
both diagrams and for both RK versions depicted. The power consumption in the
initialization phase is about 11.5 Watt.

The following computation phase is executed by all worker threads and performs
nine time steps. These nine time steps can clearly be identified in the power diagrams
by the peaks in the power development, especially in the lower diagram. The end of
the different time steps can be identified by a drop in the power consumption, which
is caused by the sequential execution of the error control and the stepsize selection.
Version 4 has larger variations in the power consumption than Version 1 during the
computation phase, which leads to an overall larger average power consumption for
the entire execution. For 10 threads, it can be observed that both versions 1 and 4
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Figure 11: Development of the power consumption during program execution for 10 threads (top)
and 20 threads (bottom) on the Broadwell processor when solving the Brusselator ODE.

need about the same time for the execution of the computation phase. For 20 threads,
Version 4 executes the computation phase significantly faster than Version 1, which
leads to a smaller overall execution time, see also Fig. 8. This demonstrates that the
loop structure of Version 4 provides a larger potential of parallelism, which can be
exploited by the additional threads.

The RK versions perform the same arithmetic operations (potentially in a different
order), i.e., the difference in the performance and energy behavior observed can only be
caused by differences in the memory access behavior. In particular, the faster execution
time of Version 4 over Version 1 can be explained by a better utilization of the memory
hierarchy due to the better temporal locality of the memory accesses caused by the
loop transformations described in Section 2.2. This can be seen when considering
the utilization of the L2 cache: Figure 12 compares the development of the load and
evict volumes of the L2 cache during the execution of Versions 1 and 4 for 20 threads.
Again, the Brusselator ODE is solved for the same situation as in Figure 11. The
diagram shows that Version 4 performs significantly more accesses to the L2 cache than
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Figure 12: Development of the L2 load volume during program execution on the Broadwell pro-
cessor for solving the Brusselator ODE for versions 1 and 4.

Version 1 during the execution of the computation phase, indicating a more efficient
use of the L2 cache. This is also supported by the fact that the main memory the L3
data volumes of Version 4 is significantly smaller than that of Version 1. Detailed
measurements with likwid-perfctr (not shown in a diagram) show that Version
4 leads to only 60.5%/87.3% of the main memory read/write volume of Version 1.
Similar observation can be made for the L3 cache: Version 4 leads to only 69.5%/52.5%
of the L3 read/write volume of Version 1.

4.5. Analysis of the memory access behavior

The preceding subsection has indicated that the memory access behavior may play
an important role for the difference in the performance and energy behavior of the
different RK versions. This is now considered by a more detailed analysis using the
DVFS scaling factor s from Section 3. Using frequency scaling factor s, the overall
execution time TVtotal(n, s) of an RK version V for solving an ODE system of size n
using p threads can be expressed by the following runtime function:

TVtotal(n, s, p) = TVmem(n, p) + TVcache(n, s, p) + TVop(n, s, p) + TVsync(s, p) (7)

with the following components:

• TVmem(n, p) captures the total access time of Version V to the main memory.
This time depends on the system size n, but it is independent from the scaling
factor s, since the memory access time is not affected by DVFS. Only the core
frequency has been varied in the experiments described in Section 4.3. Different
implementation versions may have different memory access times due to differ-
ences in their memory access pattern.

• TVcache(n, s, p) captures the total access time of version V to the caches of the
different levels. This time depends on n, p, and s, since the cache access times
are affected by DVFS, i.e., the cache access time increases with the scaling factor.



Different versions may lead to different cache access times due to differences in
the memory accesses performed.

• TVop(n, s, p) captures the time for performing arithmetic operations. This time is
influenced by n, p, and s. Since all versions perform the same number of numer-
ical operations (possibly in a different order), the same time for TVop(n, s, p) for
fixed n, p, and s results, independently from the specific version.

• TVsync(s, p) captures the time needed for synchronizations that are required for
a parallel execution. Different versions have different synchronization require-
ments, see Section 2.3, and the synchronization time depends on the number p
of threads and the scaling factor s.

