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Abstract—Autotuning is an established method for adapting
the execution of an application to the underlying hardware for
minimising the execution time. This article investigates whether
autotuning is also suitable for minimising the energy consumption
of an application. The investigation is done with the linear
algebra library ATLAS. Adaptations for the ATLAS package
which enable energy autotuning are proposed. Different tuning
parameters are investigated for whether they show a different
behaviour when ATLAS is tuned for energy consumption in-
stead for execution time. The results suggest that some tuning
parameters have to be set differently when ATLAS is supposed to
work with a minimum energy consumption than with a minimum
execution time. The results further indicate that tuning the
complete ATLAS package for energy consumption leads to a
more energy-efficient execution than tuning it for execution time.

Keywords—energy autotuning, energy efficiency, power, basic
linear algebra subroutines (BLAS), ATLAS

I. INTRODUCTION

Linear algebra is an important element of many scientific
simulations. Over the years, BLAS (Basic Linear Algebra
Subroutines) has established as a standard interface for linear
algebra operations [1]. For keeping pace with the constantly
improving hardware, automated tuning, or autotuning, is
necessary for packages implementing the BLAS interface
as well as for other software [2]. Until today, autotuning
has mainly focused on minimising the execution time of an
application [3]. Currently, no autotuning package for linear
algebra considers energy as an optimisation goal. However,
for future hardware architectures, especially with exascale
computing, the energy consumption for executing scientific
codes will become an important cost factor.

One of the most popular autotuned BLAS packages is
ATLAS (Automatically Tuned Linear Algebra Software) [2].
ATLAS investigates a large number of code variants for differ-
ent operations and selects those showing the best performance,
partly even considering data characteristics. ATLAS finds the
optimal values for several tuning parameters, such as block
sizes, pre-fetch distances, or crossover points of different
implementations. The ATLAS library, however, currently only
optimises for execution time and does not consider the energy
consumption. Although it has often been found that optimising
the execution time also optimises the energy consumption [4],

[5], this is not always true [5], [6]. This article presents some
approaches to introduce energy as an optimisation goal into
the ATLAS autotuner. The aim is to create an autotuned BLAS
library which uses as little energy as possible, for example
by favouring low-energy implementation variants over fast
variants in cases where there is a conflict between the goals
of optimising execution time or energy.

This article makes the following contributions. It proposes
methods for incorporating energy as an optimisation goal in
ATLAS. It discusses a number of ATLAS parameters and
their influence on execution time and energy consumption, and
it presents an ATLAS variant completely tuned for energy
consumption.

The rest of this article is structured as follows: Sec. II
gives a summary on the autotuning mechanism of ATLAS
and proposes methods for introducing energy awareness into
the autotuner. Sec. III investigates several tuning parameters
and their behaviour when tuned for execution time and for
energy consumption. Sec. IV investigates the effect of tuning
the complete package for energy consumption. Sec. V presents
related work, and Sec. VI concludes the article.

II. AUTOTUNING IN ATLAS

Autotuning is an ‘automated process, guided by experiments,
of selecting one from among a set of candidate program
implementations to achieve some performance goal’ [7]. The
approach of autotuning usually consists of three steps [7]:

1) Creation of a number of candidate implementations for
the operation to be tuned,

2) Experimental evaluation of the performance of the vari-
ants,

3) Selection of the best variant for the practical execution
of the code.

As the performance of a code normally strongly depends on the
hardware on which it is executed, the autotuning procedure is,
in most cases, performed during the installation of the software
on a new hardware.

A. The ATLAS Autotuning Process

A good review of the autotuning process of ATLAS is
given in [2], [8]. Fig. 1 visualises the steps of the ATLAS
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Figure 1. Autotuning process in the ATLAS library

autotuning process, the data transferred between the steps, and
the parameters which can be extracted from each step (arrows
pointing down). The first step of ATLAS is the detection of
certain hardware parameters, including the size of the level-1
cache, the latency of a multiply operation, the number of
floating-point registers, and the presence of the fused multiply-
add (FMA) hardware instruction. In order to save tuning time,
ATLAS provides a library of hardware parameters for the
most common architectures. If the library values are used, the
hardware detection step is omitted. Hardware detection can,
however, be enforced (by giving the parameter -Si archdef
0 to the configure script).

