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Abstract

The parallel preconditioned conjugate gradient method (CGM) is used in many applications of scienti�c
computing and often has a critical impact on their performance and energy consumption. This article investigates
the energy-aware execution of the CGM on multi-core CPUs and GPUs used in an adaptive FEM. Based on
experiments, an application-speci�c execution time and energy model is developed. The model considers the
execution speed of the CPU and the GPU, their electrical power, voltage and frequency scaling, the energy
consumption of the memory as well as the time and energy needed for transferring the data between main
memory and GPU memory. The model makes it possible to predict how to distribute the data to the processing
units for achieving the most energy e�cient execution: The execution might deploy the CPU only, the GPU only
or both simultaneously using a dynamic and adaptive collaboration scheme. The dynamic collaboration enables
an execution minimising the execution time. By measuring execution times for every FEM iteration, the data
distribution is adapted automatically to changing properties, e.g. the data sizes.
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1. Introduction

For simulations in science and technology, fast and energy-e�cient numerical methods are essential. Depend-
ing on the algorithm, graphics processing units (GPUs) have proven to be faster [1, 2] and more energy-e�cient
[3, 4, 5] than CPUs. This work investigates an energy-aware execution of a parallel preconditioned conjugate
gradient method (CGM) which is used in an adaptive �nite element method (FEM).

Both kinds of processing units, CPU and GPU, can execute the CGM. The possibility of moving the computation
freely between the processing units provides the opportunity to choose the most energy-e�cient way of execution.
Depending on the characteristics of the machine, the best workload distribution may be: executing the whole
workload on the CPU, executing the whole workload on the GPU, or deploying a CPU/GPU collaboration where
each processing unit executes a part of the workload.

For an energy-aware workload distribution, an application-speci�c execution time and energy model is
developed. The model is based on various experiments and considers the execution speed of the CPU and the
GPU, their electrical power, voltage and frequency scaling, the energy consumption of the memory as well as
the time and energy needed for transferring the data between main memory and GPU memory. For the cases
where the model yields the CPU/GPU collaboration as the most energy-e�cient way of execution, a dynamic and
adaptive CPU/GPU collaboration scheme is exploited. This scheme minimises the execution time of the CGM by
measuring a number of parameters during the execution and predicting the optimal workload distribution for
the CGM of the next FEM iteration.

According to [6], “support for modelling, measurement, and analysis, and autotuning on/for heterogeneous
hardware platforms” as well as “energy-e�ciency adaptation” mark important milestones on the way to the
next-generation computing systems, such as exascale computing. This article contributes to reaching these
milestones by developing an execution time and energy model for the execution of a CGM on a heterogeneous
CPU-GPU platform. The model provides the possibility to distribute the workload between CPU and GPU in an
optimal way with respect to the execution time or the energy consumption. The model enables to choose between
execution on CPU only, GPU only, or using CPU/GPU collaboration. For the collaboration, an online autotuning
method minimising the execution time is exploited which does not only take into account characteristics of the
machine and the input data, but also considers in�uences which are changing during the simulation, e.g. the
increasing number of mesh nodes. Furthermore, the fact that AMD announced heterogeneous queuing [7] for its
upcoming generation of advanced processing units (APUs), i.e. processing units combining CPU and GPU, shows
the signi�cance of such approaches. The principle of heterogeneous queuing is based on a central, shared queue
of workload which is distributed automatically to heterogeneous processing units, i.e. the CPU or the GPU part
of the APU. Partly, heterogeneous queuing does in hardware what this article proposes to implement in software.

This article will progress as follows: The application, a parallel preconditioned conjugate gradient method,
is explained in Sect 2. Section 3 presents the methodology used for measuring execution times and energy
consumption as well as the experiments conducted. The experiments lead to an execution time and energy
model which is developed in Sect. 4. In that section, also the approaches for �nding an energy-aware workload
distribution are discussed. The dynamic workload distribution method is presented in Sect. 5. Section 6 presents
related work and Sect. 7 concludes the article.

2. Parallel preconditioned conjugate gradient method

The scienti�c code considered is an adaptive �nite element method (FEM) [8] which is applied to deformation
problems. The FEM re�nes its mesh adaptively at the most critical points in contiguous iterations, i.e. it adds
more elements to the mesh at the points with the largest deformation gradients. The following steps are executed
consecutively until a given accuracy is reached: (I) adaptive, instead of total, mesh re�nement, (II) assembly of
the sti�ness matrices, (III) solution of a linear system of equations with the conjugate gradient method, and (IV)
error estimation for next re�nement. Step (III) is the most time-consuming step of the FEM and investigated in
this article.
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2.1. Sequential method

The conjugate gradient method in step (III) solves the linear system of equations with the sti�ness matrix A
and the load vector b

Au = b (1)

by iterating and testing for an approximation uk if Auk ≈ b holds. More precisely, it is tested whether the
residuum rk = |Auk − b| is below a given error bound e, i.e. rk < e. If the condition is not satis�ed, the next
approximation uk+1 is computed and tested in a further iteration. The �rst approximation u1 is chosen arbitrarily.
Using a preconditioner for choosing uk+1 accelerates the convergence and hence reduces the number of iterations
needed.

The routine ppcgm as implemented in [8, 9] is shown as pseudo code in Alg. 1. The routine executes
the conjugate gradient method as described. ppcgm calls the routine axmebe to calculate the matrix-vector
multiplication y = Au. axmebe does not use the full vectors u and y and the full matrix A, but performs an
element-wise matrix-vector multiplication of the form:

yel = Aeluel (2)

for all �nite elements el of the FEM. While the size of the full vectors grows proportionally to the number
of elements and may grow to some hundreds of thousands, the size of the element vectors remains constant.
Depending on the number of nodes per elements and the number of degrees of freedom, the size of an element
vector is between 8 and 81. The data needed for processing one element, i.e. the element data structures Ael , uel
and yel , is extracted from the full data structures and converted back by dedicated functions o2el and el2o:

Ael = o2el(A,el) , uel = o2el(u,el) , (3)

y =
∑
el

el2o(yel ) . (4)

Since the equations (2) to (4) are independent from each other for each element, axmebe can be executed in
parallel, as shown in Alg. 1 (Lines 12 to 18): In Line 13, the element data structures are extracted from the full
data structures according to Eq. (3). The matrix-vector multiplication of Eq. (2) is performed in Line 14, and
the element data structures are converted back according to Eq. (4) in Line 16. For writing into the full vector
y, which is shared between the processors, the write accesses between have to be synchronised by a mutual
exclusion denoted as critical section in the pseudo code.

2.2. Parallel CPU/GPU execution

The parallel section in lines 12 to 18 of Alg. 1 is suitable for being executed on both, CPU or GPU. With parallel
execution on the CPU and on the GPU, the high computational power of the GPU can be exploited without
leaving the CPU idle in the meantime. The implementation is shown in Alg. 2 [10]. The bars and the symbols on
the right-hand side indicate execution time parameters which will be needed in the following Subsect. 2.3.

