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Abstract In order to be able to minimise the energy consumption of an
application program, information about the specific energy consumption is
required. Modern Nvidia graphics processing units (GPUs) measure their
current power consumption and the driver makes the value available to the
application every 20 ms. However, for evaluating the energy consumption
of GPU kernel functions, such a sampling interval might not be sufficient
since the kernels may have a shorter execution time.
This article proposes a method for generating high-resolution power
profiles, which is the power consumption of a specific function depending
on the progress of its execution. The method uses low-resolution measuring
instruments offered by GPUs. Power measurements obtained during
several executions of the function are combined into a single power
profile. The resulting power profile contains power values in intervals
which are much shorter than the sampling interval of the hardware
driver so that even short-term power changes can be considered, e.g.
for calculating the energy consumption of a single function. The article
also shows how to extend the approach to an online generation of power
profiles. Furthermore, an overview on the power profiles of some important
functions, such as BLAS routines, is given.
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1 Introduction

Energy efficiency of codes will become more and more important in scientific
computing. Especially general-purpose graphics processing units (GPUs) promise
to be a potentially more energy-efficient alternative to CPUs [3,9,21]. Measuring
the energy consumption of a hardware is necessary in order to be able to minimise
the energy consumption of an application. For quantifying the energy consumption
of a piece of code, basically two approaches exist: hardware-based and software-
based energy measurement. For hardware-based measurement of the energy
consumption, a measuring device is installed between the power supply and
the computational device. From the current and the voltage measured, the
electrical power P can be computed. By integrating the power over a time
interval, the electrical energy consumption E is determined. The observation of
influences evoked by short sections of code, requires a device with a high sampling
frequency, e.g. 500 Hz [21], 1 kHz [12] or even 50 kHz [7]. For the software-based
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measurement, modern CPUs, such as Intel’s Sandy Bridge or AMD’s Bulldozer
CPUs, offer an interface for retrieving the value of the energy consumption since
some starting time [11, Vol. 3B, Chap. 14.7], [4, Chap. 3.13]. Similarly, the latest
GPUs of the manufacturer Nvidia provide the possibility to read the current
power consumption by software [19].

The Nvidia Management Library (NVML) provides power measurement [19]
for Nvidia GPUs. The power value is updated every 20 ms; this is described
in Sect. 3.2. However, such a sampling interval is not sufficient for a precise
evaluation of the energy consumption of a GPU kernel function, especially for
those with a short execution time. Such kernel functions occur in many areas,
such as the solution of linear systems of equations in FEM simulations or Monte
Carlo simulations in the field of numerical mathematics as well as, for example,
scan algorithms in the field of data processing. Therefore, a method is needed
which obtains an accurate, high-resolution power-consumption profile of a GPU
function. Furthermore, the availability of high-resolution power profiles are needed
to extend approaches which use RAPL to verify energy models, such as [20], to
GPUs.

The contribution of this article is to provide such a method for generating
high-resolution power profiles of GPU kernel functions, which is based on the
measurement interface with a low sampling frequency. These profiles can be used
for evaluating and improving the energy consumption of GPU kernel functions.
Both, an offline method and an online method for generating the power profiles,
are presented. The online method has a low overhead so that it can be used
during the actual execution of, e.g., simulation programs which select code paths
depending on the energy consumption of specific routines.

The rest of this article is organised as follows: Section 2 presents related work.
Section 3 gives an overview on measuring the power consumption on Nvidia GPUs.
Section 4 presents the method for generating power profiles from low-resolution
measurements, and Sect. 5 gives some sample profiles. The method is extended
to an online method in Sect. 6, and Sect. 7 concludes the article.

2 Related Work

Measuring and evaluating the energy consumption of GPUs has been in the focus
of research for several years. For example, Huang et al. [9] compare the energy
consumption of a biological code for creating an electrostatic potential map on a
CPU and on a GPU. Rofouei et al. [21] investigate the energy consumption for
some applications from the CUDA SDK executed on a GPU and on a CPU. Both
report that the GPU executes the respective codes more efficiently concerning
the energy. In contrast, Chen and Singh [5] find no huge difference in the energy
consumption for the CPU and the GPU for a document filtering code. Abe et al.
[3] measure the effects of frequency and voltage scaling in CPUs and GPUs.

