

A new Model for Document Management in e-
Government Systems Based on Hierarchical Process
Folders

Raphael Kunis, Gudula Rünger and Michael Schwind
Chemnitz University of Technology, Chemnitz, Germany
krap@informatik.tu-chemnitz.de
ruenger@informatik.tu-chemnitz.de
schwi@informatik.tu-chemnitz.de

Abstract: Document management plays a decisive role in modern e-government applications. As today's
authorities have to face the challenge of increasing the efficiency and quality while decreasing the duration of
their government processes a flexible, adaptable document management system is needed for large e-
government applications. In this paper we introduce a new approach for a document management model that
helps to face this challenge. The model is based on two new document management concepts that extend
common document management facilities: hierarchical process folders and document security levels. A
hierarchical process folder mainly consists of files that belong to a government process and include all
documents processed during process execution. The folder grows during execution and contains all versions
of changed, existing, and added documents. The process folders can be used in a single authority software
system as well as in distributed e-government software systems. More precisely, this means that the model of
hierarchical process folders can be deployed to exchange process folders in whole or in part between
authorities to support the execution of distributed hierarchical government processes. We give an example
how the application to single authorities and distributed systems is possible by describing the implementation
within our distributed e-government software system. The application of security levels to documents allows
the encryption of documents based on security relevant properties, e. g. user privileges for intra authority
security and network classification for inter authority communication. The benefits of our model are at first a
centralized data management for all documents of a single or a hierarchical government process. Secondly, a
traceable history of all data within government processes, which is very important for the archival storage of
the electronic government processes, is provided. Thirdly, the security levels allow a secure intra authority
document accessing system and inter authority document communication system.

Keywords: Electronic government applications, document management systems, hierarchical government
processes, interoperability, document processing, e-Government security

1. Introduction

An important objective in the modernization process of authorities is the application of e-
government solutions. These solutions help to support the communication process between
citizens and authorities on the one hand and increase the efficiency of internal government
processes on the other hand. In this paper we deal with the internal process execution. The
execution of large government processes involving many employees depends highly on the
treatment and transfer of documents. To reach the goal of increasing the efficiency by reducing
delay time a flexible document management system (DMS) is needed. However most existing
document management systems are not designed to fulfil the special requirements of e-
government applications. Within the scope of our research project, we faced the challenge of
embedding a DMS into the overall software system architecture and adapt this DMS to the special
needs of authorities. These needs include an easy integration of the DMS into the existing
information technology (IT) infrastructure, the auditable safe archival storage of the documents and
an easy adaptation to the utilized software system used for the execution of hierarchical
government processes.

In this paper we introduce a new approach for a document management model that fits the needs
mentioned above. The model is based on two new concepts that extend common document
management facilities: hierarchical process folders and document security levels (slevel).
Hierarchical process folders deal with the storage of all versions of the documents of a process in a
bundled manner. This is a necessary and advantageous approach enabling the inspection of all
processed documents at each point of the process execution. The hierarchical aspect is reflected
in separate process folders of all processes in a process hierarchy. Merge points at the start and

The 7th European Conference on e-Government

completion times of subprocesses guarantee a fluent cooperation between processes within a
single authority and between authorities.

Security is a crucial point in the field of distributed process execution. Integrity, confidentiality,
authenticity and traceability have to be guaranteed for each transferred document. The proposed
solution of application of slevel to documents allows the encryption of documents based on security
relevant properties, e. g. user privileges for intra authority security and network classification for
inter authority communication. There are other European and German projects in the field of e-
government. The “Document Management and Electronic Archiving in Electronic Courses of
Business” (DOMEA) concept (KBsT 2005) is the basis of the German Government for achieving
the aim of reaching the paperless office. DOMEA introduces particularly the concepts and criteria
that should lead to paperless offices in the administrations. The three-pieced modular structure of
DOMEA consists of documents, records and files. In contrast to our solution the issues of
hierarchical process execution and security in the distributed process execution is not addressed.

