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Abstract

We studied anomalous diffusion under the influence of an external force on finite regular
Sierpinski carpets. In order to investigate the time development of the probability density
p(r, t) we utilize the master equation approach. Thus, we are able to determine important
quantities depending on their space direction e ∈ {x, y}, like the mean drift velocities
〈vdre〉, the mean square displacements 〈e2〉 and the random walk dimensions dwe

. Apply-
ing different force strengths in x-direction we find a maximum 〈vdrx〉 for small to medium

force strengths in x. According to 〈x2〉 ∼ t
2

dwx , we determine that dwx
< 2 along the

external force. So, diffusion seems to be superdiffusive, although diffusion is hindered by
structure and delayed be waiting times. Finally, this seems to be the result of two compet-
ing effects. First, the particles get accelerated due to the external force. However, they get
also trapped according to the complex structure which takes more time to escape caused
by the external force. Thus, the distribution spreads faster with than without an external
force and dwx

< 2.
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1 Introduction

In technology and science we can observe many anomalous diffusion processes influ-
enced by external forces. Examples are the impedance spectroscopy measurements as for
polymer electrolytes [1], hopping electron conduction in doped semiconductors in strong
electric fields [2], or diffusion of particles in gels under high gravity or centrifugal force
as in chromatographic columns [3].
The external force causes diffusing particles to move preferred in direction of the exter-
nal force direction. Besides, also the complex structure of real materials [4], like self-
similarities of certain length scales, play an important role. We apply regular Sierpinski
carpets (SC), a special kind of fractals, to model these complicate structures. SCs are
defined by a generator, which is a square divided in n × n subsquares (see Fig. 1). There
are m subsquares labeled black and the rest are white that means they are removed. In
order to construct a SC we start with a generator and in each iteration step we replace
every black subsquare by a scaled down version of the generator. If this is repeated ad
infinitum, the limit object is a SC, where we define its fractal dimension df as df = log m

log n
.

As real materials have a smallest length scale of self-similarity, we stop the iteration
process after l times and we obtain an iterator of depth l. Furthermore, we combine
copies of the iterator to one carpet. Thus, we model the effect that disordered media are
rather homogeneous at large length scales [5].
It is known that such complex structures lead to anomalous subdiffusion [6]. So the mean
square displacement 〈r2(t)〉 of diffusing particles increases not linear in time t, as for
normal diffusion, but

〈r2(t)〉 ∼ t
2

dw , (1)

where dw > 2 is the random walk dimension [7].
In the next section we will introduce our simulation model and the chosen parameters.
Afterwards, we present our results and we will discuss them. Finally a short conclusion
is given.

2 Diffusion model in disordered media

We model the diffusion on SCs with the master equation approach. With this approach we
are able to calculate the time evolution of the probability density p(r, t) of many particles
or random walks on SCs. Analyzing the resulting p(r, t) we can determine many impor-
tant quantities depending on their space direction e ∈ {x, y}, as the mean drift velocities
〈vdre〉, the mean square displacements 〈e2〉 and thus, the random walk dimensions dwe

,
and many more.
The probability density p(ri, t) describes the probability p of a walker to be at time t at a
certain position ri = (x, y). The new p(r, t + 1) can be calculated as

p(ri, t + 1) = Γiip(ri, t) +
∑

j∈〈i〉

Γijp(rj, t), (2)

where j ∈ 〈i〉 represents all neighboring black squares rj of ri, Γij is the transition
probability for a walker to move from square rj to ri and Γii is the probability to stay. We
choose our transition probabilities according to the blind ant model [8]. That means every
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Fig. 1: Four different generator patterns with same df = 1.59

neighboring square is chosen with a probability of 1/4. If there is a neighboring black
square, Γji is set to Γji = 1/4. The walker stays on its current position with a probability
Γii = 1 −

∑
j∈〈i〉 Γji, if there is white square.

We modified the transition probabilities according to the external force, we want to apply
[9]. Thus, we defined a vector b = (bx, by) with bx, by ∈ [0 : 1] for the external force
strength. So our new transition probabilities to neighboring black squares are

Γij =
1

2d

(
1 + ejib

)
, (3)

with d as space dimension and eji as unit vector pointing to the four neighboring squares
rj.
Implementing the master equation approach requires an efficient processing of large data
sets. In every time step we need to calculate the probabilities p(ri, t + 1) for all squares
ri using the probabilities of the previous time step and the neighboring information of
the SCs. The irregular carpet structure requires appropriate data structures and efficient
algorithms for querying, calculating and storing all necessary data. Because of the high
computational workload and the memory requirements, a parallel implementation based
on the Task Pool Teams concept [10] was used to solve the master equation on regular
and randomized SCs .