For a parallel execution on p CPU cores and on the GPU, the workload W consisting of nel elements to be
processed has to be split up into disjoint sets, one for each processing unit (Line 3). Wcpuk denotes the workload
to be processed on the kth CPU core, 1 ≤ k ≤ p, and Wgpu and denotes the workload to be processed on the GPU.
The data required on the GPU has to be transferred to the GPU memory before the execution and the result has
to be transferred back afterwards. The current approximation of the load vector u and the result vector ygpu have
to be transferred once for every call of axmebe (Lines 20 and 29). The parts of the sti�ness matrix A needed for
creating Ael and the permutation vector for transforming A into Ael for the elements el processed on the GPU
have to be transferred once per ppcgm call (lines 5 and 6).

The routine axmebe is executed by multiple threads. Each of the threads has a unique thread id tid, 0 ≤ tid ≤ p.
The �rst thread with tid = 0 (see Line 19) is responsible for transferring u and ygpu to the GPU memory as well
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1 ppcgm(A, b)
2 begin
3 repeat
4 call preconditioner
5 calculate next u
6 y := axmebe(A, u)
7 until y ≈ b
8 return u
9 end

10 axmebe(A, u)
11 begin
12 for each el do in parallel
13 Ael := o2el(A,el), uel := o2el(u,el)
14 yel := Aeluel
15 begin critical section
16 y := y + el2o(yel )
17 end critical section
18 next
19 return y

20 end
Algorithm 1: Pseudo code of ppcgm and axmebe

as for launching the GPU kernels. Further p threads perform the computation on the CPU cores. At the end of
axmebe, the two result vectors ygpu and ygpu are added and returned to ppcgm.

The code used here is based on an existing shared-memory parallel implementation of the adaptive FEM in
OpenMP [9]. The GPU version of axmebe has been developed in CUDA. An implementation using CUBLAS has
proven to be ine�cient, see [10].

2.3. Distribution-dependent parameters

For the prediction of the execution time and the energy consumption, a model is developed. In order to �nd
an optimal distribution between the processing units, the model considers all sections of the algorithm that
depend on the distribution between CPU and GPU. They are marked by the bold vertical lines in Alg. 2. The lines
are annotated by symbols for the execution times of the respective sections: tcopy denotes the time for copying
the required data to the GPU memory, tgpu denotes the time needed for processing one element on the GPU and
tcpu denotes the time needed for processing one element on the CPU. The energy consumption of these three
sections is denoted by Ecopy, Egpu and Egpu, respectively.

In Sect. 3, laws describing the behaviour of the quantities with respect to parameters such as the number of
elements to be processed or the clock frequency of the CPU are investigated. Based on the investigations, an
application-speci�c model is set up in Sect. 4.

3. Experiments

For an accurate prediction, it is necessary to �nd laws describing the behaviour of the values
• tcpu and Ecpu for processing the workload on the CPU,
• Edram for the energy needed by the DRAM during the processing on the CPU,
• tgpu and Egpu for processing the workload on the GPU, as well as
• tcopy and Ecopy for transferring the data from the CPU to the GPU.
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These laws may consider the number of elements processed on the respective processing units, further character-
istics of the data as well as hardware properties. Based on the preliminary work in [11], experiments conducted
for �nding the laws are described in this section.

Not only laws but also methods for measuring the values have to be investigated. In order to verify the
measurement methods, results obtained in the experiments are compared to values obtained from other sources.
All measurement methods use only software interfaces; no additional measurement hardware is used.

1 ppcgm(A, b)
2 begin
3 distribute all el ∈ W to Wgpu and Wcpuk ,1 ≤ k ≤ p such that ���Wgpu

��� = nel,gpu and ���Wcpuk
��� = nel,cpu

4 for each el ∈ Wgpu do
5 copy part of A for el to GPU memory
6 copy permutation data to GPU memory
7 next
8 repeat
9 call preconditioner

10 calculate next u
11 y := axmebe_cpu_gpu(A, u)
12 until y ≈ b
13 return u
14 end
15 axmebe_cpu_gpu(A, u)
16 begin
17 begin parallel
18 tid := ID of current thread, 0 ≤ tid ≤ p
19 if tid == 0 then
20 transfer u to GPU memory
21 for each el ∈ Wgpu do (on GPU)
22 Ael := o2el(A,el)
23 uel := o2el(u,el)
24 yel := Aeluel
25 begin critical section
26 ygpu := ygpu + el2o(yel )
27 end critical section
28 next
29 transfer ygpu to main memory
30 else
31 for each el ∈ Wcputid do
32 Ael := o2el(A,el)
33 uel := o2el(u,el)
34 yel := Aeluel
35 begin critical section
36 ycpu := ycpu + el2o(yel )
37 end critical section
38 next
39 end
40 end parallel
41 return ycpu + ygpu

tcopy

tgpu

tcpu

42 end
Algorithm 2: Pseudo code of ppcgm and axmebe for CPU and GPU
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machine Westmere Sandybridge
CPU model Intel Xeon X5650 Intel Xeon E5-2650
CPU clock rate 2.67 GHz 2.0 GHz
CPUs, cores, threads 2 × 6 × 2 = 24 2 × 4 × 2 = 16
CPU base peak performance 64 G�op/s 128 G�op/s
CPU thermal design power 95 W 95 W
RAM model Samsung M393B5670EH1-CH9 Samsung M393B1K70DH0
DIMMs, size per DIMM 6 × 2 GiB = 12 GiB 4 × 8 GiB = 32 GiB
RAM speed 1333 MHz 1600 MHz
NUMA nodes 2 2
GPU model Nvidia GeForce GTX 570 HD Nvidia Tesla C2075
GPU memory 1.2 GiB 6.0 GiB
GPU memory speed 1.9 GHz 1.5 GHz
CUDA cores 480 448
CUDA core frequency 1.46 GHz 1.15 GHz
GPU peak performance 176 G�op/s 515 G�op/s
Memory bandwidth 152 GB/s 208 GB/s
GPU thermal design power 219 W 215 W
Operating system Linux kernel 3.2.21 Linux kernel 3.2.46
GPU driver version 304.48 304.88
CUDA version 4.2 5.0

Table 1: Speci�cations of the machines used for the experiments [12, 13, 14, 15, 16, 17]

3.1. Experimental setup
The experiments were conducted on two di�erent machines, viz Westmere and Sandybridge. Their characteris-

tics are given in detail in Tab. 1. The machine Westmere is a 2× 6-core Xeon machine with a GeForce GTX 570 HD
GPU. The machine Sandybridge is a 2 × 4-core Xeon machine with a Tesla C2075 GPU. As only the Sandybridge
machine has software-readable energy and power meters, the energy experiments have been conducted on this
machine. The experiments concerning the execution time and the dynamic workload distribution between CPU
and GPU have been conducted on both machines.

Two di�erent input data �les, the test objects drill hole, representing a cuboid with a drill hole, and crankshaft,
have been used for the experiments. The objects are shown in Fig. 1 and have been taken from the library
provided with [8]. The input parameters are chosen such that each �nite element of the test objects consists of 27
nodes, each having 3 degrees of freedom, which results in an element data structure size of 81.

The measurements are performed executing the FEM with di�erent test objects. Hence, all e�ects, such as
branch mispredictions, cache misses, etc., occurring during production runs are included in the measurements.
The functions reading the current time or energy status are called immediately before and after the code sections
investigated. If both, time and energy are measured, the energy measurement is started after and stopped before
the time measurement. During the execution of the FEM, no other applications are run on the machines in order
to avoid distortions in the measurement.