Within the “standards and architectures for e-government” (SAGA) (KBsT 2005), defined by the
German Federal Ministry of the Interior, regulations on standards, procedures, methods and also
products for the modern IT-evolution are provided. Standards are divided into different categories
(mandatory, recommended, under observation and rejected). SAGA also proposes applications like
the “Government Site Builder”. This application is a content management system whose DMS
component offers versioning on change, write locks and the possibility to use meta-data for
documents. This functionality is similar to that of our DMS implementation. However, the
“Government Site Builder” was not designed for the work with cross-authority process execution.

Throughout the European Union the “Model Requirements for the Management of Electronic”
Records (MoReq) (Office for Official Publications of the European Communities 2002) project
defines the basic requirements for document management. The provided requirements list is very
detailed and based on the ISO 15489 standard (ISO 2001). Beside requirements for DMSs MoReq
defines criteria for document functions, e. g. workflows, email and electronic signatures. The
specification solely specifies the requirements and provides no implemented solution as we do.
This short summary shows that other projects also deal with document processing in e-
government. However none of the presented efforts reaches the possibilities provided by us,
especially in the case of distributed processing. The benefits of our model are at first a centralized
data management for all documents of a single or hierarchical government process. Secondly, a
traceable history of all data within government processes, which is very important for the archival
storage of the electronic government processes, is provided. Thirdly, the slevel allow a secure intra
authority document accessing system and inter authority document communication system.
Because we also provide an implementation of our model we can show that the application to
authorities is guaranteed. The paper is structured as follows: Section 2 gives an overview of DMSs.
In Section 3 the concept of hierarchical process folders is introduced. Section 4 deals with the
concept of security levels. In Section 5 we discuss the cooperation of the models in the distributed
process execution while Section 6 concludes the paper.

2. Document management systems

DMSs are used for the creation, capturing, modification, storage and the propagation of electronic
documents. Many DMSs exist that are distinct in their base as well as extra functionality.

2.1 Importance of open source software in document management systems

It is generally agreed that software in the sector of public administration is in use over a very long
time period. Thus this software has to compete with changes of the underlying hard- and software.
If DMSs utilize closed source software, there is a high risk that support is discontinued because of
company acquisition, insolvency or strategic decisions. The support problem can be solved using
software with public interfaces. It has to be possible to migrate to different software implementing
the public interfaces. Migration to new software is in general expensive or even impossible if large
data sets grown over years are considered. There are open standards for DMSs, e. g. ODMA
(DMWare 1997), DMA (DMWare 2002) and WebDAV/DeltaV (Goland 1999). Using such standards
it is possible to exchange the DMS because they use public interfaces. An advantage using open

Raphael Kunis, Gudula Rünger and Michael Schwind

source software is, that this software has a large community which develops/adapts the software
components over time. Even if the software support is discontinued developers can adapt the
software because they have access to the source code. Open source software also has the
advantage to be free of charge whereas proprietary software is in general very expensive and
support requires additional payments.

2.2 Document management system protocols

The protocols DMA, ODMA and WebDAV have proved of value in DMS software. Both DMA and
ODMA are interfaces depending on OLE and DCOM and are therefore only useable on Windows
platforms. Through this restriction, we use WebDAV as an interface between our system and the
DMS. WebDAV is an extension to the Hypertext Transfer Protocol 1.1 (HTTP/1.1) (Network
Working Group 1999). It adds additional header data and methods to the protocol which enhance
the support for storing and managing data. These enhancements are Collections, Locking,
Properties and Copy/Move. The original WebDAV standard had no support for versioning files and
collections, but there is an enhancement called WebDAV/DeltaV (Network Working Group 2002).
WebDAV/DeltaV enables the storing of different versions of data which can be merged together
(checkin/checkout). A simple mechanism for versioning data is the DeltaV auto versioning. With
auto versioning every modification of data or meta data results in a new version. This functionality
is sufficient for our software system to store different revisions of documents. WebDAV uses
authentication and authorization methods provided by HTTP/1.1. Other inherited properties from
HTTP/1.1 are the support for encrypted communication, use of proxies and caching of data.
Because of the popularity of HTTP, WebDAV is easily usable within the infrastructure of large
authorities. Especially there are no problems using WebDAV with protection systems like firewalls.

