
A Source Code Analyzer for Performance Prediction

MATTHIAS K ÜHNEMANN∗

Fakulẗat für Informatik

Technische Universität Chemnitz

kumat@informatik.tu–chemnitz.de

THOMAS RAUBER

Fakulẗat für Mathematik und Physik

Universiẗat Bayreuth

rauber@uni–bayreuth.de

GUDULA RÜNGER

Fakulẗat für Informatik

Technische Universität Chemnitz

ruenger@informatik.tu–chemnitz.de

Abstract

Performance prediction is necessary and crucial in order
to deal with multi-dimensional performance effects on par-
allel systems. The increasing use of parallel supercomput-
ers and cluster systems to solve large-scale scientific prob-
lems has generated a need for tools that can predict scala-
bility trends of applications written for these machines. In
this paper, we describe a compiler tool to automate perfor-
mance prediction for execution times of parallel programs
by runtime formulas in closed form. For an arbitrary paral-
lel MPI source program the tool generates a corresponding
runtime function modeling the CPU execution time and the
message passing overhead. The environment is proposed to
support the development process and the performance en-
gineering activities that accompany the whole software life
cycle. The performance prediction tool is shown to be ef-
fective in analyzing a representative application for varying
problem sizes on several platforms using different numbers
of processors.

1 Introduction

One of the major challenges in parallel computing is to
support the process of developing parallel software by ef-
fective automated performance tools, i.e. performance en-
gineering approaches in certain design phases of parallel
software should accompany this process until the comple-
tion of the parallel application. Performance engineering
activities [15] range from performance prediction in certain
development stages, analytical modeling and simulation in
design and coding phases to monitoring and measurements
in the testing and correction phases. Much work has been
done to create simple models that represent important char-
acteristics of parallel programs, such as latency, network
contention and communication overhead. But many of this
methods still require substantial manual effort to represent
entire applications in the format of the model [2, 5, 11].

∗Supported by DFG (Deutsche Forschungsgemeinschaft).

Generating suitable models for performance estimation af-
ter every modification of the source code during the whole
development phase is a time-consuming process and many
application programmers are reluctant to invest the effort.
Furthermore, it is often difficult for a programmer to pre-
dict the impact that system parameters will have on parallel
code. As a result, software developers do not have the pos-
sibility of using an a priori performance prediction of dif-
ferent algorithm implementations in order to get an optimal
solution. There are different approaches for performance
modeling, e.g. statistical or experimental approaches like
simulation, benchmarking or trace-driven experiments. In
this paper, we consider an analytical modeling with runtime
functions that are structured according to the computation
and communication operations of the program. Analytical
approaches can be used for data parallel and for mixed task
and data parallel programs, also in the case of large and
complicated application programs [11, 10]. Static predic-
tion techniques for performance modeling of cluster sys-
tems and multicomputers are the only techniques that offer
low prediction cost as well as the opportunity for symbolic
analysis. Especially in view of the large system dimen-
sions involved, low cost is essential to permit generic pre-
diction technology in automatic compile-time optimization
algorithms. The main obstacle to employ runtime functions
for performance modeling of arbitrary parallel application
programs is the resulting modeling overhead. The applica-
tion programmer has to derive the runtime function from
the source code of the parallel program manually and each
modification of the application requires a modification of
the runtime functions. This is a time-consuming work, es-
pecially for large and complicated applications and the pro-
grammer might be discouraged to make a design decision
for a parallel application based on analytical performance
modeling. In this article, we describe a compiler tool that
generates a suitable runtime function for a parallel appli-
cation automatically and so relieves the programmer from
the effort to build a suitable performance model manually.
The compiler has been realized with the SUIF system [7].
It can be used for runtime prediction of pure data as well as

1

for mixed task and data parallel applications [14]. Specific
communication structures like orthogonal processor groups
can also be considered [12].
The rest of the paper is structured as follows. Section 2 de-
scribes the modeling approach used by the compiler tool to
estimate the communication overhead and the computation
effort. Section 3 introduces the components and the work-
flow of the compiler tool. Section 4 describes the user and
programmer interface of the compiler tool. Section 5 shows
how the execution times of parallel application programs
are modeled by the automated performance prediction tool.
Section 6 discusses related work and Section 7 concludes
the paper.

2 Modeling with runtime functions

For a given application, the source code analyzer yields
a performance prediction based on a model for predicted
execution time on distributed memory machines. In the fol-
lowing section we describe the modeling approach for exe-
cution times on which the compiler is based.