In some charts showing measurement results, regression curves for the values are given. These regression
curves are obtained using the Levenberg-Marquardt least-squares method.

3.2. Measuring method
For the CPU and for the GPU, di�erent measurement methods are necessary as they have di�erent interfaces,

especially for the energy consumption. The methods are described in this section.

3.2.1. CPU
The execution times are measured by reading the high-resolution system time using the function PA-

PIF_get_virt_usec of the PAPI library [18] which uses the clock_gettime system call. For mea-
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Figure 1: Test objects drill hole (top) and crankshaft (bottom), each after 8 re�nement steps, from [8].

suring the energy consumption of the CPU, the machine-speci�c registers (MSRs) of “Running Average Power
Limiting” (RAPL) [19] are used.

RAPL has been introduced by Intel with the CPU architecture code-named Sandy Bridge. Among the RAPL
registers are “energy status” registers which provide an energy metering interface [20, vol. 3B, ch. 14-28]. On the
CPU present in the machine Sandybridge, there are three di�erent energy metering registers which measure the
following values:

• MSR_PKG_ENERGY_STATUS for the energy consumption of the whole CPU package,
• MSR_PP0_ENERGY_STATUS for the energy consumption of processor cores including their caches

[21], except the last-level cache [22],
• MSR_DRAM_ENERGY_STATUS for the memory modules on this package.

Each register is updated roughly every 1 ms and its value contains “the total amount of energy consumed” since the
last time the register was cleared [20, vol. 3B, ch. 14-28]. In this article, the registerMSR_PKG_ENERGY_STATUS
is used for measuring the computation energy as it includes everything needed for computation on the CPU, i.e.
including caches, un-core energy, etc. The register MSR_DRAM_ENERGY_STATUS is used for measuring the
energy consumption of the memory. Other works have shown that the estimation of the energy consumption by
RAPL matches the actual energy consumption quite well [23, 24, 25].

The register values are read using the interface provided by the msr kernel module. This module was adapted
to ignore the capability CAP_SYS_RAWIO [26, ch. 39] normally required by executables reading MSRs [11].

3.2.2. GPU
The execution times on the GPU are measured by the CPU in the same way as described above. The time

measurement facilities integrated in the GPU are not used as the objective of this work is not optimising the
GPU code but an evaluation of the GPU execution time from the CPU perspective.

For measuring the energy consumption of the GPU, its integrated power meter is used. The principal purpose of
the power meter is to ensure that the GPU does not consume more power than 225 W as speci�ed in the PCI Express
standard. The current value of the power can be accessed via the function nvmlDeviceGetPowerUsage
of the Nvidia Management Library (NVML) [27]. The value comprises the power consumption of the whole GPU
being drawn from both, the PCI socket and the additional power supply.

As the on-board power meter updates its value only every 20 ms, the method presented in [28] is used to
obtain a power pro�le of the GPU routines with a higher temporal resolution. This method executes the routine
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Figure 2: Execution time t of axmebe on the CPUs and on the GPU

to be evaluated a large number of times (50 to 100), always with the same parameters. The function is called at
random phases of the sensor update interval so that the power consumption is measured at di�erent times during
the execution. The integration over all values obtained yields the energy consumption of the routine on the GPU.

Due the dependency of the power from the temperature of the circuitry [29, 30], it is necessary to ensure
that the temperature of the GPU is always in the same range. A value of 54 ◦C has been chosen for this work.
If the temperature is lower, then the GPU is heated by executing some workload. If it is higher, the GPU is
left idle for some moments in order to give it the possibility to cool down. For measuring the temperature, the
internal thermometer accessible via the function nvmlDeviceGetTemperature from the NVML is used.
A temperature of 54 ◦C results in a static power consumption of 77 . . . 79 W for the GPU in short-idle mode.

3.3. Execution time and energy depending on the number of elements

At �rst, the execution time and energy consumption of axmebe are investigated. Figure 2 shows the execution
time of axmebe on Sandybridge depending on the number of �nite elements processed. Two test objects have
been used in di�erent levels of re�nement. Each point in the chart represents one experiment with a certain
number of elements nel. For each number of elements, the experiment has been conducted 5 times. The regression
lines are of the form tcpu(nel) = vex

−1nel, where vex denotes the execution speed in terms of “elements processed
per time unit”. The results of the experiment show that for both processing units, CPU and GPU, the execution
time tcpu and tgpu of axmebe is perfectly proportional to nel:

t ∼ nel . (5)

The proportionality factors, i.e. the execution speeds, are

vex,cpu = 587 el
ms and vex,gpu = 592 el

ms (6)

for CPU and the GPU, respectively. The CPU cores of Sandybridge process roughly the same number of elements
in a given amount of time as the GPU. The execution time for one element on the GPU is tel,gpu = 1.69 µs. The
parallel execution time for one element on the CPU is tel,cpu, ‖ = 1.70 µs yielding a per-element execution time of
tel,cpu = 27.2 µs as 16 threads process the elements in parallel.

Figure 3 shows the results of the energy measurement for the same experiment. As the machine contains two
CPUs, the values obtained for the MSRs MSR_PKG_ENERGY_STATUS for both CPUs have been summed up
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Figure 3: Energy consumption E of the CPU and the GPU for executing axmebe depending on its execution time t

to the total value. The results show that the energy consumption E is roughly proportional to the execution time
t:

E ∼ t . (7)

Here, the slope of the regression lines indicates the power consumption of the processing units: E(t) = Pt. The
power values have been obtained as follows: Pex,cpu = 126 W for the CPUs and Pex,gpu = 138 W for the GPU. The
values correspond well to the thermal design powers of 95 W per CPU package [15] and 215 W for the GPU [31]:
Both kinds of processing units need roughly two thirds their maximum power.

From the relations in formulae (5) and (7), the relation

E ∼ nel (8)

can be concluded, i.e. the amount of energy consumed is proportional to the number of elements processed.

3.4. Frequency scaling

In order to reduce their power consumption, modern CPUs can be set into operational modes with lower
clock frequency and lower voltage. For each mode, a P-state with a distinct frequency is de�ned. This technique
is known as dynamic voltage and frequency scaling [32] and called PowerNow! or Cool’n’Quiet in AMD processors
or SpeedStep in Intel processors. In this section, it is investigated whether setting a power-saving P-state for the
operation of the CPU allows the execution of the CGM in a more energy-e�cient way.

The Intel Xeon E5-2650 of the machine Sandybridge o�ers P-states with the following clock frequencies:
1.2 GHz to 2.0 GHz in intervals of 0.1 GHz, and 2.001 GHz, which is the Turbo Boost mode [33]. Turbo Boost runs
the CPU cores with a higher than the nominal clock rate as long as certain conditions are met, including the
current power consumption and the processor temperature do not exceed the manufacturer-speci�ed values [34].