3 Results and discussion

We applied four different generator patterns, shown in Fig. 1, with same fractal dimension
df but different random walk dimension dw, in order to analyze effects of structures like
dead ends to the diffusion influenced by an external force, like temperature difference,
magnetic or electric fields. The external force is chosen to be along the positive x-axis.
We investigated two important quantities for different iteration depths l = 1, 2, 4. But,
we will present all results for l = 2, and in first order for generator E, as time scales
and structure elements are appropriate to show and to discuss all necessary phenomena,
however they appear in all iteration depths. We calculated the drift velocities 〈vdre〉 and
the second central mean square displacements 〈D2(Xe)〉 = 〈e〉2 − 〈e2〉, both in x- and
y-direction, and depending on the external force.
First, we present our results of the drift velocity 〈vdre〉 over the external force strength
bx for the generators C, D, E, and F (see Fig. 2). We know that for homogeneous media
we find a monotonic increasing 〈vdrx〉 for increasing bx. However, in Fig. 2(a), we see a
non-monotonic response of 〈vdrx〉 for increasing bx [9,11]. We observe a maximum 〈vdrx〉
for small to medium amplitudes. Perpendicular to the force, in y-direction (Fig. 2(b)), we
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Fig. 2: Here the mean drift velocities 〈vdre
〉 in x- and y-direction for different force

strengths bx are shown for all generators (see Fig. 1).

find such a non-monotonic behavior for 〈vdry〉 at smaller order of magnitudes. But, this
small drift is caused by the fractal structure of the medium, where diffusion takes place.
Then we analyze the time development of the mean square displacement 〈D2(Xe)〉, which
can be seen in Fig. 3 for generator E. The vertical lines in the graph represent the average
number of time steps t1 = 4298 and t2 = 281753 to cross the linear size of an iterator of
depth l = 1 and 2. Furthermore, we also introduce a reference graph for normal diffusion
(dw = 2).
In Fig. 3(a), we observed that along the external force and within the fractals regime
(t < t2) the slopes of 〈D2(Xx)〉 are steeper than normal diffusion, thus dwx

< 2. This
corresponds to superdiffusion. On the other hand, we find that without an external force
(bx = 0) and perpendicular to the force (see Fig. 3(b)) the slopes are flatter than normal
diffusion, so dwy

> 2 and subdiffusive behavior can be seen. In all cases we recognize
that diffusion crosses over to normal diffusion for long time scales (t > t2).
Although diffusion is hindered by structure and particles get trapped in dead ends we
observe a superdiffusive behavior along the external force. In order to analyze that phe-
nomena we determine the marginal distribution p̃(x, t) =

∑
y p((x, y), t) of p(r, t). We

plotted p̃(x, t) over x (Fig. 4) for generator E at time t = 489 for bx = 0 and bx = 0.4.
The vertical line represents the mean value 〈x〉 of p(r, t).
For bx = 0, we see that 〈x〉 is close to the maximum peak of p̃(x, t) at the position
x = 0.79. Moreover, the distribution is fast decaying to both sides similarly. However,
applying an external force 〈x〉 and the main peak of p̃(x, t) are not at the same position.
Furthermore, we do not observe only one major peak, but three and the whole distribution
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Fig. 3: It is presented the central mean square displacement D2(Xe) in x- and y-direction
over time t for an iterator of depth l = 2 of generator E (see Fig. 1(c)).
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Fig. 4: The marginal distribution p̃(x, t) over x is shown for generator E (l = 2) (see
Fig. 1(c)) for bx = 0.0 and bx = 0.4.

is flatter for bx = 0.4 than for bx = 0.
That means, particles follow two competing effects. First they move preferred and thus
faster along the external force. But they still get trapped according to the structure. If the
traps lay along the force direction, it takes more time to escape. The distribution flattens
down much faster and dwx

< 2. So, we see an overlapping of subdiffusion, trapping and
ballistic motion.

4 Conclusions

We studied anomalous diffusion on regular SC structures under the influence of an ex-
ternal force. Therefore, we investigated four different generator pattern with six different
external force strengths applied at iteration depth l = 2.
We determined the probability distribution p(r, t) and thus, the mean value 〈x〉, mean drift
velocities 〈vdre〉 and central mean square displacements 〈D2(Xe)〉 in x- and y-direction
(e ∈ {x, y}). We found a non-linear response of 〈vdrx〉 with increasing force strength in
x-direction and we obtained maximum 〈vdrx〉 for small and medium forces. Moreover,
we observed dwx

< 2 along the external force. That implies a superdiffusive process,
although diffusion is hindered by dead ends and waiting times.
An explanation gave us the analysis of the corresponding marginal distributions p̃(x, t).
We observed that particles undergo two competing effects, the acceleration due to the
external force and a stopping and waiting corresponding to the trapping in dead ends
along the external field. Thus, the distribution spreads and flattens much faster. So, dwx

is larger than the ’normal’ subdiffusional process on fractals and even larger than normal
diffusion.
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