2.3 Evaluation of open source document management systems

The next paragraph compares two different DMSs in terms of their usage for our software system.
The open source DMSs are Jakarta Slide and Subversion with its WebDAV module for the Apache
web server.

2.3.1 Jakarta slide

Jakarta Slide is a low level content management framework, which can be used by developers to
implement their own DMS. It is open source software developed under an Apache license. Jakarta
Slide has good support for WebDAV and its enhancements like DeltaV and DASL (DAV Searching
and Locating). It provides a Client-API that enables the easy integration into own projects and it is
very flexible in its storage system integration. Normal file systems or database systems can be
used. The WebDAV/DeltaV interface to Jakarta Slide is implemented as an Apache Tomcat-
Servlet-Container and provides easy integration of the Lightweight Directory Access Protocol
(LDAP) authorization system we use in our software system. Jakarta Slide is integrated into the
Apache Jakarta project and therefore long time supported is guaranteed.

2.3.2 Subversion

Subversion is a version-management-system like CVS (concurrent versioning system) developed
under an open source licence. It can be combined with WebDAV/DeltaV as interface protocol. By
utilizing an Apache web server with subversion module WebDAV can be used as an interface
protocol. The Apache web server also offers the ability to integrate LDAP based user management.
As in Jakarta Slide the storage of data is very flexible. File systems or database systems can be
used. Subversion offers support for storing just the modifications between different versions for
binary and text data. Subversion has an increasing popularity over the last few years and is used to
manage large software repositories in open source projects. Therefore subversion will be
supported and actively enhanced over a long period of time.

2.3.3 Selection of the system that fits the needs in e-government

Large administrations store a large amount of data, e. g. PDF-forms and GIS (geographical
information system) data. These data are often changed during process execution resulting in
many different data versions. Because of its efficient handling of versioned data we chose

The 7th European Conference on e-Government

subversion as low level DMS component of our system. But our software design and the use of
open interfaces also enables the easy adoption to Jakarta Slide.

3. The concept of hierarchical process folders

Our software system supports authorities by executing their government processes electronically.
The processes are modelled as hierarchical workflows and executed by an underlying workflow
management system. A workflow is a government process that is modelled in a form that allows a
computer system to execute it. A workflow that is in execution is in the following called a process.
The following definitions are based on the specifications by the workflow management coalition
(Hollingsworth 1995, Norin 2002). Workflows consist of activities that belong to actions that are
processed by the computer system (automated activity) or a user (manual activity). An automated
activity can be a workflow itself. By this model hierarchical workflows can be described by defining
the individual parts of the workflows as independent workflows and combining them by using
automated activities. Because we design our government processes as workflows following this
specification we are able to map large processes consisting of many small subprocesses to
workflows that our system can execute.

3.1 Hierarchical processes

In contrast to small processes consisting of only a few activities we deal with large processes that
are hierarchically designed. This hierarchical design is necessary because parts of the processes
are executed on external systems. The hierarchical design enables a flexible modelling approach.
Large processes only need to define the interfaces for their smaller components. As an example
we give the process of the official approval of building plans in Figure 1. In our context the terms
parent process and child process are used to indicate the relationship between two processes in a
hierarchical order. The overall process is called the parent process and any of the subprocesses is
called child process. Parent processes may pass values to the children. The mechanism how
documents are transferred from a parent process to a child process and backwards is described
later. In the Figure the parent process of all other processes is the official approval of a building
plan (P1). This process has one subprocess called execute the official approval of a building plan.
This process is child of P1 and also parent of five processes (handle claims, ...). This structure
shows the hierarchcal structure of the government processes we deal with and will be used for the
examples in the rest of the paper.

3.2 Implementation of the document management system

We use a combination of an Apache web server and a subversion repository as motivated in
Section 2.3.3. The core components of the DMS can be seen in Figure 2. The system can be
accessed via HTTP/1.1. The web server utilizes a subversion module to communicate with the
subversion repository. If a user connects via the apache server to the repository at first his rights
are checked against the LDAP server. The LDAP server stores the user information and rights. If
access is granted the user can read the specified document. If a user requests to write a document
to the repository the access check is done in a similar way. Any write operation of a document
results in a new version of the document. This version includes all changes the user did and
information on the user. If automated activity operations are performed on a document (e. g. a
document was written back after changing on another system) a special system user is utilized and
handled in the same way as normal users.