2.1 Modeling of MPI communication phases

An important issue of performance prediction of paral-
lel applications is the modeling of the execution time of
communication. Several machine parameters of the parallel
architecture like latency, network contention and network
bandwidth make it often difficult to handle an automated
prediction tool for communication operations. It is possi-
ble to model the communication phases exclusively based
on the characterizations of the parallel target machine, but
such an approach may lead to inaccurate results. To im-
prove the accuracy of the performance prediction with a
minimum of programmer assistance we propose the use of
predefined runtime functions for different communication
operations. Runtime functions have been successfully used
to model the execution time of communication operations
for various communication libraries [9, 13]. Table 1 shows
selected runtime functions for single to single and collective
communication operations of the MPI library. The value
b denotes the message size in bytes andp is the number
of processors participating in the communication operation.
For different variants, different coefficient values may have
to be used which is identified by an additional parameter
V for the variant in the following. The coefficientsτ1 and
tc can be considered as startup time and byte-transfer time.
For a given platform, the values of the parameters in the
functions are obtained by applying the least squares method
to a set of measured execution times. Runtime functions
for communication operations from various message pass-
ing libraries with appropriate coefficients are available for
different clusters and MPPs [11, 5, 13].

runtime function

tsingle(b, V) = τ1(V) + tc(V) · b
tmbroad(p, b, V) = τ1(V) + τ2(V) · p + tc(V) · p · b
tscatter(p, b, V) = τ1(V) + τ2(V) · p + tc(V) · p · b
tgather(p, b, V) = τ1(V) + τ2(V) · p + tc(V) · p · b

Table 1. Runtime functions for selected single
to single and MPI communication operations.

Each call of a single-to-single or collective communication
operation is detected by the compiler tool and it is replaced
by an appropriate call statement of the corresponding run-
time function. The number of processors participating in
the communication operation is determined from the com-
municator handle in the parameter list. The variable symbol
denoting the number of processors is acquired from the ap-
propriate procedure call statementMPI Commsize()with
the marked communicator handle as argument in the pro-
gram dependence graph. The specific coefficient values of
the runtime functions have to be known for the target plat-
form and are accessed in the data fileMachineProperties.

2.2 Modeling of computation effort

Another crucial task for an automated performance pre-
diction tool is the modeling of the computation effort of a
parallel application program. The execution time of basic
arithmetic, relational, logical or binary operations is deter-
mined by evaluation of measurements in isolation. The re-
sulting values are stored in the fileMachineProperties. This
has to be done only once for each target machine and is
performed automatically using an appropriate test program.
Again, the programmer assistance is minimal and the ap-
proach has been successfully used to model the computa-
tion effort [9, 13].
Since the execution time of different arithmetic operations,
like addition and division, can deviate substantially from
each other, it can be useful to differentiate the performance
modeling of these operations. The compiler tool offers the
possibility to classify operations in order to capture differ-
ent execution times for different arithmetic, relational, log-
ical and binary operations. Another issue to improve the
prediction accuracy is the identification of the result type of
an expression, which is used to determine the data type ob-
tained after executing an operation of that expression. We
especially distinguish different numeric data types like in-
teger and single and double precision floating point that are
used as result types for unary or binary expressions in our
modeling approach. Furthermore the object names used by
the SUIF IR (IntermediateRepresentation) provides infor-
mation about the type of the variable access, i.e. whether it

2

SymbolTable

c

{

a = b + c;

int a, b, c;
void procedure(. . .)

. . .

. . .

}

references

owns

LoadVariableExpression

LoadVariableExpression
source−>name

name

ty
p
e

source−>name

result_type

v
al

u
e

source1

opcode

source2

ProcedureDefinition

body

integer

symbol_table

sy
m

b
o
l_

tab
le_

o
b
ject

b

a

+

BinaryExpression

VariableSymbol

StoreVariableStatement

des
tin

ati
on

relationshipsC code fragment

Figure 1. Illustration of SUIF IRobjects and relationships between the objects to represent a C source
code fragment. The definition of a procedure, comprising variable declarations and statements, is
represented by an ProcedureDefinitionobject. The source code statement a = b + c is represented by
an StoreVariableStatementobject.

is a memory read access or a memory write access. Thus,
cost expressions based on adequate variables and values
can be applied to predict the execution time of a specific
arithmetic, relational, logical and binary operation. Fig-
ure 1 illustrates SUIF IR objects and relationships to rep-
resent a procedure definition. The C source code fragment
of the procedure definition is shown in the upper left corner
of the figure. The procedure contains a statement (Store-
VariableStatement) to assign to a variablea the sum of the
values of variables ofb andc. The figure especially illus-
trates the crucial relationships between the objects, which
are used to recognize characteristics of program compo-
nents used by the SUIF IR. The modeling of memory access
times needed to load or store operands for specific opera-
tions can be useful to achieve an accurate prediction of the
computational effort [8].