Nagasaka et al. [16] and Chen et al. [6] propose statistical power consumption
models for GPUs: Both models execute a set of benchmark functions, measure
their power consumption, and record some hardware performance counters of the



GPU. They derive a model which allows the prediction of the power consumption
of a kernel function by using the values of the hardware performance counters
obtained during its execution. Nagasaki et al. set up this model using linear
regression, Chen et al. use a tree-based method.

Collange et al. [7] analyse the influence of computations and memory accesses
on the power consumptions of different GPUs. Hong et al. [8] develop an empirical
model for predicting the power consumption of a GPU by counting specifics of the
code executed, such as the number of memory accesses, the number of streaming
multiprocessors used or the use of the computational units. Li et al. [14] extend
this model by a possibility to also take streaming multiprocessors executing
different workload into account. A similar model is proposed by Kasichayanula
et al. [13]: They measure the energy consumption of GPU components, such as
global memory, shared memory, floating point unit, etc., and multiply it by the
time a given function activates the respective component. Furthermore, they
investigate some of the details of the software interface for reading the power
consumption of Nvidia GPUs. For the sampling frequency f of the Tesla C2075,
they report a value of 62.5 Hz, while the measurements as presented in Sect. 3.2
of this article, resulted in a value of f = 50 Hz, possibly due to a different
methodology. Weaver et al. from the same research group report a sampling
frequency of “roughly 60 Hz” [22].

Hähnel et al. deal with measuring the energy consumption of functions that are
shorter than the measuring interval [10]. They measure the energy consumption
of the CPU using the Intel RAPL machine-specific registers [11]. They overcome
the issue that large sampling intervals might lead to inaccurate results by starting
the function exactly at the beginning of a sampling interval of 1 ms and executing
a workload with a well-known energy consumption after its return until the end
of the sampling interval. Compared to the Nvidia NVML interface, the Intel
RAPL has the advantage that the user can retrieve the energy consumption
directly and thus does not need to integrate power values. Furthermore, there is
no need for clock synchronisation when only measuring on the CPU.

All statistical and empirical models described above may deliver a sufficient
temporal resolution for also analysing the energy consumption of short kernel
functions. But if such models are used for cases their designers were not aware of,
the results might become inaccurate: McCullough et al. [15] indicate that power
consumption predictions based on hardware performance counters are inaccurate
in complex situations. Therefore, measuring the real power consumption is
essential. For all users that do not have access to dedicated measurement hardware,
the software-based method proposed in this article might be suitable.

3 Power Consumption of GPUs

Modern GPUs suitable for general-purpose computing implement dynamic fre-
quency scaling in order to save energy in idle mode and to comply with their
specified thermal design powers during phases of energy-demanding computations
[1,2]. For Nvidia’s GPUs of the latest generation, the Nvidia Management Library



(NVML) [19] offers a software interface for reading the current electrical power
consumption.

3.1 Retrieving the Power Consumption

Figure 1 shows the measuring of power consumptions on Nvidia GPUs: There is a
specific timer which is triggered in intervals of size T , called the sampling interval
in the following. At the beginning of each sampling interval, the GPU driver
reads the current power consumption P and stores the value. The figure shows
the power consumption for the case that the GPU has a power consumption
of 70 W in idle mode and of 130 W when executing the user-specified kernel
function. However, if the user reads the power value from the GPU, he or she
gets data as shown in the line “claimed power consumption”, which does not
reflect the real power consumption of the GPU.

t

measuring clock

T

GPU kernel execution

actual power consumption
70 W

130 W

claimed power consumption
70 W

130 W

Figure 1. Repeated execution of a GPU kernel function and measuring its power
consumption.

The software interface for retrieving the power value is provided by the routine
nvmlDeviceGetPowerUsage(nvmlDevice t device, unsigned int* power) of
the NVML. The value is measured in milliwatts. It reflects the current electrical
power of the whole GPU board including memory, etc. and has an error of ±5 W
[19]. All measurements of this article were conducted on a Nvidia Tesla C2075
GPU [17] built into a machine with two octacore Sandy-Bridge CPUs E5-2650
having a clock speed of 2.0 GHz. The machine runs the Linux kernel version 3.2
with the Nvidia GPU driver version 304.64 and CUDA version 4.2.9.