3.3 The configuration of the repository

The structure of the repository consists of three primary directories. The configuration of the
repositiory can be seen in Figure 3. In the “template directory” templates for documents, graphical
process trees and webforms of the loaded workflows are stored. A graphical process tree is utilized
to show the actual process execution location. Webforms are needed to output the activity
variables and documents a user can change in the graphical user interface. The “process folder
directory” is subdivided into directories representing the process folders of the actual executed
processes. In the “archive directory” the parts of the process folders that have to be archived for
later reference are stored after the completion of a process.

Raphael Kunis, Gudula Rünger and Michael Schwind

Figure 1: Parts of our example procedure

The official approval of building plans. The green rectangles show the overall process (upper left
corner) and some of the subprocesses. The arrows are used to indicate the parent – child
relationships, the source of the arrow is the parent and the target is the child process.

Figure 2: Overview of the implemented and utilized dms components.

The dms server consists of three components, an Apache web server with subversion module, a
subversion system and an LDAP server.

The 7th European Conference on e-Government

Figure 3: Configuration of the repository. The three main directories “AllDocuments”, “Archive” and
“Processes” are shown.

3.3.1 The template directory “AllDocuments”

In this directory all input documents of the processes are stored. There are process independent
and process bound documents. This directory contains at least the subdirectory “docs” where
common documents are stored. Additionally there is a directory for any process package that is
loaded into the system. A process package contains one or more workflow definitions of
government processes that are logically connected. A hierarchical modelled process can be stored
with all subprocesses in a single package. The advantage of this approach is the possibility to
define global variables that can be accessed by all process parts. The package directories contain
all documents that are relevant for the execution of the workflows contained in the corresponding
package. In the Figure an example is given as package “pfv” that contains all workflows belonging
to the official approval of building plans. The directories created for any package are:

� Directory “docs”: This directory contains all predefined forms and documents of the workflows
in the package. The documents in this directory can coincide with documents in the global
“docs” directory. The document that should be used later is configured by an administrator
when the package is loaded into the system.

� Directory “svg”: This directory contains the graphical representation of the processes in the
package. An example how this presentation looks like was given Figure 1. The representation
is utilized to show the progress of the processes during their execution.

� Directory “webforms”: The third directory contains the webforms of all manual activities in the
workflows of the package needed for the graphical output and interaction of users with the
system. A webform is the description of the modelled variables and their modification
possibilities, e. g. read only, read and write, the documents belonging to the activity and in
some cases also texts of law that belong to an activity.

Template documents must be added manually because they contained in a process package. If a
process package is imported or changed a mapping file is created. This mapping file maps generic
names for documents that are specified in the workflow definitions of a package to existing
documents stored in the template directory. An example mapping file is given in Figure 4.

Raphael Kunis, Gudula Rünger and Michael Schwind

realname="form_claim1.pdf"
refname ="form_claim1"
realname="form_hearing.txt"
refname ="form_hearing"
realname="form_cp2006.pdf"
refname ="form_concerned_persons"
realname="p_announcement2.pdf"
refname ="prototype_announcement"

Figure 4: Example of a mapping file that is used to map generic document names given in
workflow definitions of a package to existing documents in the template directory.