ATLAS uses two different methods for creating candidate
implementations. The first method is the source code adaptation
(second box in Fig. 1), which is used when different source
codes are needed for implementing the candidates. When using
source code adaptation, different algorithms for one operation
may be evaluated or, if the code is generated automatically,
different levels of loop unrolling or different loop nestings can
be investigated. The incorporated search engine determines
which code variants and which parameter settings exhibit the
best performance. The parameters to be tuned include the
block size NB for the blocked matrix multiplication, the loop
unrolling factors nu, mu and ku, and a parameter indicating
whether fused multiply-add is used. The search engine hands
over the parameter set to be investigated to the code generator,
which generates the source code considering these parameters
and compiles it. During the execution, the performance of
the generated routine is measured and returned to the search
engine which then, based on the result, refines the parameter
set. ATLAS offers various timers for the evaluation of the
performance, including wall clock timers and cycle-accurate
CPU timers.

The second method for creating candidate implementations
is the parametrised adaptation (third box in Fig. 1), which
means that a piece of code contains a parameter which controls
its execution. These parameters are tuned after the source code
generation. The parameters include the copy/no-copy threshold,
which controls whether the matrices are copied and rearranged
in memory before the operation, and the CacheEdge, which
optimises the cache usage of higher-level caches.

This article will mainly (but not solely) focus on operations
of BLAS level 3, i.e. matrix-matrix operations. For level-3
kernels, ATLAS uses a two-stage optimisation [2], which works

as follows: The high-level stage splits up the operation into
smaller, block-wise matrix-matrix multiply operations. These
matrix-matrix multiplications are processed in the low-level
stage. For the low-level stage, there exists a highly optimised
kernel which performs a matrix multiplication of the form
C← A>B+βC. All matrices are square matrices with their
dimensions (N, M and K) being NB. The value for NB is
chosen in a way such that the operation becomes cache-
contained, i.e. the data needed fits into the level-1 cache.
Furthermore, the article will only deal with tuning parameters
that are already present in ATLAS. New parameters, such
as the operating frequency of the CPU, are not introduced.
Works investigating dynamic voltage and frequency scaling for
linear-algebra routines are, e.g., [9], [5].

B. Energy Awareness for the ATLAS Autotuning

In order to create an energy-optimised ATLAS library, we
use the energy consumption as the performance measure for the
candidate implementations. The existing performance measure-
ment, which measures time, can be replaced or complemented
by the measurement of the energy consumption. Both strategies
have been followed as proposed in [10].

The energy consumption is measured using the Running
Average Power Limiting (RAPL) [11] software interface
provided by recent Intel CPUs. The RAPL interface has already
been used for studies on the energy consumption of linear
algebra routines, e.g. [12], [13], [14]. In various works, it has
been shown that the values returned by RAPL correspond
sufficiently to values obtained by hardware energy meters, e.g.
[15], [11], [16]. Only hyperthreading is not captured well by
RAPL [16], which has not been used here. For this work, the
PAPI [17] package is used for accessing the RAPL interface.
The PAPI event PACKAGE ENERGY:PACKAGE0, which
maps to the RAPL register MSR PKG ENERGY STATUS
is used. This register measures the energy consumption of
the complete CPU package, including core, cache and uncore
energy consumption. The measurement value is updated every
1 ms and the register holding it overflows after roughly 60 s
if the machine is heavily loaded [18, vol. 3B, ch. 34.7.2].

The performance of codes considering the execution time
is called the time efficiency in this article. It is measured in
‘flop/s’, i.e. the number of floating point instructions which
are executed in one second. The corresponding performance



measure for energy consumption is the energy efficiency,
measured in ‘flop/J’. The flop/J value measures how many
floating point instructions can be executed using the energy of
one joule.

1) Measuring Energy and Execution Time: For some pa-
rameters, the ATLAS autotuner obtains a table of different
parameter settings and the corresponding performance values.
From the table, the autotuner selects the parameter setting with
the highest performance, i.e. the highest flop/s value. In these
cases, we perform the energy measurement in addition to the
time measurement. Both values, flop/s and the flop/J, are then
included in the table.

In the source code, the energy measurement is started before
the time measurement and stopped after it. The ATLAS version
3.10.2 has been used for these experiments.