3.2 Measuring the Sampling Interval T

The experiment for measuring the sampling interval T of the GPU makes use
of the fact that the power value retrieved is very noisy so that two subsequent
measurements normally differ even if the state of the GPU has not changed:
The measurement algorithm continually retrieves the current power value Pcurr

from the GPU. If Pcurr differs from the power value Plast retrieved before, it can
be inferred that the hardware has updated its power value. Then, the current
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Figure 2. Illustration of the creation of a power profile from power consumption values
measured during repeated GPU kernel execution.

time is taken and the time interval elapsed since the last update is emitted. This
procedure is repeated for 100 000 times so that one gets 100 000 values for the
sampling interval T . In rare cases (0.5�), the power value Pcurr did not change
in two consecutive periods which resulted in a value two or three times as big as
the other values. These values have been eliminated. T is then calculated as the
arithmetic mean of the remaining values.

For measuring the times, the POSIX function clock gettime is used, which
measures the wall-clock time with an accuracy of 1 ns. A value of T = (20.0082±
0.0008) ms, i.e. a relative error of roughly 0.03�, has been determined. The
value for the sampling interval of T ≈ 20 ms results in a sampling frequency of
f = 1

T ≈ 50 Hz.

4 The Generation of Power Profiles

For the generation of high-resolution power profiles, i.e. a diagram which shows
the electrical power consumption of the GPU during the execution of one kernel
function, a statistical method is used to overcome the restrictions imposed by
the low sampling frequency of the measurement instrument: The GPU kernel
function to be evaluated is executed a large number of times in the range of some
hundreds, each time starting at a different phase in the sampling interval. The
method is illustrated in Fig. 2: Multiple executions of the kernel function are
performed with a random waiting time twait between them. After starting the
execution, the power value is monitored constantly and for each update, this
value is emitted together with the corresponding update time relative to the
starting time of the function. The two values are used for a step-wise creation of a
diagram as shown at the bottom of the figure. If no power value update happens
during the execution time of the kernel tex, no value is emitted as illustrated in
the last diagram at the bottom.

Using this approach, the generation of power profiles is performed as shown
in Alg. 1: At first, the GPU kernel is executed once in order to determine its
execution time tex (Lines 1 to 5). The algorithm assumes that the execution time
does not vary between two calls, i.e. the kernel should always be called with the



1 retrieve current time tstart

2 execute GPU kernel asynchronously
3 wait for GPU kernel to finish
4 retrieve current time tret

5 tex := tret − tstart

6 for k = 1 to nex do
7 wait a random time twait

8 retrieve GPU power Plast

9 execute GPU kernel asynchronously
10 retrieve current time tstart; tcurr := tstart

11 while tcurr < tstart + tdelay + tex + T do
12 retrieve GPU power Pcurr

13 if Pcurr 6= Plast then
14 retrieve current time tupdate

15 emit tupdate − tstart, Pcurr

16 Plast := Pcurr

17 retrieve current time tcurr

Algorithm 1: Retrieving power measurements for a GPU kernel function

same parameters. Then, the function is called nex times. For the experiments
presented in Sect. 5, nex = 100 was chosen, which results in an average of 100
values per sampling interval, i.e. 5000 values per second. Before the execution of
the GPU kernel, the CPU is halted for a randomly chosen time interval (Line 7)
in order to ensure that the power value is determined at a random point of the
execution of the function. The waiting time twait is distributed uniformly in the
interval T ≤ twait < 2T to avoid that the power value of the previous execution
is read. Then, the GPU kernel is executed asynchronously (Line 9). Experiments,
see Sect. 5, have shown that reading the starting time of the kernel tstart right
after the return of the routine starting the kernel leads to a constant delay of
tdelay ≈ 6 ms between the starting time and the increase of the measured power.
The while loop in Line 11 continually retrieves the power value as long as the
GPU kernel is running. Each time the value Pcurr changes (Line 13), it is emitted
along with the time elapsed since the start of the kernel execution (Line 15).

The output of Alg. 1, i.e. a sequence of pairs (P, t), is then processed further
to create a diagram. The P values are emitted in milliwatts and are in the range
from the long idle power of 35 W [13] to the thermal design power of 225 W
[17]. The t values indicate how many nanoseconds elapsed since the start of the
GPU function. They are in the range from 0 to tex + T . A power profile diagram
comprises the points resulting from all (P, t) pairs of one measurement. Results
obtained with this method are presented in Sect. 5.

The algorithm presented in this section is only suitable for offline generation
as it completely occupies one CPU core in the time interval beginning at the
start of the GPU kernel execution until the power update which succeeds the
termination of the kernel. However, the continual polling of the power value did
not cause any observable effects on the execution of the GPU kernel.