3.3.2 The hierarchical process folder directory “Processes”

This directory contains the process folders of all running processes. Each process has its own
process folder that is created at the starting time of the process and is named after the process
identifier within the system. Figure 3 shows three process folders “201_pfv_12”, “202_pfv_1” and
“203_pfv_16”. Any process folder consists of two subdirectories. The subdirectory “docs” is used
for storing the documents of the process. These are the documents that were copied at the starting
time of the process and all other documents created during process execution. The subdirectory
“memos” is used to store memos created by users of the system to notify other users about events
that are connected to the further execution of the process. At the starting time of a process the
document templates are copied from the template directory. The copy procedure is based on the
mapping file. The case of hierarchical processes needs special treatment. In the case of starting a
subprocess of another process the copying of documents from the template directory is replaced
by the hierarchical search for documents in the parent process hierarchy. This is necessary
because it is possible that in the subprocess documents form the parent process are needed and
the previously in the parent process inserted data needs to be available. Therefore in the case of a
subprocess the copy procedure searches for the documents of the subprocess in the process
folder of the direct parent process. Direct means that this parent process is the one containing the
subprocess. If documents are found in this process folder they are copied and the algorithm
finishes. All documents that were not found are searched for in the process folder of the direct
parents parent process folder if existing. If a document was not found it is copied from the template
directory. When a process finishes its execution this procedure is done in the reverse direction. All
documents of the process are copied back to the correct process folder. This copy is a new version
of the document in the parents process folder.

3.3.3 The archive directory “Archive”

Data of all finished processes are transferred to the archive directory, because in the data have to
be stored for subsequent inspection. Instead of using the process identifier as in the process folder
now the reference number of the process is used as a directory name. In Figure 3 two completed
processes exist “A01_2006” and “A02_2006”. The archive contains the document directory “docs”
and the memo directory “memos”.

4. The concept of security levels

Our software system enables the distributed execution of government processes. Most of the
operations within an authority involve external institutions in the execution of their government
processes. In the case of our example process these institutions are other authorities, agencies of
official concerns or companies. When processes are executed in a distributed manner it is
necessary to exchange information (e. g. documents) between the involved institutions. In most
cases different networks connect them requiring different security arrangements. Because the
security arrangements are needed to determine what level of security is necessary to transfer data
over the networks we partition them in three levels. Level one means that a network is highly

The 7th European Conference on e-Government

trustable (e. g. the intranet of an authority), level two means medium trustable (e. g. a network
between two authorities that is managed by a governmental agency) and level three means not
trustable (e. g. the internet). According to this level and the level of the document that is introduced
in the next paragraph the transfer security mechanism is chosen. Document security levels (slevel)
are implemented by adding additional information to the documents stored in the process folders.
Each document is annotated an slevel. This level lies between one (low security needs) and three
(high security needs) and is assigned by an administrator when adding the document to the
template directory. The values for the slevel depend on four security aspects: confidentiality,
integrity, authenticity and traceability.

� Confidentiality: no one else except the sender and receiver of the document should be able to
read it during the transportation.

� Integrity: protection of documents against unauthorized modification.

� Authenticity: covers the assurance that the sender sent the document and the receiver
received the document.

� Traceability: it can be proofed who sent a document and who received it.

Table 1: Mapping of document security level times network security level to the utilized security
mechanism for the security aspects.