For large values of n and moderate values of p, TVsync(s, p) is small compared to the
other components and is not considered further. In the following, we consider TVmem
and TVcache in more detail, since these terms are mainly responsible for the performance
and energy differences between the different versions. The memory and cache access
volumes (in GBytes) of the different versions are shown in Table 4, considering the
parallel execution with 20 threads on the Broadwell processor for the Brusselator ODE
with 50 time steps and discretization N = 4096. The information in the table has been
obtained using likwid-perfctr to access the corresponding MSR registers. Experiments
with a sequential execution or a parallel execution with a different number of threads
lead to the same volumes of memory read and write accesses. The information in Table
4 shows the following differences of the RK versions:

• Main memory: Version 3 and especially Version 4 exhibit a significantly smaller
read volume from the main memory (MM) than Versions 1 and 2. Versions 3 and
4 have been designed with the goal to have a better utilization of the memory
hierarchy by a program restructuring that leads to a larger potential of temporal
locality. The measurements show that this goal has been reached by Versions
3 and 4. The difference between the versions for the write volume from main
memory is smaller.

• L3 cache: The usage of the L3 cache shows a similar behavior than the usage of
the main memory: Versions 3 and 4 lead to less load and evict operations than
Versions 1 and 2. However, the difference is not as large as for the main memory.
The biggest difference can be observed for the L3 evict volume.

• L2 cache: The situation is different for the usage of the L2 cache: Table 4 shows
that Version 4 has a significantly larger load and evict volume of the L2 cache
than the other versions, which indicates a more intense use of the L2 cache due
to an increased temporal locality. Compared to Versions 1 and 2, Version 3 also
leads to less load and evict operations.

The differences observed in the memory access behavior of the different versions can
help to explain differences in the execution times for the Broadwell processor as well
as for the other processors, see Figure 5. For a sequential execution of Version 4,
the reduction in the main memory and L3 cache data volumes of Version 4 cannot



compensate the large L2 data volumes. However, when increasing the operational
frequency, the difference in the execution time decreases, which can be explained by
the fact that the time for the L2 data accesses decreases when increasing the frequency,
but the time for the main memory operations remains unchanged. In the sequential
case, this effect is not large enough to reduce the time for load operations of Version 4
below those of Versions 1 to 3. Therefore, Version 4 remains significantly slower than
the other versions in the sequential case.

For a parallel execution, the access operations to the L2 cache are distributed be-
tween the different threads, which reduces the time for the L2 load operations. How-
ever, for small operational frequencies the time for the access operations to the L2
cache is quite high, so that the savings in memory read and write volume are not com-
pensated. When increasing the frequency, the reduction in the access time to the L2
cache leads to a larger saving in time, and in combination with the smaller volume of
memory operations, Version 4 outperforms Versions 1 and 2. This effect increases with
the number of threads, which can be explained by the decreasing number of L2 oper-
ations per thread. The execution time of Version 3 is smaller than the execution time
of all other versions for smaller frequencies up to 2.1 GHz, see Fig. 8. For frequencies
over 2.1 GHz, Version 4 has a smaller execution time than Version 3. This behavior
can be explained by the memory and cache access behavior, see Table 4. The amount
of read accesses to the main memory and accesses to the L3 cache of Version 3 lies
between the amount of Version 1 and 2 on the one hand and the amount of Version
4 on the other hand. Therefore, Version 3 is faster than all other versions for small
frequencies, and for larger frequencies, Version 4 has the smallest execution time due
to the L2D frequency scaling behavior described.