For the experiments, the CPU cores have been set to each of the available P-states consecutively. axmebe
has been executed and the execution time as well as the energy consumption have been measured for di�erent
numbers of elements. The chart in Fig. 4 shows the behaviour of the power consumption P and the execution
speed vex depending on the CPU clock frequency f . The two vertical axes have been scaled such that the power
and the execution speed are drawn on top of each other for the last P-state. The measurement results have been
approximated by the curves

P( f ) = a f 3 + b f + c and vex( f ) = df + e (9)
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Figure 4: CPU power consumption P and execution speed vex for performing the CGM with di�erent CPU clock frequencies f

in the range of 1.2 . . . 2.0 GHz. The Turbo Boost mode with 2.001 GHz has not been considered for the regression
analysis as its actual frequency is de�ned internally and does not correspond to the clock frequency assigned to
the P-state.

That the power consumption is best represented by the given cubic equation is motivated by the equation

P = CV 2 f + V Ileak , (10)

which is generally used for modelling the power consumption of CMOS circuits [35]. In this equation, V represents
the voltage, C the capacitance of the transistors and wires, f the frequency and Ileak the leakage current. The
frequency f depends linearly on the voltage V [36]. Therefore, the �rst summand in eq. (10) is proportional to f 3

and the second is proportional to f . For reference, the values of the parameters as obtained by the regression are:
a = 2.2 ± 0.4, b = 29 ± 4 and c = 24 ± 4.

The linear relation of execution speed and clock frequency results from the compute-boundness of the axmebe
code. The number of instructions in the routine is �x and the duration of their execution is a �x number of
clock cycles, hence the execution time of axmebe is roughly proportional to f −1. The parameters found by the
regression are d = 222 ± 4 and e = −70 ± 6, which means that 222 elements per millisecond times the clock
frequency are processed, but 70 elements have to be subtracted. The constant o�set might result from code
sections needing the same execution time as 70 elements but whose execution times are invariant with respect
to the clock frequency. Such code sections might be memory-accesses in axmebe or interrupt service routines
triggered from the exterior.

The charts in Fig. 4 clearly indicate that the execution speed is increasing faster than the power consumption
and hence the P-states with higher frequencies allow a more energy-e�cient operation.

3.5. Per-element energy

Figure 5 shows the energy needed to process one element, the per-element energy, of the CPU and the GPU.
The upper chart shows its dependency from the CPU clock speed. The results have been obtained by dividing the
power values P by the execution speed values vex from Fig. 4:

Eel,cpu( f ) =
P( f )
vex( f )

. (11)

The curve shown in this chart is the ratio of the curves in Fig. 4. The results show that higher clock frequen-
cies allow a more energy-e�cient operation: With a frequency of 2.0 GHz, the per-element energy Eel,cpu is
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Figure 5: Energy consumption of the CPU and the GPU for processing one element

approximately 267 µJ, compared to 321 µJ with a frequency of 1.2 GHz. In the Turbo Boost mode, the energy is
265 µJ.

The per-element energy for the GPU Eel,gpu is shown in the lower chart in Fig. 5. Each point results from one
experiment with a speci�c number of elements. A clear dependency from the total number of elements is not
visible, Eel,gpu ranges from 220 µJ to 250 µJ. The mean of the values is 235 µJ. The results indicate that the GPU
processes the workload of the CGM in a slightly more energy-e�cient way than the CPU. As shown in [11], the
values obtained correspond well to a value obtained theoretically by counting the operations and multiplying by
an assumed energy consumption per operation found in the literature.

3.6. DRAM energy

Besides the energy needed by the processing unit for computation, the energy needed by the memory for
writing, storing and retrieving the data has to be considered. For the GPU, the value measured by the NVML
covers both. For the CPU, the energy needed by the cores and by the memory is measured separately and can be
read from di�erent MSRs. The energy values of the DRAMs of both CPU packages are summed up to the total
memory energy Edram.

Figure 6 shows the energy consumption of the DRAMs when executing axmebe on the CPU. 16 threads have
been run on both CPUs which were in the Turbo Boost P-state. The chart shows that the DRAM energy Edram is
proportional to the execution time of axmebe on the CPU tcpu, i.e.:

Edram ∼ tcpu . (12)

The power of the DRAM as obtained from the regression is Pdram = 7.8 W. The DRAM consists of 4 DIMMs.
According to the data sheet [37], the minimum current is IDD6, called “self refresh current”, and the maximum
current is IDD7, called “operating bank interleave read current” [38]. The exact portions of time each current is
drawn are unknown for the speci�c application. However, the current should always remain in the range of IDD6
to IDD7, namely 390 mA ≤ IDD ≤ 3216 mA for one DIMM. With a voltage of V = 1.35 V and P = V I , the power
range is roughly 2.1 W ≤ Pdram ≤ 17 W for 4 DIMMs. The measured value is well within the range obtained
from the data sheet.

The per-element energy Eel,dram has been measured for all available CPU clock frequencies f and is shown
in Fig. 7: With increasing CPU frequency, the per-element energy needed by the memory decreases. The curve
indicates that the laws found for Eel,cpu in Sect. 3.4 do also apply for Eel,dram. The lowest energy is needed
in the Turbo Boost mode, Eel,dram = 20.5 µJ, and the highest energy is needed with a frequency of 1.2 GHz,
Eel,dram = 40.5 µJ.
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Figure 6: Energy consumption of the DRAM memory when executing axmebe on the CPU
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Figure 7: Per-element energy for the DRAM memory depending on the frequency

Figure 8 shows the idle power Pidle,dram of the DRAM. The CPUs have been set into sleep mode for di�erent
time intervals using nanosleep. During the interval, the DRAM was idle also. Each of the small points (+)
represents one measurement result of the DRAM idle power, each of the large points (×) is the median of the
measurements for one time interval. The overall median is represented by the horizontal line and is taken for the
value Pidle,dram = 1.3 W. The value for Pidle,dram is a little below the minimum power as obtained from the data
sheet of 2.1 W, but an acceptable approximation.

3.7. Data transfer

In this section, the data transfer in the routine ppcgm (lines 5 and 6 in Alg. 2) is investigated. The data
transferred to the GPU memory remains constant during all axmebe calls of one FEM re�nement step. The data
transfer needed for each individual axmebe call is already included in the values measured in Sect. 3.5.

For the transferring data from the host to the device memory and vice versa, CUDA o�ers the function
cudaMemcpy. In a �rst experiment, the transfer rate for data stored consecutively in the memory has been
determined. For amounts of data from 1 to 40 MiB, a transfer rate from the host to the device memory of 3.2 GiB/s
and from the device to the host memory a transfer rate of 2.9 GiB/s has been determined [11].
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Figure 8: Idle power Pidle,dram of the DRAM
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Figure 9: Time and DRAM energy consumption measured for the data transfer to the GPU memory

The energy consumption of consecutive data transfers has been investigated in [11]. However, in the ap-
plication, the data structures that have to be transferred are not stored in the main memory consecutively.
Consequently, the experiment is conducted within the application in the present work. From the measurements,
the time tcopy and the energy Ecopy needed to transfer the data to the GPU are determined. Figure 9 shows the
results: Both, time and energy, exhibit linear behaviour. The lines intersect the abscissa at 500 . . . 600 elements,
which corresponds to roughly 12 MiB of data. Transferring below 12 MiB of data does not cost any time or energy,
possibly due to caching or similar e�ects.