5 Sample power profiles

The diagrams in Fig. 3 (a)–(e) show the power consumptions for various call
configurations of x gemm, wich are matrix-matrix multiply BLAS functions from
the CUBLAS package [18], and one further function, vectid. The vectid routine
performs arithmetic operations and memory accesses in a way such that the GPU
threads have different execution times. Each point in a diagram stands for one
time–power (P, t) pair emitted by Alg. 1.

Splitting up the total power Ptot into static power Pstat and dynamic power
Pdyn as

Ptot = Pstat + Pdyn

is often suggested, e.g. in [14]. For the static power in the diagrams, a value of
Pstat = 76 W can be determined. The dynamic power depends on the specific
workload to be processed on the GPU. For the sgemm call with a matrix size of
1024 × 1024, one can see that the power consumption increases up to 123 W
during the execution of the routine, and then decreases when the routine is
finished. After 5 ms, there is a second peak of roughly the same shape. This effect
is closely related to the staircase effect that can be seen in the 2048 × 2048 case:
The power consumption increases to 124 W starting at second 6.3 and then again
increases to 172 W starting at second 16.3. The behaviour upon the termination
of the routine is analogous. As all measurements show a similar effect, it looks as
if one half of the power consumption of the GPU might have a delay of 10 ms in
the measurement. This means, that integration over the whole interval leads to a
correct value for the energy; the actual value for Pdyn, however, is twice as large
as suggested by the figure during the first 10 ms of the execution of a function.
Consequently, to compute the actual power consumption for the two 1024 × 1024
x gemm calls, the dynamic power suggested by the figure has to be doubled, i.e.
for sgemm, the value of Ptot is 172 W instead of 124 W with Pdyn = 96 W. This
corresponds to the 2048 × 2048 sgemm case in which Ptot is 172 W as well. For
the dgemm cases, the dynamic power is Pdyn = 92 W with a Ptot of 166 W.

The vectid test function is a hand-written CUDA function. It mainly consists
of a for loop running from 0 to 10 · tid , where tid is the thread id of the CUDA
thread in the thread block. There are 32 blocks and 1024 threads per block.
Inside the loop, 5 floating point operations are performed. Furthermore, two
array entries are read from global memory and one is written. The different
execution times of the different threads create imbalance which results in a
smoother decrease of the power consumption than for the x gemm routines. Such
an effect would not have been visible with measuring methods that have a coarser
resolution.

The values for the dynamic energy consumption Edyn shown in Fig. 3 have
been obtained by integrating the dynamic power consumption using the trapezoid
rule with the values shown in the respective profile. Fig. 3 (f) was obtained by
measuring the electric current flowing through the external PCI Express power
connectors of the GPU card. The current multiplied by the voltage gives the
electric power. Since further current flows through the PCI express socket, the
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Figure 3. (a)–(e) Power profiles of CUBLAS x gemm and vectid kernels; (f) Power
profile obtained by hardware measurement



t

T

measurement

kernel execution retrieval of power value
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actual values are inaccurate and they have been omitted. Nonetheless, one can
see an increase in the power consumption for the duration of the execution of
the kernel in the correct time interval.

The thermal design power of 225 W could not be reached with any x gemm

experiment. The CUBLAS dgemm with a matrix size of 14 · 210 × 14 · 210, which
occupies all available streaming processors, consumed only 163 W, or 171 W if
the GPU was pre-heated to roughly 85 °C. This corresponds to the results of
Kasichayanula et al. [13] who report a value of 180 W for the average power
consumption of the MAGMA dgemm kernel with a matrix size of 8192 × 8192,
which is also significantly lower than the thermal design power.

6 Online Generation of Power Profiles

The approach for offline generation of power profiles as presented in Sect. 4 is
adapted in order to allow the online generation of power profiles. This online
method has less CPU usage and does not extend the execution time of the GPU
kernel. The method is illustrated in Fig. 4. If the GPU kernel to be evaluated has
an execution time lower than T , it is sufficient to retrieve one value of the power
Pcurr immediately after the termination of the GPU kernel. One can calculate
the time of the last update of the power value precisely from the base time tsync

of the sampling interval and its period T . If the power value was updated during
the execution of the GPU function, this value can be used for the power profile.
This approach works on the condition that the machine has very precise clocks
so that the times can be calculated exactly.

Experiments, however, have shown that the CPU and the GPU clocks slightly
drift apart: This results in power profiles showing no clear peak unless a re-
synchronisation is performed at least every 0.2 s. If this synchronisation is
performed during the execution of a GPU kernel, not too much overhead is added
as often the CPU is not fully occupied during GPU execution. By predicting the
beginning of the next sampling interval and the termination time of the GPU
kernel, one can estimate if the next update of the power value occurs during the
execution.