Table 4: Memory access behavior for the Brusselator ODE on the Broadwell processor
Version Version 1 Version 2 Version 3 Version 4
MM read volume [GBytes] 1458.4 1459.2 1256.6 882.8
MM write volume [GBytes] 746.7 746.7 545.3 652.5
L3 load volume [GBytes] 1646.4 1657.3 1446.2 1144.5
L3 evict volume [GBytes] 395.1 390.9 293.9 207.4
L2D load volume [GBytes] 1720.9 1741.5 1545.1 4269.3
L2D evict volume [GBytes] 751.3 755.2 551.8 2526.8

4.6. Summary of performance, energy and power behavior

The experimental evaluation for the different processors has shown that application-
specific loop transformations can have a significant impact on the energy consumption
and the performance of the resulting program versions. The specific impact observed
depends on different influencing factors, including the processor architecture, the num-
ber of threads used for the execution, the operational frequency, the specific ODE prob-
lem to be solved, and the size of the input data for the ODE problem. The following
observation can be made:

Processor architecture: Comparing the five processors used, it can be seen that
there are slight differences in the execution times for the same given ODE system



and a specific system size, see the minimum and maximum execution time entries in
Tables 2 and 3. When using the same number of threads for the Brusselator ODE, the
Coffee Lake processor is about 30 % slower than the other processors. However, the
execution times on the different processors are quite similar for the Schrödinger ODE.
The differences of the energy consumption between the different processors can be
quite larger: the two desktop processors (Broadwell, Coffee Lake) require much less
energy than the three server processors (Haswell, Skylake, Cascade Lake). For example
when using eight threads, the Cascade Lake processor uses between 50 % and 75 %
more energy than the Coffee Lake processor, depending on the ODE problem and the
implementation version. The reason for this behavior lies in the fact that the desktop
processors have a significantly smaller power consumption than the server processors.

Number of threads: The execution time typically decreases and the power con-
sumption typically increases when the number of threads is increased. This can be
observed for all five hardware systems, for both ODE applications and all four pro-
gram versions. For the Brusselator ODE, the scalability of Version 4 is significantly
better than the scalability of the other versions. Although Version 4 starts with a slower
sequential execution time in most cases, Version 4 outperforms the other versions when
using a larger number of threads. This observation can be made for all processors con-
sidered, but there are differences in the quantitative behavior of the different proces-
sors, and the percentage improvement in the execution time of Version 4 over Version
1 varies between the processors.

Frequency scaling: Reducing the operational frequency reduces the dynamic po-
wer consumption of the cores. On the other hand, the execution time is increased,
and the effect on the energy consumption results from a combination of these two
effects. For all platforms and implementation versions, using the highest frequencies
results in the largest energy consumption, which is usually significantly larger than the
smallest energy consumption. However, using the smallest frequency provided does
not always lead to the smallest energy consumption. Instead, there might be another
(small) frequency that has a slightly smaller energy consumption. This effect could,
e.g., be observed for the Skylake processor, see Figure 9.

Application problem: For ODE applications with an expensive right-hand side
function (such as Schrödinger), there is no significant difference in the time and energy
behavior of the four versions, and all version show a very good scalability. For ODE
applications with a less expensive right-hand side function (such as Brusselator), the
execution time varies with the system size and the number of threads. For small system
sizes and a small number of threads, Versions 1 and 3 are often the most efficient
ones. For large systems and a larger number of threads, Versions 3 and 4 are the best
implementations, and Version 4 usually has a slight advantage over Version 3.

5. Modeling of power and energy consumption

The observed performance and energy behavior of the different RK versions can be
modeled using the power and energy models from Section 3. This will be considered
in this Section in more detail.



5.1. Power modeling
The power model in Equ. (5) uses two parameters Pdyn(1) and Pstat(1) express-

ing the dynamic and static power consumption for the un-scaled case s = 1. A pa-
rameter fitting approach can be used to determine the values of these two parameters
using power values that have been measured for the different RK versions on a specific
processor. The parameter fitting has been performed using the gnufit tool, which is
based on a nonlinear least squares fit mechanism based on the Marquardt-Levenberg-
algorithm. We consider two functions for the fitting: The first function is Equ. (5) and
the data values are the power values measured for the four different RK versions for
different frequencies. An alternative power function to Equ. (5) is

P alt(s) = s−3 · P altdyn(1) + P altstat(1). (8)

This function is based on the assumption that the static power consumption is constant
and does not depend on the operational frequency, which has been proposed by several
authors [48]. Table 5 shows the result of the modeling for the two power functions (5)
and (8) and the resulting parameter values. The table also shows the root-mean-square
deviation (RMSD), which measures the standard deviation between the predicted and
the measured power values, i.e., smaller RMSD values indicate a better fit than larger
RMSD values. The RMSD values are computed as

√
WSSR/ndf , where WSSR is

the weighted sum of squared residuals, also referred to as chi-square, and ndf is the
number of degrees of freedom, which is 13 in our case, since 15 different frequencies
(or scaling factors) are investigated and two parameters are to be determined.