The values shown in Fig. 9 are approximated by the following lines:

Ecopy(nel) = 153 µJ
el · (nel − 592 el) (13)

tcopy(nel) = 11.8 µs
el · (nel − 512 el) (14)

The data is transferred separately for each element and for each data structure. The data-transfer rate which
can be derived from the chart is roughly 2.1 GiB/s. It is not surprising that this value is lower than the value of
3.2 GiB/s for the transfer of data stored in the memory consecutively.
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Furthermore, a power consumption of roughly 13 W can be estimated by dividing the slope of the energy
153 µJ/el by the slope of the time 11.8 µs/el. For the data transfer, the DRAM power is higher than for the
execution of axmebe as for the former there are more memory accesses per time.

The power consumption of the GPU has been determined to be 83.2 W during the data transfer. Writing to
the device memory needs 25.7 mJ/MiB in total and reading needs 29.1 mJ/MiB, which is 3.06 nJ/bit and 3.47 nJ/bit,
respectively. It is important to note that it is not possible to isolate the power consumption of the memory of the
GPU, so the values in this section also comprise the power needed by the GPU processor.

Given that an element consists of 81 entries, 27 kB of data have to be transferred to the GPU per ppcgm
call for each element processed on the GPU. Multiplying this value by the energy consumption of the GPU for
writing to the GPU memory, which is 24 nJ/B, results in an energy consumption of 661 µJ per element.

3.8. Throttling down CPUs

As the GPU allows a more energy-e�cient execution of axmebe than the CPU, it might be considered
processing all elements on the GPU and throttling down the CPUs meanwhile. Experiments conducted showed
that the throttling down does not work to the full extent: The �rst CPU package, CPU 0, does always draw the
full amount of power, even when it is only waiting for the GPU to �nish. Therefore, it is reasonable that this CPU
performs some computation during the waiting period. However, the second package, CPU 1, is throttled down
automatically if there is no thread running on this CPU. Running the 8 threads on the cores belonging to CPU 0 and
no thread on CPU 1 is ensured with gcc’s OpenMP by setting the environment variable OMP_NUM_THREADS
to 8 and GOMP_CPU_AFFINITY to 0-7.
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Figure 10: Energy consumption of the CPU (highest frequency) when executing axmebe on both CPUs with 16 threads (left) and only on
CPU 0 with 8 threads while throttling down CPU 1 (right)

The left-hand chart in Fig. 10 shows the energy consumption of the CPUs when executing 16 threads: Both
CPUs are working under full load and have a similar power consumption: PCPU0 ≈ PCPU1 ≈ 63 W. The right-hand
chart shows that, in contrast, the CPU 1 has a lower power when only 8 threads, which are all assigned to CPU 0,
are running in total. The CPUs have a power of PCPU0 = 65 W and PCPU1 = 18 W. Considering, of course, that
one CPU with 8 threads needs double the time compared to 2 CPUs and only power, but not energy is saved.

3.9. Discussion

The experiments showed that the execution times tcpu and tgpu are proportional to the numbers of elements
processed on the respective processing unit. The same is true for the energy consumptions Ecpu and Egpu. For the
data transfer, a linear relation could be found with an o�set of roughly 500 elements. For simplicity, one might
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consider neglecting this o�set and use the proportionalities

tcopy ∼ nel (15)
Ecopy ∼ nel (16)

instead.
For the machine Sandybridge, the time needed for processing one element on the CPU in parallel is tel,cpu, ‖ =

1.70 µs. For the GPU, the time is tel,gpu = 1.69 µs. The energy needed for processing one element is Eel,gpu = 235 µJ
for the GPU, and the lowest possible energy for the CPU is E∗el,cpu = 286 µJ including the DRAM energy. For
transferring the workload to the GPU, an energy of Eel,copy = 814 µJ is needed, see Sect. 3.7. The energy
consumption of the CPU is neglected as there is the CUDA function cudaMemcpyAsync which performs
the data transfer asynchronously with respect to the CPU, so that no additional CPU time is needed. Hence, the
execution on the GPU is more energy-e�cient than the execution on the CPU if there are more than 15 CGM
iterations, i.e. calls of axmebe per ppcgm call.

For processing the workload, there exist three choices for its distribution between the CPU and the GPU on
the machine Sandybridge:

1. All workload is processed on the CPUs.
2. All workload is processed on the GPU.
3. The workload is balanced between CPU and GPU.

For the third choice, a balancing method which generates that the CPUs and the GPU �nish their workload in an
equal amount of time can be used. Such a balancing avoids idle times in which energy is consumed but no output
is produced. Also, a variant throttling down one CPU and balancing the workload between the GPU and the
other CPU is worth to be considered.

4. Model

In this section, a model predicting the execution time and the energy consumption is developed extending and
combining existing, preliminary models for execution time [10] and energy [11]. The basic model derived from
the pseudo code in Alg. 2 is re�ned using the experimental results in Sect. 3. Furthermore, a method minimising
the energy consumption by adapting the workload distribution is discussed.

4.1. Execution time
The execution time of the CGM consists of two main parts: the time needed for the data transfer in lines 4

and 6 of Alg. 2 and the time needed for executing the loop in lines 8 to 12. The execution time of the loop is the
number l of loop iterations multiplied by the maximum of the workload execution times on the processing units:

tcgm = tcopy + l ·max
(
tcpu, tgpu

)
. (17)

The processing unit which �nishes its workload �rst waits for the other to �nish too. The code sections whose
execution time does not depend on the workload distribution, e.g. lines 9 and 10 in Alg. 2 are neglected.

The values tcpu, tgpu and tcopy can be expressed by the respective values tel,cpu, tel,gpu and tel,copy for one
element, due to the proportionality found in Sect. 3, i.e. formulae (5) and (15):

tcpu = nel,cpu · tel,cpu (18)
tgpu = nel,gpu · tel,gpu (19)

tcopy = nel,gpu · tel,copy . (20)

The value nel,cpu denotes the number of elements processed on one CPU core, nel,gpu denotes the number of
elements processed on the GPU. The sum of the elements processed on p CPU cores and on the GPU is the total
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number of elements:
nel = p · nel,cpu + nel,gpu . (21)

Inserting tcpu, tgpu and tcopy from the equations (18) to (20) into equation (17) yields

tcgm = nel,gpu · tel,copy + l
(
max

(
nel,cpu · tel,cpu,nel,gpu · tel,gpu

))
. (22)

For the decision whether some elements are processed on the GPU, the following inequality is considered:

tel,copy < l ·
tel,cpu

p
. (23)

The GPU is not used for processing elements if the inequality (23) does not hold true: If the transfer of one
element’s data to the GPU memory consumes more time than processing it on the CPU, then all elements are
processed on the CPU, i.e. nel,gpu = 0.