2) Measuring Energy Instead of Execution Time: In some
cases, e.g. for the evaluation of the generated matrix multi-
plication routines, the result of the performance evaluation
is the input for the next iteration of the optimisation in
ATLAS. In this case, measuring time and energy at once is
not useful as ATLAS only optimises for one criterion. Thus,
we replace the time measurement by an energy measurement.
This replacement effects the whole ATLAS package so that
ATLAS is only optimised for energy, not for execution time.
In detail, we modify the routine ATL cputime in the file
tune/sysinfo/ATL cputime.c such that it returns the energy
consumption. For the measurement, the PAPI library is used
as described above. It has to be ensured that no overflow
occurs in the measurement register. However, we found that
all measurements need less than one minute to complete so
that the overflow will not occur. The ATLAS version 3.10.1
has been used for these experiments.

In this modified version of ATLAS, the hardware parameters
number of registers, latency and size of level-1 cache have been
set fix to the values obtained by the original ATLAS version.
This ensures that all optimisations start with the same conditions
and effects arising from differing initial conditions are avoided.
As the energy measurement shows a greater variance than the
time measurement, the number of the measurements per kernel
has been increased from 3 to 5. Furthermore, the number of
repetitions per measurement, which is between 40 and 18,500,
has been increased by a factor of 100.

III. EVALUATION OF SINGLE PARAMETERS

A selection of the large number of parameters tuned during
the autotuning process of ATLAS is investigated in this section.
During the tuning of each parameter, the performance of
ATLAS with the different parameter settings is evaluated. This
section presents measurements and results for both kinds of
tuning, for time and for energy, and attempts to show their
relations for each parameter. While this section evaluates the
time efficiency versus the energy efficiency of single parameters
such as the block size and loop unrolling factors, Sect. IV
investigates the differences that arise when the complete

package is tuned for energy consumption, i.e. without regarding
single parameters.

For the experiments, a machine with a quad-core Intel Core
i7-4770K processor has been used. The processor has a clock
frequency of 3.5 GHz and cache sizes of: 32 KiB level-1
data cache, 32 KiB level-1 instruction cache, 256 KiB level-2
cache (all per core), and 8 MiB level-3 cache (shared). The
architecture offers 256-bit fused multiply-add units [19].

As the detection of the hardware parameters shows dif-
ferences when optimising for time and when optimising for
energy, the following hardware parameters have been set to
the values obtained by the time-optimised version: the cache
size is 128 KiB, the multiply latency is 5, fused multiply-add
is available.

A. Block Size for Low-level Matrix Multiplication

For the low-level matrix multiplication, from which the high-
level operations are composed, the optimal size NB of the block
matrices is determined. The low-level matrix multiplication
performs operations of the form C ← A>B + βC with all
dimensions N, M and K being NB. The operation is cache-
contained, which means that NB is chosen such that the
entire matrix A and 2 columns of B fit into the level-1 cache.
Additionally, one cache line remains for storing the parts of C
currently needed [2].

The differences for NB resulting from an energy optimisation
and a time optimisation of ATLAS are evaluated using the
original ATLAS library and the ATLAS version replacing
the time measurement by energy measurement according to
Sect. II-B2. In both versions, the autotuning process performs
two consecutive searches for the best NB: In the first search,
a preliminary value is determined which is used during the
optimisation of the values of the loop unrolling factors mu and
nu. In the second search, which this section deals with, the final
value is determined. The second search uses the loop unrolling
factors found in the first step. The search itself is performed
iteratively, i.e. the next candidate value of NB is determined
based on the performance of the current value. Therefore, the
searches for the time-optimal and for the energy-optimal values
for NB may diverge.

The time and energy efficiency for the NB candidate values
(as created by the search algorithm) of the single-precision
matrix multiplication are shown in Fig. 2. The horizontal axis
shows the performance of the energy-optimised variant for the
given block size NB, the vertical axis shows its performance
with the time-optimised variant. So, the rightmost value, i.e.
NB = 76, exhibits the best energy efficiency, the uppermost
value, i.e. NB = 80, exhibits the best time efficiency. It may
be questioned, however, whether the differences in the cluster
{60,64,68,76,80} are really significant, as they only differ in
a range of roughly 2 %. The value NB = 72 deserves special
attention: Its time efficiency is less than 1 % worse than the
best of NB = 80. But its energy efficiency is roughly 9 %
worse than for the energy-optimal value NB = 76. So, under
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Figure 2. Efficiency for different values of the low-level matrix multiplication
block size NB of the energy-optimised variant (horizontal axis) and the time-
optimised variant (vertical axis), outlier NB = 16 omitted (data type: float)

slightly different conditions, e.g. by using a processor with
a slightly higher or lower frequency, the search for the time-
optimal NB could yield an NB = 72 as the optimum. That
would substantially degrade the energy efficiency. These large
differences in the energy efficiency for parameter settings
exhibiting a similar time efficiency show that a dedicated
optimisation for energy efficiency is necessary.