Table 5: Power modeling for the RD ODE on the Broadwell processor
Version Version 1 Version 2 Version 3 Version 4
Pdyn(1)[W] 10.56 12.69 16.71 24.23
Pstat(1)[W] 31.34 30.65 27.77 22.36
RMSD (5) 1.09 1.35 1.37 0.76
P altdyn(1)[W] 29.79 31.41 33.71 38.01
P altstat(1)[W] 13.99 13.74 12.43 9.96
RMSD (8) 1.29 1.32 1.42 1.03

Using the parameters from Table 5 and the function from Equ. (5), Figure 13 com-
pares the modeled power consumption with the measured power values. The minimum
and maximum error bounds are shown as dotted lines. Figure 13 shows that the mod-
eling based on function (5) is quite accurate, i.e., Equ. (5) is well suited to capture
the power consumption behavior. Figure 13 also depicts the model with the alternative
power function (8). It can be seen that this modeling is less accurate especially for
larger frequencies. This fact is also represented by the larger RMSD values in Table 5.

5.2. Time modeling
As described in Section 3.2, the execution time of the different versions of the

RK methods decreases with increasing frequency. The parallel execution time using p
threads for an ODE system of size n can be modeled by

TV (n, s, p) = TVbasis(n, 1, p) + s · TVscal(n, 1, p) (9)
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Figure 13: Modeling of the power consumption for the different RK Versions using Equ. (5) with
error bounds given by Pmin(s) and Pmax(s) on the Broadwell processor.

where TVbasis(n, 1, p) represents the part of the execution time of version V that does
not scale with the scaling factor s and TVscal(n, 1, p) represents the part that scales
with s and uses s = 1. Comparing Equ. (9) with Equ. (7), it is TVbasis(n, 1, p) =
TVmem(n, p) and s ·TVscal(n, 1, p) = TVcache(n, s, p)+TVop(n, s, p). Using the modeling
with gnufit from Subsection 5.1 based on the measured execution times, the parameter
values in Table 6 are obtained. The resulting modeling according to Equ. (9) is shown
in Fig. 14. The figure shows that the resulting modeling is quite accurate. Moreover, the
modeled execution times for the different RK versions correspond to the observations
in Sections 4.3 and 4.5: the modeling for Version 4 leads to a significantly smaller
value for Tbasis(n, 1), which can be explained by the smaller data volume to the main
memory reported in Section 4.5. The required access time does not scale with s, since
the main memory is not affected by DVFS. Similarly, due to the intensive use of the
L2 cache reported in Section 4.5, see Table 4, the value for Tscal(n, 1) of Version 4 is
much larger than for the other versions. Overall, Equ. (9) is well suited to describe the
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performance behavior of the different RK versions using frequency scaling.

Table 6: Modeling the execution time of the RD ODE on the Broadwell processor
Version Version 1 Version 2 Version 3 Version 4
Tbasis(n, 1)[sec] 42.98 41.26 31.19 10.51
Tscal(n, 1)[sec] 21.33 22.20 23.79 39.08
RMSD (5) 0.95 0.72 1.13 1.39