Security mechanism security
aspect

document
security level network slevel =

highly trustable
network slevel =
medium trustable

network slevel =
not trustable

Low (1) none none encryption

medium (2) none encryption encryption confidentiality

high (3) encryption encryption encryption

low (1) none none advanced signature

medium (2) none advanced signature qualified signature integrity

high (3) qualified signature qualified signature qualified signature

low (1) none none check for valid
certificate

medium (2) none check for valid
certificate

challenge-response
method

authenticity

high (3) challenge-response
method

challenge-response
method

challenge-response
method

low (1) none none acknowledgement

medium (2) none acknowledgement signed
acknowledgement traceability

high (3) signed
acknowledgement

signed
acknowledgement

signed
acknowledgement

Table 1 shows the mapping of document and network slevel to the needed security mechanism for
transportation. No security mechanism means that the document is transferred without any security
mechanism. If a document is encrypted, a cryptography algorithm is used before sending the
document over the network. Possible encryption algorithms are Data Encryption Standard (DES)
(FIPS 1999) and Advanced Encryption Standard (AES) (FIPS 2001) that belong to the class of
symmetric algorithms and Rivest-Shamir-Adleman (RSA) (Rivest 1977) and Elgamal (ElGamal
1984) that belong to the class of asymmetric algorithms. Asymmetric algorithms (public key
systems) can also be used for the digital signature of documents. Public key systems use two
keys to encrypt data, a private and a public key. The private key is used to decrypt a message that
was encrypted with the corresponding public key. A digital signature is created by using the private
key of the sender and is directly dependent on the contents of a message. The verification of the
message can be done using the public key of the sender. The terms advanced signature and
qualified signature are defined in (German Federal Ministry of Justice 22. Mai 2001). The
challenge-response method guarantees that the sender of a message is in possession of the
private key that is assigned to the public key of the utilized certificate. A certificate is a digital
signed document that defines the binding between a public key and a certain name/system.
Certificates are created by a certification authority. Acknowledgement means that the receiver has
to confirm that he received the data from the sender. If a signed acknowledgement is necessary,
the receiver has to sign the acknowledgement with his private key. Our transport mechanism is

Raphael Kunis, Gudula Rünger and Michael Schwind

based on OSCI Transport (OSCI-Leitstelle 2002). OSCI-Transport enables the secure and
traceable communication between two software systems.

5. Cooperation of the models in the distributed execution of government
processes

The external execution of government processes primarily deals with the automated transfer of
documents between the involved authorities. The documents have to be sent from the software
system executing the parent process to the external authority. After the execution of the child
process the documents have to be reintegrated into the parent process. Our system is not limited
to the exchange of documents that exist in the parent process but also enables the integration of
newly created documents. An example can be seen in Figure 5. This Figure shows two software
systems that execute the government processes modelled as workflows. The example process is
the official approval of building plans that was introduced earlier. Software system I (S1) is the
system executing the parent process (execute the official approval of a building plan, P) while
software system II (S2) executes the child process (process resolution process, C). This example is
abstract because typically the transfer network is the same. However, this example aims to show
the potentialities of our system.

Figure 5: Example of the external execution.

The involved systems, the document management systems, the data that is transferred and the
involved networks are shown. The green (upper) network (parent to child) is a highly trustable
network meaning that the security level of the documents is the security level for the transfer. The
blue (lower) network (child to parent) is medium trustable. Because a medium network indicates
that the security level has to be at least medium the documents with a small security level have to
be adopted for transfer.

The example starts with the execution of an activity in process P that includes an external
subprocess C. The single steps are shown in Table 2. S2 is waiting for requests to start the
execution of process C. At first a request for the execution of C is sent from S1 to S2. S2 starts the
process, creates its process folder and waits for the needed documents to be transferred.
Afterwards P gathers information on the documents that have to be transferred to the system S2
and the slevel of these documents. This information and the information of the green network in the
Figure are utilized to determine the security mechanism needed for the documents. The
determination is done with the data given in Table 1. Afterwards the documents are transferred. In
Figure 5 these are two documents with slevel one (green) and one with slevel two (blue). Because
the medium is highly trustable, the security mechanism is mainly affected by the document slevel.
In addition to the documents the needed mapping file parts are also transferred. S2 copies the
received documents and the mapping file to the process folder of the earlier started process C.
This process is executed and system S1 waits for the completion of C. The documents can change

The 7th European Conference on e-Government

during the processing of C and new documents can be added to the process folder of C. When the
process is completed S2 notifies S1 and S1 waits for the documents to be sent. Therefore the
information on the documents as well as the slevel are gathered and the documents are sent to S1.
In the example in the Figure we have to deal with a medium secure network indicating that the
transfer slevel is at least medium. It can be seen that the earlier sent green documents have now
the colour blue meaning medium transfer slevel. The blue document from the start of the process
remains blue. Additionally a new document with an slevel of three (red) is sent back to process P.
P stores the documents and the adopted mapping file to its process folder and proceeds with its
execution.

Table 2: Steps done by the systems during start and end of an external child process.