For obtaining values comparable between the time-optimis-
ing and the energy-optimising variant, besides the hardware
parameters, the following parameters have been set fix in these
experiments: The loop unrolling factors are mu = 4, nu = 1,
ku = 1, and fused multiply-add is used. These values have been
obtained by the time-optimising variant.

B. Loop Unrolling Factors for Low-level Matrix Multiplication

The cache-contained matrix multiplication uses a triple-
nested loop running over the dimensions N, M and K of the
matrices. The K loop is the outermost loop, the M and N loops
are the inner loops. The inner loops are unrolled by the factors
mu and nu, such that all local variables can be stored in the
registers available. Different settings for (mu,nu) are probed,
and ku is chosen in a subsequent step. As with NB, the search
for optimal unrolling factors is performed twice. This section
deals with the values obtained in the second search, i.e. after
the final value for NB has been obtained.

Figure 3 shows the time efficiency and the energy efficiency
for different settings of (mu,nu) for the double-precision matrix
multiplication. The axes indicate the energy efficiency and
the the time efficiency for the given values using the ATLAS
variants optimised for the respective criterion. The figure shows
that there is again a cluster of parameter settings which are
efficient in both, time and energy. This cluster comprises the
values {(4,1),(10,1),(8,1),(12,1),(6,1)}, i.e. all values with
nu = 1. There is an outlier from this cluster, (mu,nu) = (4,3),
which has a slightly worse time efficiency (1 %), but a clearly
worse energy efficiency (12 %). So if, due slightly changed
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Figure 3. Efficiency for the (mu,nu) loop unrolling factors for the energy-
optimised (horizontal axis) and the time-optimised (vertical axis) variants (data
type: double, NB = 56)

conditions, the N loop is unrolled by a factor of 3 instead of by
a factor of 1 when optimising for time, the energy efficiency
degrades by 12 %. This again shows the need for an energy-
aware tuning process. This finding is supported by [6], where
it was also found that loop unrolling factors have to be set
differently for time and energy optimisation.

C. Copy/no-copy Crossover

Before the execution of a GEMM-based operation, ATLAS
copies and rearranges large matrices in memory for improving
the efficiency. Alongside the copying, matrices are transposed
(if necessary), the scalar factor α is applied, the data is broken
up into contiguous blocks of size NB ×NB, and reordered
into a block-major format. With the copied matrices, the low-
level (cache-contained) matrix multiplication is used. The copy
operation has costs of O(n2), compared to the costs of O(n3)
for the multiplication operation for large matrices. Thus, for
large matrices, the copy operation does not have a substantial
impact on the execution time, whereas for small matrices, the
copy operation has a relevant impact.

There is a specific matrix size, called the crossover point,
which reflects the boundary between the copy and the no-
copy strategy: If the matrices are larger than the crossover
point, they are copied. If the matrices are smaller, they are not
copied. According to [2], this crossover point ‘strongly depends’
on the hardware architecture, thus making a tuning of this
parameter necessary. The crossover points not only depend on
the hardware architecture, but also on the shape of the matrices
being processed. Table I indicates under which conditions
the matrices are copied (as coded in src/blas/gemm/ATL -
gemmXX.c). For example, if K is smaller than 3 ·NB, then the
matrices are copied if and only if the product M ·N ·K is not
greater than the crossover constant MNK K. If all dimensions
are greater than or equal to 3 ·NB, then the matrices are copied
if and only if their product is not greater than the crossover
constant MNK GE. These crossover constants are determined



matrix shapes copy matrices iff
K M N M ·N ·K . . .
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Figure 4. Copy/no-copy crossover points for double-precision operations
with different matrix shapes (90 % confidence intervals given)

empirically. Each of them receives a prefix indicating whether
the matrices involved are transposed (T) or not transposed (N).

The copy/no-copy crossover points are determined in
tune/blas/gemm/mmcuncpsearch.c. In the file bin/gemmtst.c,
the time measurement has been replaced by energy mea-
surement resulting in the energy consumption being used as
optimisation goal. No precautions are taken that the other
tuning parameters are identical in the time-optimising and the
energy-optimising variants as the copy/no-copy search is hard
to isolate.