The �rst parameter of the max term in equation (22) is monotonically decreasing and the second term
monotonically increasing with increasing nel,gpu. Assuming that the inequality (23) is given, the execution time
in equation (22) becomes minimal if

nel,cpu · tel,cpu = nel,gpu · tel,gpu . (24)

Alternatively, nel,cpu and nel,gpu can be expressed by using the rate r of the number elements processed on the
GPU nel,gpu to the total number of elements nel, 0 ≤ r ≤ 1, i.e.

nel,gpu = rnel , nel,cpu =
1 − r

p
nel . (25)

Inserting the equations (25) into equation (24) yields the following expression for r :

r =
(
1 +

tel,gpu

tel,cpu
p
)−1

. (26)

Of all possible distributions of the workload to the CPU and the GPU, the distribution with r chosen according to
equation (26) has the lowest execution time tcgm for the routine ppcgm.

4.2. Energy
The energy consumption of ppcgm is the sum of the energy Ecopy needed for transferring the data and the

energy for executing the loop in Alg. 2. For each iteration, the loop needs an energy of Ecpu+Edram for processing
workload on the CPU and Egpu for the processing on the GPU. The constant energy needed by the code sections
which do not depend on the workload distribution is neglected. Thus, the energy consumption is as follows:

Ecgm = l
(
Ecpu + Edram + Egpu

)
+ Ecopy . (27)

Due to the capability of the processing units to throttle down when they are in idle mode, there exist two
di�erent power values: Pex, which is the power drawn when the processing unit is executing workload, and Pidle,
which is the power drawn in idle mode, i.e. when no execution is possible. Hence, the energy values Ecpu, Edram
and Egpu can be formulated as follows:

Ecpu = Pex,cpu · tex,cpu + Pidle,cpu · tidle,cpu (28)
Edram = Pex,dram · tex,dram + Pidle,dram · tidle,dram (29)
Egpu = Pex,gpu · tex,gpu + Pidle,gpu · tidle,gpu . (30)
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In the following, each of the �rst summands in equations (28) to (30) is expressed by its energy value, i.e. Eex,cpu,
Eex,dram and Eex,gpu, respectively.

The proportionality between E and nel shown in formulae (8), (12) and (16) yield the equations

Eex,cpu = p · nel,cpu · Eel,cpu (31)
Eex,dram = p · nel,cpu · Eel,dram (32)
Eex,gpu = nel,gpu · Eel,gpu (33)

Ecopy = nel,gpu · Eel,copy . (34)

For brevity, let P∗idle,cpu denote the sum of the CPU and the DRAM idle power, i.e.,

P∗idle,cpu = Pidle,cpu + Pidle,dram (35)

and let E∗el,cpu denote the sum of the computation energy and the memory energy needed for processing one
element on the CPU, i.e.,

E∗el,cpu = Eel,cpu + Eel,dram . (36)

Equation (27) for the energy of execution with both, CPU and GPU, can be reformulated as follows:

Ecgm = l
(
nel,cpu · E∗el,cpu + nel,gpu · Eel,gpu

)
+ nel,gpu · Eel,copy

+ P∗idle,cpu · tidle,cpu + Pidle,gpu · tidle,gpu . (37)

4.3. Minimising the energy consumption

For executing the entire workload on the CPU, an energy of

Ecgm = lnelE∗el,cpu (38)

is needed. The idle energy of the GPU can be neglected, since the GPU could be switched o� or even removed
from the machine.

Let E∗el,gpu denote the sum of the computation energy for one element on the GPU and the part of the data
transfer energy attributed to one call of axmebe:

E∗el,gpu = Eel,gpu + l−1Eel,copy . (39)

For executing the entire workload on the GPU with the CPU being idle, the energy consumed is the sum of the
GPU energy and the idle energy of the CPU for the time of the execution:

Ecgm = l
(
nelE∗el,gpu + neltel,gpuP∗idle,cpu

)
. (40)

Hence, for the decision how to distribute the workload, the following three cases have to be considered:

1. If E∗el,cpu < E∗el,gpu,
then process all elements on the CPU.

2. If E∗el,cpu > E∗el,gpu + P∗idle,cpu · tel,gpu,
then process all elements on the GPU.

3. Otherwise,
distribute the workload between CPU and GPU.
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Symbol Value Remarks

Eel,cpu 265 µJ in the Turbo Boost P-state
Eel,dram 20.5 µJ in the Turbo Boost P-state
Eel,gpu 235 µJ
Eel,copy 814 µJ
Pidle,cpu 83 W
Pidle,dram 1.3 W
tel,gpu 1.69 µs
l 32.4 mean for 21 iterations of crankshaft

Table 2: Measurement values for quantities needed for the energy-aware workload distribution

When the workload is distributed between CPU and GPU, the idle times in equation (37) have to be minimised,
since during the idle times, energy is consumed but no useful output is produced. Minimising the idle time means
to ensure that tcpu = tgpu, i.e. �nding the r with a minimal execution time according to equation (26). For Eel,cpu,
the values for any CPU clock frequency may be used. If the condition for case 1 is satis�ed for no frequency,
and the condition for case 2 is satis�ed only for some frequencies, the strategy of case 3 should be used with the
frequency having the lowest Eel,cpu.

The values obtained in the experiments in Sect. 3 for the machine Sandybridge are shown in Tab. 2. For the
mean number of CGM iterations, the mean value of the �rst 21 iterations with the crankshaft test object has been
used. For other objects, the value of l might be anticipated for an FEM iteration by using the mean of the previous
FEM iterations.Inserting the values from Tab. 2 into the equations (36), (39) and (35) yields the following values:

• E∗el,cpu = 286 µJ,
• E∗el,gpu = 260 µJ,
• P∗idle,cpu = 84 W.

The values show that condition for case 1 is not satis�ed. With the right-hand side of the condition of case 2, i.e.
E∗el,gpu + P∗idle,cpu · tel,gpu, being 401 µJ, also the second condition is not satis�ed. Hence, the third option, namely
distributing the workload between CPU and GPU, has to be used for an energy-e�cient execution of the CGM
on the machine Sandybridge.

4.4. Discussion
The model predicts the execution time and the energy consumption of the CGM for p CPU cores and one

GPU. Its extension to multiple GPUs is straightforward: If q is the number of GPUs, the total number of elements
nel is composed as follows:

nel = p · nel,cpu + q · nel,gpu . (41)

The other equations have to be adapted accordingly. For example, the rate r of elements processed on the q GPUs
is de�ned by the following equation:

r =
(
1 +

tel,gpu

tel,cpu
·

p
q

)−1
. (42)

Other works that set up models for predicting the execution time of the CGM are, e.g. [39] and [40]: In [40], a
sparse CGM is implemented on the GPU. An analytical model is presented which is used for optimising two
implementation parameters: the number of threads and the size of the CUDA blocks. Parameters of the model
are the warp size and the number of streaming processors of the GPU, which are machine-speci�c, as well as
the length of each matrix row, which is data-speci�c. In [39] a model for executing a parallel CGM on multiple
GPUs is set up. The model considers the dimension of the problem and the total number of stored elements in the
matrix. The machine-speci�c parameters of the model are determined by multiple execution and a following �t.
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The models of both works cited primarily rely on predicting the number of memory operations for predicting
the execution time. They are more complex than the model set up in the present work, which is required due
to the large di�erences in the matrices that may occur. In contrast, as all matrices occurring with the CGM
investigated in the present work originate from an FEM, they are very similar. Remaining di�erences between
matrices do not have to be modelled explicitly. Instead, di�erences still occurring can be covered by repeated
measuring of the execution times with the online autotuning scheme described in the following section. As also
Suda et al. state in [29], online autotuning requires incomplex models as only a limited number of parameters can
be measured online without a negative impact on the performance of the application. Using online autotuning
can also compensate possible de�ciencies of the model.