3 Internal structure of the analyzer

This section gives an overview of the structure, the com-
ponents and their functionality within the compiler tool re-
alizing the source code analyzer.

3.1 Realization using the SUIF infrastructure

Our compiler tool for performance predictions has been
implemented by using the SUIF system. The SUIF sys-
tem is a compiler infrastructure based on a specific pro-
gram representation, also calledSUIF (StanfordUniversity
IntermediateFormat). The emphasis is to maximize code
reuse by providing useful abstractions and frameworks for
developing new compiler passes and by providing an envi-
ronment that allows compiler to inter-operate. The system

is based on two fundamental concepts: an extensible pro-
gram intermediate representation (IR) and a flexible mod-
ule system. The system provides a set of predefined IR
nodes, especially nodes that represent important program
structures. In the SUIF infrastructure, various front end
passes and back end passes are available for different pro-
gramming languages, likeFORTRAN, C, Javaor C++ , that
are used to translate the specific source code into a corre-
sponding SUIF IR. The analyzing process is performed on
the SUIF IR independently from the input source code. In
this article we especially consider C application programs
as input to our compiler tool for performance prediction, but
the design works similarly for the programming languages
mentioned above.

3.2 Components of the compiler tool

The compiler tool consists of components, which are ba-
sically provided in terms of independent compiler passes.
The compiler passes are used to gather information and to
generate the runtime functions using the SUIF program rep-
resentation, which has been derived from the source code.

3.2.1 Workflow of the compiler tool

Figure 2 shows the stages of the workflow for the automated
performance analyzing and prediction tool. The parallel ap-
plication program to be analyzed is represented byn source
filessourcecodex.cshown at the top of the figure. At first,
each individual file of the application program is translated
into an appropriate SUIF-file using the C front end pass of
SUIF and then the resulting output files are linked together
resulting in a single file. The link process is performed us-
ing the standalone compiler passlink suif and the resulting

3

source_code_1.c

SUIF Front End

source_code_1.suif

SUIF Front End

comm_interface.c

comm_interface.suif

SUIF linker

SUIF Front End

SUIF Back End

C source code
runtime function as

. ..

.

.

. .

. .

SUIF linker

source_code_n.suif

source_code_n.c

program_source.suif

SUIF> ...

SUIF> dismantle_cfors_to_fors

passes to build higher level constructs
from simple objects and

SUIF> build_multi_dim_arrays

to dismantle high−level constructs

User

AddCounter
Technique

User

passes to analyze the source code,

SUIF> gc_symbol_table

SUIF> build_runtime_formula

to build cost expressions
and to clean up the representation

SUIF> ...

Machine dependent

information

Figure 2. Illustration of the entire workflow of
the source code analyzer. The actual source
code analysis of the C-input file and the con-
struction of cost expressions is performed by
the compiler pass build runtime formula.

file contains a hierarchical SUIF tree, which represents the
whole parallel application program.
The file comminterface.cshown in Figure 2 contains in-
terfaces in form of procedure headers for runtime functions
of MPI communication operations. The file is translated
into the SUIF IR and then linked to the SUIF representa-
tion of the parallel application program. The interfaces in
comminterface.care used to represent the procedure call
statements of communication operations to obtain perfor-
mance predictions for the communication overhead. The
resulting SUIF IR file represents the whole application pro-
gram including the interfaces for the runtime functions of
various communication operations.
Other passes are used to analyze and annotate the SUIF IR
in order to provide additional information. Furthermore,
the SUIF environment contains a set of passes that trans-
form the program representation. These are mainly passes