The results of the experiment are shown in Fig. 4. The
bars indicate the mean values of the crossover points for the
different matrix shapes as obtained in 5 runs. Additionally, the
90 % confidence intervals are given. For each matrix shape,
there is one crossover point for the time-optimised ATLAS
and one crossover point for the energy-optimised ATLAS.
There is tendency towards smaller crossover points for the
energy-optimised variant. Due to the large error intervals,
this tendency is, however, not significant in most cases. The
reason for large error intervals is the wide variation in the
results for each matrix shape. Only for the MNK MN matrix
shapes, the crossover points for the energy-optimised variant
are significantly smaller than for the time-optimised variant.
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Figure 5. CacheEdge for the time-optimised and the energy-optimised version
of ATLAS

This means that, for an energy-optimised operation, sometimes
a relatively small matrix is copied which would not have been
copied for a time-optimised operation.

The results indicate that the energy efficiency makes more
profit of a regular execution scheme, which is ensured by the
matrix copying, than the time efficiency. As a consequence
more matrices are copied if ATLAS is optimsed for energy
consumption. This partly contradicts findings that intra-node
data movement has a large impact on the energy consumption
[13], [20]. This effect, however, might not be visible here as
the energy consumed by the RAM is not considered by the
RAPL register used.

D. CacheEdge

Besides the cache-contained low-level matrix multiplication,
which optimises for the level-1 cache, ATLAS also offers an
optimisation for higher levels of cache, i.e. level-2 or level-3
cache. For this optimisation, the parameter CacheEdge is tuned.
This parameter is determined empirically and it ‘represents
the amount of the cache that is usable by ATLAS for its
particular kind of blocking’ [2]. The values are taken from
the file include/atlas cacheedge.h. The values obtained by
the ATLAS versions replacing time by energy measurement
according to Sect. II-B2 are shown in Fig. 5. The chart shows
that for an energy-efficient operation, only a smaller portion
of the higher-level cache should be used, compared to a time-
efficient operation. Using a smaller amount of cache leads
to smaller block sizes for the operations. This improves data
locality, which might be more efficient. It furthermore leaves
more space in the cache for data not taken into account for
the block size calculation, which avoids energy-intensive data
movement to some extend.

IV. COMPLETE-PACKAGE ENERGY AUTOTUNING

This section presents the results of the complete adaptation
of ATLAS for energy optimisation. The function measuring



the time is replaced by a function measuring the energy as
discussed in Sect. II-B2. So the optimisations minimise the
energy consumption instead of the execution time.

A selection of four routines representing the BLAS levels 1,
2, and 3 has been investigated with the complete-package en-
ergy autotuning. Figure 6 shows the results of the measurements.
The functions investigated are the GEMM general matrix-matrix
multiplication, the GEMV general matrix-vector multiplication,
the SPMV symmetric packed matrix-vector multiplication, and
the AXPY vector dot product. The charts show the execution
time and the energy consumption for one call of the respective
routine with different input data sizes, as well as the resulting
electrical power of the CPU. The results have been taken for
both, operations with single precision and with double precision
floating point numbers.

The results show that the tuning for energy compared to
tuning for time often improves both, the time efficiency as well
as the energy efficiency. For instance, for the GEMM routine
with double precision, the energy consumption decreases by
roughly 6 % while the execution time decreases by roughly
4 %. This results in a decreased power of roughly 6 %. With
single precision, time and energy consumption decrease by
roughly 4 %. The biggest reduction in the energy consumption
is observed for the GEMV routine, where there is a decrease
by roughly 10 % to 15 % for both data types.

A relatively low decrease by roughly 2 % is observed for the
SPMV routine, which might be caused by irregularities in the
memory access due to the packed storage format of the matrix.
In contrast, the GEMM and GEMV routines are routines with
very regular memory access patterns, which can be optimised
more easily. A flucutating behaviour between an increase and
a decrease in energy consumption of up to 9 % is observed for
the AXPY routine. The AXPY routine is memory-bound which
might explain the behaviour differing from the other routines.

In some cases, e. g. for the single-precision GEMM, the
energy-optimised variant resulted in a lower execution time
than the time-optimised variant. The reason for that might be
sought in the more precise measurement due to the increased
number of repetitions employed for the energy optimisation.
However, also in these cases, the energy consumption decreases
by a higher factor than the execution time. This is shown by
the fact that a lower power can be observed (which is the ratio
between energy and time).