Parent process executing system (S1) Child process executing system (S2)

0. request the external execution of the child
process

0a. create and initialise the child process
0b. create the hierarchical process folder

1: gather information on documents that have to be
sent to the child system

2: read the documents and their slevel from the
document management system

3: read information on the network used for the
transfer of the documents

4. calculate the slevel of any of the documents
depending on steps 2 and 3 = transfer security level

Wait for documents

5. transfer the documents according to the
calculated transfer security level

1. receive the documents

2. store the documents in the hierarchical process
folder of the child process

3. execute the child process
…
3.1 process finishes

4. gather information on documents that have to be
resent to the parent system

5. read the documents and their slevel from the
document management system

6. read information on the network used for the
transfer of the documents

Wait for the child process to complete

7. calculate the slevel of any of the documents
depending on steps 5 and 6 = transfer security level

6. receive return data and the return documents 8. signal the completion of the child process and
transfer return values and the documents according
to the calculated transfer security level

7. store the documents in the process folder of the
parent process

8. continue execution

6. Conclusion

Document management is very important in e-government for reaching the goal of paperless
offices. The management of documents using our model of hierarchical process folders is tailored
to the execution of government processes. Within a process folder all documents of a process are
stored and every change of a document results in a new version. This enables a traceable version
history of all process data. Therefore our model is comparable to a changing file containing all
information of a government process with the addition that every version can be restored. The
included archival storage mechanism facilitates later inspection of all completed processes. Our
model of security levels provides security mechanism that are tailored to the processing of
distributed government processes within and between authorities.

References

DMWare (1997) “Open Document Management API (ODMA) specification”, version 2.0., [online],
http://odma.info/

Raphael Kunis, Gudula Rünger and Michael Schwind

DMWare (2002) “Document Management Alliance (DMA) specification 1.0-7”, [online],
http://dmatech.info/

ElGamal, Taher A. (1984) “Cryptography and logarithms over finite fields”, Stanford University
FIPS (1999) “Data Encryption Standard”, Federal Information Processing Standards Publication,

No. 46-3
FIPS (2001) “Announcing the Advanced Encryption Standard (AES)”, Federal Information

Processing Standards Publication, No. 197
German Federal Ministry of Justice (2001): Gesetz über Rahmenbedingungen für elektronische

Signaturen. SigG. 2001, [online], http://www.gesetze-im-internet.de/sigg_2001/index.html
Goland, Y. et al. (1999) "RFC 2518. HTTP Extensions for Distributed Authoring - WEBDAV",

[online], ftp://ftp.rfc-editor.org/in-notes/rfc2518.txt
Hollingsworth, David (1995): The workflow reference model. Issue 1.1, Winchester: Workflow

Management Coalition.
ISO (2001): Information and Documentation - Records management. Vol. 1. Part 2: Guidelines

(ISO 15489-2).
KBsT - Federal Government Co-ordination and Advisory Agency (2005) “SAGA - Standards and

Architectures for eGoverment-Applications”, version 2.1, Schriftenreihe der KBSt 82
KBsT - Federal Government Co-ordination and Advisory Agency (2005) “DOMEA concept.

Document Management and Electronic Archiving in Electronic Courses of Business.” ,
Organisational Concept 2.0, Schriftenreihe der KBSt 74.

Mendling, Jan/Nüttgens, Markus (2006): "EPC markup language (EPML). An XML-based
interchange format for event-driven process chains (EPC)". In: Information systems and e-
business management 4, No. 3

Network Working Group (1999) “RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1.”, [online],
http://www.faqs.org/rfcs/rfc2616.html

Network Working Group (2002) "RFC 3253. Versioning Extensions to WebDAV (Web Distributed
Authoring and Versioning)", [online], ftp://ftp.rfc-editor.org/in-notes/rfc3253.txt

Norin, Roberta (2002): "Workflow Process Definition Interface - XML Process Definition Language".
WfMC, [online], http://www.wfmc.org/standards/docs/TC-1025_xpdl_2_2005-10-03.pdf

Office for Official Publications of the European Communities (2002) ”Model requirements for the
management of electronic records. MoReq specification”, Luxembourg

OSCI-Leitstelle (2002): "OSCI-Transport. Specification", [online],
http://www1.osci.de/sixcms/media.php/13/osci-specification_1_2_english.pdf

Rivest, R./Shamir, A./Adleman, L. (1977) “A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems”, MIT/LCS/TM-82.

The 7th European Conference on e-Government