to build higher level constructs from simple objects, to dis-
mantle high-level construct, and to clean up the represen-
tation. Such transformation passes are performed in the
source code analyzer to remove scope-statements, like vari-
able declarations, and to move scope local variables to the
procedure scope.
The programmer has the possibility to insert a unique la-
bel into the source code of the parallel application program
in order to separate the procedure body into two parts, an
initialization block and a computational block. This label
denotes the end of the initialization block and the begin of
the computational block. The advantage of this approach is
to transfer the complete initialization block into the runtime
function to be generated. By doing this, variable initializa-
tions or definitions are preserved for the resulting C pro-
gram realizing the cost function. In the case that no label
has been inserted by the user providing the input C source
code to the compiler tool the complete procedure body is
considered as computational block.
The SUIF representation obtained from the input C source
code provides a procedure definition (ProcedureDefinition),
that consists of a procedure name (ProcedureSymbol), a re-
sult type (ProcedureType), a list of parameters (Parameter-
Symbols), a local scope of variable declarations (Symbol-
Table) and the body of the procedure (ExecutionObject).
The parameter list, the local variable declarations, poten-
tial definitions and the described initialization block are pre-
served for the runtime function to be generated. The name
of the procedure is extended by a prefix to avoid collisions
with the original procedure. Afterwards, several existing
compiler passes are performed to avoid variable name colli-
sions and to clean up the representation. The compiler tool
recognizes the end of the initialization block and the begin
of the computational block by the unique label mentioned
above. The computational block is responsible for the main
execution time and communication overhead of the proce-
dure to be analyzed.
The computational block is analyzed by the compiler pass
and gradually transformed into the runtime function such
that each individual program construct is substituted by a
corresponding expression representing the costs of this con-
struct in the context of the parallel application program. The
runtime function obtained is used in the same manner as the
original procedure containing the application source code,
but is executed on an arbitrary sequential machine. The
value returned by the runtime function is the predicted ex-
ecution time of the procedure in seconds obtained with the
current parameter values. In this way the runtime estima-
tions are evaluated and analyzed by varying the system size
and number of participating processors. An advantage is the
possibility to use the prediction values as input for further
investigations, e.g. to visualize the performance behavior
of different variants of the required application on the same

4

.

.

.

}

}

}

. . .

for (. . .) {

if (. . .) {

for (. . .) {

Application Data

obtained dynamically

- loop sizes / iteration space

- ’if’ probability

AddCounters

Figure 3. Dynamic instrumentation

target platform.

3.3 Estimation of conditionals and arbitrary loop
structures

Many applications exhibit complex, data dependent ex-
ecution behavior and have time varying resource demands.
The key to successfully estimating the computation time is
to capture the iteration space of nested loops and to perform
an effective branch prediction for conditionals. In this sec-
tion we propose an approach to estimate the probability of
conditions and to determine the iteration space of more gen-
eral loop structures.
At first, we present our approach to determine the proba-
bility of conditions. For the automated prediction tool to
be able to work in a dynamic environment we introduce a
source code instrumentation and dynamic analysis method-
ology. A precise method would require a user to input spe-
cific application information, which may consist of param-
eters like iteration spaces of loop structures or conditional
statement probabilities to the compiler tool when an analy-
sis is performed. While the user might correctly guess the
information in small applications with few loops or condi-
tional statements using small sized data, this task is much
harder when large applications with complicated loop struc-
tures and input-dependent conditional statements are con-
sidered.
A solution to this problem is to use an approach,Add-
Counter, that automatically inserts special sensors into the
application. The counters, as shown in Figure 3, reside
inside fundamental statements like loops and conditional
statements and are triggered when the application is exe-
cuted for the first time. These counters gather runtime in-
formation and data for the user, and annotate them to the
appropriate SUIF-objects representing the loop or condition
statements in a trial program execution. The information
which extends the SUIF IR of the application program as
AnnotableObjects are used in the following compiler passes
to determine complex iteration space of nested loop struc-
tures and conditional probabilities. The advantage of this
method is that the compiler tool gathers information auto-
matically and dynamically. TheAddCountertechnique in-
troduced can be considered as an extension of the compiler

tool to assist the user in performing prediction analysis for
a wider range of parallel programs with more complicated
or irregular program structures.