V. RELATED WORK

Autotuning methods for minimising the energy consumption
of an application have for example been investigated in [20],
[3], [4], [6]: [20] minimises the energy consumption of an LU
factorisation by an automated minimisation of the memory
traffic based on a model for the number of memory accesses.
[3] minimises the energy consumption of the Fast Multipole
Method, a particle simulation, by selecting the optimal depth
of the particle tree dividing the interactions into near-field
and far-field interactions. [4] presents an autotuning approach

using polyhedral optimisation. Three scientific kernels from the
optimiser’s test suite are tuned for minimal energy consumption
on the Xeon Phi. [6] autotunes the unrolling factors for the two
loops of a stencil operation within a Poisson’s equation solver.
The objective function is the energy-delay product. None of
the above works deals with tuning BLAS operations for energy
consumption as the present work does.

Multi-objective optimisation, viz optimisation for energy
consumption and a further criterion, is dealt with in [5], [21],
[22]. In [5], such a multi-objective autotuner is presented. The
article investigates the behaviour of three different hardware
architectures, a Xeon Phi, a multi-core Xeon, and a Blue Gene,
when executing a number of scientific kernels with dynamic
voltage and frequency scaling. Voltage and frequency scaling
has not been investigated in the present work as we restricted
ourselves to tuning parameters which are already available
in ATLAS. [21] presents an autotuner with multi-objective
optimisation for time, energy and resource usage. A number of
scientific kernels, including GEMM and SYR2K are investigated.
A detailed analysis of the parameters is only given for GEMM.
The article mainly focuses of the the number of CPU cores and
the frequency as parameters, which has not been investigated
in the present article. In [22], the GEMM, GEMV and GER
BLAS routines are investigated. Different orders of exploring
the search space, i.e. the order of applying optimisations such
as blocking or parallelisation, are investigated.

A comprehensive survey on the recent developments in
the field of energy-aware and energy-efficient linear algebra
methods is given in [23].

VI. CONCLUSION AND FUTURE WORK

This article has evaluated the possibilities to autotune
the ATLAS linear algebra package for a minimum energy
consumption. The influence of a choice of tuning parameters
on the energy consumption has been investigated. Some tuning
parameters show a strong influence, some only a show small
influence on the overall energy consumption. A more thorough
study is needed for giving a detailed analysis on which
parameters are important for optimising the energy consumption
of a linear algebra library.

The study proves that tuning for energy consumption is
necessary for obtaining an energy-optimised ATLAS library.
For several parameters, including the block size NB for the
matrix multiplication and the unrolling factors, there are
parameter settings which yield similar execution times, but
cause large differences (up to 10 %) in the energy consumption.
Therefore, an explicit analysis of the energy consumption
is needed in order to avoid that the time-optimising variant
selects a non-optimal parameter setting regarding the energy
consumption.

In a final evaluation, the time measurement in ATLAS has
been replaced by an energy measurement in order to obtain a
variant of the library completely tuned for energy consumption.
This energy-tuned ATLAS produces linear algebra routines
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Figure 6. Execution time, energy consumption and power for the BLAS routines GEMM, GEMV, SPMV and AXPY for the time-optimised and the energy-optimised
variants of ATLAS



which need from a few percent up to 10 percent less energy
than the routines of an ATLAS tuned for time.

In this study, the energy consumption was the only optimi-
sation criterion for ATLAS. The results can be used as a base
for applying compound scalar metrics such as energy-delay
products or for multi-criteria optimisations. However, some
fundamental changes would have to be made to ATLAS for a
multi-criteria optimisation. The results may of this study also
serve as a base for a version of ATLAS considering a more
comprehensive set of parameters that have a greater impact on
the energy consumption, such as frequency scaling, the number
of cores used, or the amount of memory traffic. Including these
parameters into the autotuning decision might result in an even
higher saving in energy consumption.

Future work includes also an investigation of other autotuned
linear-algebra packages, such as MAGMA [24]. Research is
needed for assessing whether the same energy tuning methods
as here can be used for MAGMA. Especially the heterogeneity
of machines which is considered by MAGMA will need special
attention. From comparing different autotuned linear-algebra
packages, it might be possible to set up general, evidence-
based rules for energy optimisation if parameters such as
unrolling factors or cache usage show a similar behaviour
in these packages.
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