The online generation of power consumption profiles is conducted as shown
in Alg. 2: The function syncClocks (Lines 1 to 8) waits for the update of the
power value and then returns the current time. The function main represents the
structure of a general application algorithm of which the GPU energy consumption
is to be evaluated. The while loop in Line 19 repeatedly calls the GPU kernel
(Line 22). Before the while loop is started, the time tsync at which the power
value is updated, is determined (Line 16).



1 function syncClocks()

2 retrieve GPU power Pcurr

3 Plast := Pcurr

4 while Plast = Pcurr do
5 Plast := Pcurr

6 retrieve GPU power Pcurr

7 retrieve current time tcurr

8 return tcurr

9 function syncIfPossible()

10 texpected finish := tstart + βtex

11 tnext update := b tstart−tsync
∆t

+ 1c∆t
12 if texpected finish > tnext update then
13 tsync := syncClocks()

14 nlast sync := ncall

15 function main()

// main algorithm

16 tsync := syncClocks()

17 ncall := 0
18 nlast sync := 0
19 while ... do

// main algorithm

20 ncall := ncall + 1
21 retrieve current time tstart

22 call GPU kernel
23 syncIfPossible()

24 wait for GPU kernel to finish
25 retrieve current time tfinish

26 retrieve GPU power Pcurr

27 tϕ := tnext update − tstart

28 emit tϕ, Pcurr

29 if ncall − nlast sync > γ then
30 tsync := syncClocks()

31 nlast sync := ncall

// main algorithm

Algorithm 2: Online generation of a power profile

The starting time tstart of the GPU kernel is taken in Line 21 and the kernel is
executed asynchronously in Line 22. In the function syncIfPossible, the clock
synchronisation takes place concurrently to the GPU kernel execution: If the
expected termination time of the GPU kernel texpected finish is greater than the
expected next update of the power value at time tnext update, the actual time of
the update is determined by the function syncClocks. For β in Line 10, a value
of 4

5 has been used in order to avoid a synchronisation in the late phase of the
GPU kernel execution. After the termination of the GPU function (Line 24), the
current power value Pcurr is retrieved (Line 26). In Line 27, tϕ, i.e. the phase of
the sampling interval in which the kernel function has been started, is calculated.
Next, the values tϕ and Pcurr are emitted.

As mentioned above, the clocks drift apart too much after roughly 0.2 s.
Therefore, a re-synchronisation is forced in Lines 29 to 31 if there has been no
synchronisation in the function syncIfPossible for a while. The value of γ
should be set in a way that the re-synchronisation takes place at least every 0.2 s.

The overhead introduced by the measurement, i.e. the extension of the total
execution time of the algorithm on the CPU, was not above 10 % in the test cases.
A profile created using online generation can be seen in Fig. 5. The 1024×1024 case
shows one peak similar to that in Fig. 3(a). Its power consumption corresponds
to that measured in Sect. 5. However, the second peak is not visible, possibly it
occurs too late after the execution of the function. Due to this effect, currently
only GPU functions with an execution time less than 10 ms can be properly
evaluated using the online method.
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7 Conclusion

The article has presented a method which can generate high-resolution power
profiles for GPU functions even if there are only measurement instruments with
a low temporal resolution available. The sampling interval of the measurement
offered by the NVML has been determined to be 20 ms. The method presented
allows the generation of high-resolution power profiles of GPU functions without
requiring any additional hardware. Such power profiles can for example be used
by developers to optimise the power consumption of their code. By integrating
the power values, the energy consumption of a specific function can be calculated,
which can, e.g., be used for auto-tuning its energy consumption.

The offline method for generating power profiles works very accurately, so
that some interesting effects could be demonstrated at the sample profiles shown,
such as the smooth decrease of the power consumption for unbalanced loads. The
method has been extended to an online method in order to enable the generation
of power profiles during the execution of simulations etc. There is only a low
overhead. Such profiles can, e.g., be used for auto-tuning at runtime. Restrictions
of the online method are that it is currently only suitable for kernels with an
execution time of less than 10 ms and that its accuracy is lower than the accuracy
of the offline method. In general, the method presented is not restricted to GPUs
but can also transferred to other measurement instruments whose sampling
interval is too large for the targeted purpose.
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