5.3. Energy modeling

The energy consumption of the different RK versions results from a combination
of the power consumption and the execution time, see Equ. (6). Accordingly, the mod-
eling of the energy consumption using frequency scaling uses the product of the power
consumption model (Equ. (5)) and the time model (Equ. (9)) to obtain an estimation of
the energy consumption. The result of this energy modeling is shown in Figure 15. It
can be seen that the modeled energy values fit the measured energy values quite well.
The maximum and average percentage deviations for the different RK versions over
all operational frequencies are shown in Table 7. The average deviation between the
modeled and the measured energy consumption is below 3 % and the maximum per-
centage deviation is 6.3 %. Thus, the modeling is quite accurate and results in a small
percentage difference between the measured and the modeled energy values. Overall,
it can be concluded that the model is well suited to capture the energy behavior of the
different RK versions. In particular, the same model can be used for all RK versions
and the model captures the differences between the different RK versions quite well
and shows the advantage of Version 3 and 4 over Versions 1 and 2.



Table 7: Percentage deviation resulting for the energy modeling
Version Version 1 Version 2 Version 3 Version 4
maximum deviation[%] 5.6 % 6.3 % 4.6 % 5.1 %
average deviation[%] 2.5 % 2.8 % 2.5 % 2.0 %
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Figure 15: Modeling of the energy consumption with DVFS for the different RK Versions.

6. Related work

Runge-Kutta (RK) methods are popular solution methods for ODEs and imple-
mentations of RK methods are provided by several numerical libraries. Especially the
implementation of DOPRI5 provided by Hairer and Wanner [20] is often used in prac-
tice. However, this code is specialized for DOPRI5 with fixed coefficients and does
not support parallelism. Sequential implementations of several RK methods including
DOPRI5 are also provided by RKSUITE [4], Matlab, and IMSL. Loop transforma-
tions to improve the locality behavior of sequential ODE solvers have been described
in [32] covering sequential executions only. Analysis techniques for programs from
scientific computing have been considered in [26, 27]. Some explicit RK methods are
included as timesteppers in the PETSc library [2]. The default method is a 3rd order
Bogacki-Shampine method which provides a 2nd order embedded solution. A 5th or-
der Dormand-Prince method with a 4th order embedded solution is also supported. The
parallelization approach of PETSc uses the MPI library, and a parallelization based on
multithreading is not supported.

Approaches to improve the potential of parallelism in RK methods are often based
on the development of new numerical algorithms with independent stage vector compu-
tations [46, 5, 6, 47, 45, 44, 31]. For most of these new methods, the parallel execution
is based on the computation of a fixed number of stage vectors by different execution
units. Thus, the parallelism is limited by the number of stage vectors to be computed
in one time step, which is usually quite small. In contrast, this article considers clas-
sical RK methods with all their benefits concerning numerical accuracy and stability.



Moreover, the degree of parallelism is limited only by the size of the ODE system to
be solved, which can be quite large, e.g., if ODEs resulting from discretized PDEs are
considered.

The energy consumption of processors has been increasingly gained interest during
the last years [38, 13]. To improve the energy consumption, several power-management
techniques have been developed and used, including power capping [19], clock gating
[3], and DVFS [42]. These techniques have been integrated in modern processor ar-
chitectures [11]. Fundamental aspects of speed scaling and power-down scheduling
are described in [9]. The present article considers the DVFS technique, which trades
off performance for power consumption by lowering the operational frequency. Ap-
proaches to determine the voltage scaling factor that minimizes the total CPU energy
consumption by taking both the dynamic power and the leakage power into considera-
tion has been discussed in [23, 48] for sequential executions. Power models for multi-
core designs are developed in [13]. Power models for large-scale systems are described
in [29, 28]. A detailed analysis of the power consumption of application codes and a
power estimation method are given in [21]. A detailed discussion and usage of energy
predictive modelling using performance monitoring counters is given in [40, 14].

Applying program transformations to ODE solvers and investigating the effect on
the resulting execution time and energy consumption has already been pursued in [33].
The present article is an extension of this work, covering more hardware systems and
performing a more detailed analysis of the performance and energy behavior. It also
adds an investigation of the influence of the power consumption, see [34] for prelim-
inary results, as well as a modeling of the power and energy consumption using the
model from Section 5. Such a modeling has already been attempted in [35].