5. Dynamic workload distribution

For minimising the energy consumption, the method for minimising the execution time by distributing the
workload which has been presented in [10] is applied. The method redistributes the workload according to
equation (26) in each re�nement step of the FEM.

The dynamic distribution scheme works as follows: Each time, the routine axmebe is executed, its execution
time on the CPU and on the GPU is measured. The measurement starts before and ends after the sections for tcpu
and tgpu as marked by the vertical lines in Alg. 2. For multiple executions of axmebe with the same number of
elements, i.e. during one execution of ppcgm, the means of the measured values for tcpu and for tgpu are calculated.
These means are divided by the numbers of elements processed on the processing units, nel,cpu and nel,gpu, to get
the per-element times tel,cpu and tel,gpu. With the values for tel,cpu and tel,gpu obtained in the previous re�nement
step, the new value r for the distribution of the workload between CPU and GPU is calculated according to
equation (26). The �rst re�nement step starts with r = 0.5.

Each re�nement step adds more elements to the mesh. This increases the sizes of the data structures, i.e.
the sti�ness matrix, the load vector and the solution vector. Increasing data sizes may result in a di�erent
execution time behaviour, e.g. due to di�erences in the cache usage. The dynamic redistribution of the workload
in each re�nement step helps to retain the execution-time optimal distribution of the workload during the whole
execution of the FEM. As shown in [10], no signi�cant overhead is introduced into the application by the repeated
measuring of execution times.

For processing elements on the GPU, the sti�ness matrices for these elements are needed on the GPU as well
as the full load vector and the current approximation of the solution vector. The respective data is copied to the
GPU memory before the execution as shown in Alg. 2. Afterwards, the full result vector is copied back to the
main memory.

This section investigates the behaviour of the dynamic workload distribution scheme on the machine
Sandybridge, in addition to the machine Westmere, which has been investigated in [10]. The rate r of GPU
elements is determined and it is investigated whether execution time and energy can be saved by exploiting the
scheme.

5.1. Rate of elements processed on the GPU

In order to achieve a balanced distribution of workload, the condition of Eq. (24) has to be ful�lled: The
execution times of the CPU and the GPU for axmebe should be roughly the same. Both times have been measured
for the drill hole test object with the speci�c GPU rate r determined for each FEM iteration. Figure 11 shows that
indeed the total times for processing the nel,gpu elements assigned to the CPU and the nel,gpu elements assigned
to the GPU are roughly the same.

Figure 12 shows how the rate r of elements processed on the GPU for the two test objects changes during the
mesh re�nement steps. The chart shows that for the Westmere machine, the GPU rate r is roughly 1

2 , whereas it
is roughly 1

3 for the Sandybridge machine. Despite the fact that the results in Sect. 3.3 indicated that the execution
times per element are roughly the same for CPU and GPU execution on Sandybridge, r is smaller than 1

2 as for
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Figure 11: Comparison of the execution times of the CPU and the GPU for the drill hole test case
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Figure 12: Rate r of elements processed on the GPU for two di�erent hardware con�gurations and two di�erent test cases

the workload distribution, the data transfer times have to be considered additionally. This fact leads to a decrease
of the GPU rate.

The GPU rate is adapted during the execution of the FEM with increasing numbers of elements. On Westmere,
the CPU threads need signi�cantly more time for 400 to 1500 elements, see Fig. 11. This results in the fast increase
in the GPU rate as clearly recognisable in Fig. 12. On Sandybridge, the CPU threads need slightly longer for
nearly all numbers of elements resulting in a permanent increase of the GPU rate in Fig. 12.

5.2. Performance bene�t
Figure 13 shows the summed execution time of the distribution-dependent sections of the routine ppcgm over

all CGM iterations for the crankshaft test object. The measurement has been conducted on both machines for
the three variants: CPU-only execution, GPU-only execution and CPU/GPU collaboration. The collaboration
variant achieves a speed-up of roughly 25 % compared to the better of the CPU-only and the GPU-only variants
for both machines. Whereas the GPU-only variant is better than the CPU-only variant on the Westmere machine,
there is the opposite situation on the Sandybridge machine. An explanation could be found when considering
the performance of the processing units: The peak performance of the CPUs in Sandybridge is twice the peak
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performance of the CPUs in Westmere. Similarly, the peak performance of the GPU in Sandybridge is three times
better. However, the memory speed of its GPU is worse which results in a lower data transfer bandwidth. As
a consequence, the impact of the data transfer times is disproportionately large. Hence, on the Sandybridge
machine, the CPU outperforms the GPU.
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Figure 13: Execution times of CPU-only, GPU-only and CPU/GPU collaboration execution for the crankshaft test object

5.3. Discussion

In Sect. 5.1, it has been shown that for the crankshaft test object on the machine Sandybridge the rate r of
elements processed on the GPU is roughly 1

3 . One iteration for this object with 10,000 elements needs an energy
of 1.91 J on the CPU and an energy of 0.87 J for the computation and the data transfer on the GPU. In total, this
yields an energy of 2.78 J. If only one CPU was used and the other was throttled down as suggested in Sect. 3.8,
roughly one half of the elements would be processed on each, the GPU and one CPU, in order to maintain a good
balance. This yields an energy consumption of 1.43 J for the CPU and 1.30 J for the GPU. With the idle power
of the second CPU being 18 W, the idle energy is 0.15 J, which results in a total energy consumption of 2.88 J.
Hence, for an execution on the machine the machine Sandybridge, it is advisable to use both CPUs for CPU/GPU
collaboration.

6. Related work

This section presents related work. At �rst, some e�cient implementations of the CGM on GPUs are presented.
Then, a short overview on energy modelling in scienti�c computing is given. Finally, di�erent works deploying a
CPU/GPU collaboration are discussed.

CGM on GPUs
An energy-e�cient CGM for GPUs is implemented in [41]. The energy e�ciency of the implementation is

improved by reformulating the CGM so that all computation is performed on the GPU. The prior implemen-
tation consisted of several GPU kernels with intermediate sections executed on the CPU, so that numerous
synchronisations had to be performed.

Implementations of the CGM on multi-GPU environments without considering the energy are, e.g., [42]
and [43]. In [42], the workload is distributed uniformly on the GPUs. In [43] a solver is chosen among a set of
solvers considering the input data. By measuring the execution times of each solver for 3 iterations, the solver
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yielding the shortest execution time can be identi�ed and used for the rest of the execution. All approaches have
in common that they use GPUs only—and no CPUs—for the computation, in contrast to the approach presented
in this article.

Execution time and energy modelling
Execution time modelling has been a �eld of research for a long time. Good overviews on this subject are, for

example, given in [44] and [45]. A vast number of modelling methodologies has been developed. Even frameworks
for an automated modelling of the execution time of parallel algorithms exist, such as PACE [46] and Prophesy
[47].

In contrast to execution time modelling, articles reporting on energy modelling are rare: [21] and [48]
present energy models for generalised workload that take the number of cores of the target machine and the
frequency of these cores into account. The model in [21] is veri�ed with the extrapolation method for solving
initial-value problems of ordinary di�erential equations. The model in [48] is veri�ed with the embarrassingly
parallel benchmark set. [49] sets up execution time and power models for the high-performance LINPACK
automatically using regression analysis.

Not a software model, but a hardware model for a BlueGene/L-like machine which is tested against a sparse
CGM is set up in [50]. The hardware model predicts execution time and power considering di�erent characteristics
of the machine including core frequency, voltage, cache sizes etc. Using the model, a linear relationship between
frequency and execution time as well as a super-linear relationship between frequency and energy consumption
is found thus supporting the �ndings of the present article.

In [51], the performance of the adaptive FEM including the CGM is investigated for di�erent SMP machines.
This includes the investigation of two di�erent data distribution strategies for the CGM. However, the development
of a precise performance model was not an objective of the article [51].

CPU/GPU collaboration
There exist various approaches for CPU/GPU collaboration: Harmony [52] is a programming and execution

model which allows the coding of programs for CPU/GPU systems and their execution. The Harmony runtime
system includes an automated workload distribution on the CPU and the GPU. However, most applications do
not bene�t signi�cantly from the collaboration. The results have also shown that a dynamic work distribution is
essential as the execution time is highly machine-dependent, which supports the �ndings of this article.

MapCG [53] is a MapReduce framework which allows jobs to be executed either on CPUs or on GPUs. For
di�erent experiments carried out, the speedup of a CPU/GPU execution compared to a GPU-only execution
is always below 1.1, in many cases even below 1. This is attributed to the need to serialise/deserialise data for
copying the intermediate data.

In [54], a Cholesky factorisation which is formulated as a directed acyclic graph of tasks is investigated. Some
of these tasks can only be executed on the CPU or on the GPU, some on both. The distribution of tasks to CPU
or GPU is �xed, i.e. cannot be adapted to their execution speed. [55] investigates a tile-based Cholesky and QR
factorisation. The execution times of the kernels on the processing units depending on the tile sizes are measured
during the installation process and stored in a library. Using this information, an optimal balance between CPU
and GPU computation is found.

In [56], the DAGuE framework [57], which de�nes an algorithm as an assembly of tasks in a directed acyclic
graph, is extended by GPU computing capabilities. Tasks are implemented by codelets. There can be multiple
codelets for each task, each supporting a di�erent hardware platform. The CPU/GPU collaboration is enabled by
the capability of executing a codelet in di�erent versions at the same time. Compared to GPU-only execution
using the MAGMA library, this extended DAGuE framework achieves a speedup of 1.2.

[58] distributes the dgemm matrix multiplication to multiple CPU cores and one GPU using an execution time
prediction. For calculating this prediction, a formula is developed which takes into account both computation
and data transfer time. For the actual calculation of the data distribution between CPU and GPU, however, the
data transfer time is, in contrast to the present article, omitted as it is dominated by the computation time. The
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parameters of this formula are estimated on the basis of theoretical peak values and are not measured with the
real hardware as in this article. Compared to GPU-only execution, the performance is improved by 35 % when
adding a quad-core CPU.

A CPU/GPU collaboration scheme for an tomographic reconstruction application is presented in [59]. It
uses a task pool for distributing the workload and achieves a speed-up of 1.4 . . . 1.7 compared to CPU-only or
GPU-only execution. Scheduling methods for jobs which can be executed on both, CPUs and GPUs, are proposed
in [60].

Most GPU/GPU collaboration schemes dismissed in the related work achieved a speedup of 1.15 to 1.35 which
is in the same order of magnitude as the speedup achieved for the CGM in this article, in which up to 1.25 could be
achieved. Except DAGuE and the task pool approach they do not support distributing the workload between CPU
and GPU dynamically. However, not all algorithms, and especially not existing codes, can be easily transformed
into a directed acyclic graph of tasks, as needed by DAGuE. Using a task pool for workload distribution is not
feasible for the present application due to its signi�cant overhead for the large number of small tasks.

7. Conclusion

In this article, an execution time and energy model for the parallel CGM used in an adaptive FEM has been
developed. This model makes it possible to �nd the most energy-e�cient distribution of the workload to the
processing units, CPU and GPU, of a given machine. Though being not very complex, the model delivers a precise
prediction of the execution time on CPU and GPU. This is because the machine- and data-dependent parameters
of the model are updated periodically by measuring them online, i.e. during the regular execution of the CGM.

For the machine Sandybridge used in this work, processing one element of the crankshaft test object on the
CPU needs an energy of 286 µJ including the energy consumed by the RAM. Processing one element on the
GPU needs on average 260 µJ including the necessary transfer of the data to the GPU memory. Though the
processing on the GPU seems to be more energy e�cient than on the CPU, a GPU-only execution is not the
most energy-e�cient solution: For each element processed on the GPU, the CPU needs an energy of 142 µJ while
being idle. Hence, the CPU/GPU collaboration using both kinds of processing units simultaneously is the most
energy-e�cient way of executing the parallel CGM in this case.

For the CPU/GPU collaboration, an online autotuning scheme has been exploited which minimises the energy
consumption by minimising the execution time. The scheme measures execution times during each re�nement
step of the FEM. The workload distribution with a minimal execution time is determined by the prediction of the
execution time model for the subsequent re�nement step. The prediction always uses the latest measurement
values. By having this feed-back, the distribution is adapted dynamically to in�uences which change during
the execution of the application, for example with increasing data sizes. The scheme also ensures an automatic
adaption to the underlying hardware.

The approach of dynamically distributing workload between processing units based on a model and online
measurement presented in this article can be transferred to other problems or other platforms, e.g. di�erent
kinds of accelerators. It is especially suitable for applications whose runtime behaviour changes during the
execution with a big variance in the properties of the data. Also for executing scienti�c applications in the
cloud, an online autotuning approach is worth being considered: With cloud computing, one normally does not
know the hardware platform on which the application is executed beforehand. Measuring the parameters of the
model during the execution on the real machine with the real data allows to adapt the data distribution or other
parameters of the implementation in order to make the execution faster or more energy-e�cient. Furthermore,
the repeated measuring helps to compensate possible de�ciencies of the model. Online autotuning requires
models with only a few parameters as not too many measurements should be made during the execution of the
application for avoiding a negative impact on its execution time.

The experiments have shown that improvements in the measurement capabilities are needed for a more
exact energy analysis. A higher temporal resolution of the energy MSRs in the CPU and the power meter of
the GPU would be desirable. Furthermore, energy measurement would be simpli�ed on the GPU if it o�ered an
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interface for retrieving the energy, compared to the power interface currently existing. Such an interface could
be implemented by integrating the power in hardware or in the GPU driver.

For supporting application developers, a tool automating the process and the experiments described in this
article would be helpful. Such a tool could assist in �nding laws for the energy consumption of the application
considered or in identifying code sections o�ering potential for energy-e�ciency improvements. A software
tool could, for example, pro�le the energy consumption of an application as an execution-time pro�ler creates a
pro�le for the execution time nowadays. With such supporting tools, the developer can constrain her- or himself
to the “creative” work for which machines are unsuitable.
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