Energy consumption issues have also been considered in the context of specific ap-
plications, especially from the area of numerical analysis. The investigations include
solvers for dense and sparse linear systems such as Cholesky factorization [1], precon-
ditioned Conjugate Gradient methods [8], as well as iterative refinement techniques and
reduced-precision computing features in modern accelerators [18]. A detailed survey
of power and energy efficient techniques for (dense and sparse) linear algebra opera-
tions is given in [41]. The interplay between energy efficiency and performance for
the numerical solution of PDEs is investigated in [17] with an emphasis on low-power
ARM systems. The redesign of a hydrodynamic application towards energy efficiency
has been investigated in [10] for a CPU-GPU combination. The reduction of the energy
cost of applications from scientific computing is considered in [25] with an emphasis
on systems of extreme scale, addressing both hardware and algorithmic efforts. A
DVFS-based online frequency selecting algorithm for parallel iterative asynchronous
methods running over grids has been presented in [15].

7. Conclusions

In this article, we have investigated how the performance and energy consump-
tion of parallel ODE solvers can be influenced by applying application-specific pro-
gram transformations. In particular, we have investigated the behavior of the resulting
program versions for different numbers number of threads and different operational



frequencies used for the execution. The investigation shows that the program trans-
formations can have a significant effect on the performance and energy consumption.
Depending on the specific execution platform, the execution time and the energy con-
sumption can be reduced considerably compared to the basic version. The differences
in the improvements of execution time and energy consumption, respectively, arise
from the varying power drawing caused by the implementation versions examined.

The application-specific program transformations used to derive the series of differ-
ent implementation versions of the ODE solvers are difficult to find by current compil-
ers, since intermediate steps in the intertwined loop structures are required to exchange
function evaluations with RK computations. In our investigations, this is indicated by
using the highest compiler optimization level O3 for all implementation versions. If the
compiler would be able to detect the transformations, this would have resulted in the
same execution time for all implementation versions. Especially ODE solver Version 3
and 4 would not gain any performance improvement. However, as our measurements
have shown, the performance and energy improvements are clearly visible for those
two ODE solver versions. Our results may prepare the ground for a tuning method-
ology for ODE solvers, which enables a better performance or energy consumption
by a switching between the different implementation versions for different situations,
e.g., the specific ODE system to be solved, the size of the ODE system, the number of
threads available, and the specific hardware capabilities.

An analytical modeling can help to estimate the performance and energy consump-
tion of different versions. We have shown that it is possible to build such analytical
models for performance and power consumption for the different implementation ver-
sions, which can be considered as a first step in the direction of an application-specific
control of frequency scaling. Moreover, the models can be used for an a priori selection
of a suitable implementation version, depending on the specific execution situation.

Application-specific program transformations as they have been investigated for
embedded RK methods can also be derived for other ODE solvers such as iterated RK
methods [30] or parallel Adams methods [45]. To do so, the computational structure of
these methods has to be analyzed carefully to find the synchronization points required
for the numerical correctness as it has been done for the embedded RK methods in this
article.

Other numerical methods such as solution methods for PDEs could also benefit
from application-specific transformations as they have been applied in this article.
However, new transformations would have to be derived that are adapted to the compu-
tational structure of the specific numerical method. The transformations should address
the computational kernels that are responsible for the main computational work. When
deriving such transformations, the principal goal should be to obtain a good temporal
access locality to the data structures used for the numerical values, i.e., after having
accessed or computed a data element, this element should be used as often as possible.
This approach can help to get a more efficient utilization of the cache memories of the
processors.



Acknowledgment

This work is supported by the German Ministry of Science and Education (BMBF),
project Self-Adaptation of Time-step-based Simulation Techniques on Heterogeneous
HPC Systems (SeASiTe) under project number 01IH16012A/B. Moreover, we thank
the LRZ Munich for the access to the Xeon system used for the experimental evalua-
tion.

References

[1] J.I. Aliaga, H. Anzt, M. Castillo, J. C. Fernández, G. León, J. Pérez, and E. S. Quintana-
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