4 User and Programmer Interface

The modular structure of the tool allows the user of the
compiler tool to adapt the structure of cost expressions and
cost formulas which are used to estimate the runtime be-
havior of specific program constructs to the specific fea-
tures of a target machine. If such an adaptation is re-
quired, it can be performed in a separate modeling step
that precedes the actual program analysis. Especially the
underlying model structure to predict the communication
costs of message passing communication operation can be
adapted independently by the user in an estimation phase.
For the modeling of message passing communication op-
erations runtime functions are used as described in Section
2.1. Each communication operation, like anMPI Bcast()
or MPI Allgather() operation, is modeled by a predefined
runtime function with known coefficients to predict the ex-
ecution time of the operation. To allow a flexible modeling,
the user can replace the predefined runtime function by a
user-supplied function with the same signature: for a gen-
eral communication operation, the user-supplied function
has to provide the numbern of transferred elements, the
type of the elements and the numberp of processors partic-
ipating in the communication operation as parameters. For
single transfer operations only two parameters are required,
since just two processors are involved in the communica-
tion operation. The predefined runtime functions can be re-
placed by the user at any time, since it is independent of
the resulting prediction function, which is used to estimate
the execution time of the entire application program. The
form of cost expressions to estimate the computation effort
of program constructs is determined in specific methods of
the compiler tool. A modification of the cost format can be
obtained by providing a method with the same signature as
the original method. The execution times of various compu-
tation operations and library calls are represented as specific
variables; for instanceTadd int denotes the execution time
of anadditionoperation with return typeinteger. The val-
ues of the variables are provided in a specific data file and
can be modified easily at any time. It is even possible that
the user provides methods for a sophisticated modeling of
memory accesses, for example, a mechanism like the cache
miss equations [6]. An adaption of machine-dependent in-
formation may be necessary when hardware equipment or
software environments are updated for a known target ma-
chine.

5

5 Applications and experimental results

In order to demonstrate the usage of the performance
prediction toolkit we consider parallel implementations of
an iterative solution method for linear equation systems, the
Jacobi iteration.
We consider the applications on three different target ma-
chines a Beowulf-Cluster, a dual Xeon cluster and an
IBM Regatta p690 cluster. The Beowulf Cluster CLiC
(’ChemnitzerLi nux Cluster’) is build up of 528 Pentium
III processors clocked at 800 MHz. The processors are
connected by a fast-Ethernet communication network. The
Xeon cluster is built up of 16 nodes and each node consists
of two Xeon processors clocked at 2 GHz. The nodes are
connected by a high performance interconnection network
based on Dolphin SCI interface cards. The SCI network is
connected as 2-dimensional torus topology and is used by
the ScaMPI (SCALI MPI) [1] library. The IBM p690 Re-
gatta cluster is built up of 6 nodes and each node consists of
32 PowerP4+ processors clocked at 1.7 Ghz. We consider
the well-known Jacobi iteration for solving a linear system
of equationsA · x = b with an n × n matrix A, a vector
b ∈ Rn, and an unknown vectorx to be determined. There
are different ways to implement the Jacobi iteration in a data
parallel way depending on the data distribution of the ma-
trix A. We consider a row-wise distribution and a column-
wise distribution. The computational work for computing
the new entries of the next iterationx(k) is the same in
both cases and is equally distributed over the processors. In
each iteration each processor performspn

p q×n multiplica-
tions and about the same number of additions. But because
each processor computes different parts and each processor
needs the entire new iteration vectorx(k) in the next itera-
tion step, different communication operations are required
for the implementations. In the row-wise distribution of ma-
trix A each processor computespn

p q scalar products yield-
ing pn

p q components of the new iteration vector. To provide
the entire vector to each processor for the next step a multi-
broadcast operation(MPI Allgather()) is performed.
From the program code, the compiler tool generates the fol-
lowing runtime function to represent the execution time of
the row-wise Jacobi iteration with matrix size respective
system sizen andp participating processors.

Trow(p, n) = 2 · n

p
· top · (2 · (n− 1) · top)

+ 3 · n

p
· top + Tmb(p,

n

p
).

The function has been simplified so thattop denotes the
time for the execution of an arbitrary arithmetic operation
andTmb denotes the runtime function of the multi-broadcast
operation. The execution timetop generally represents an
equation of the form

top = 2 · tread + twrite + t(op, dt)

wheretread and twrite denote the time of a memory read
access and a memory write access andt(op, dt) denotes the

execution time of the arithmetic operationop with result
typedt. The body of the innermost loop contains a memory
write access and two arithmetic operations to compute the
local components ofx. To complete the calculation each
processor computespn

p q components of the new iteration
vectorx. The for-loop used contains3 arithmetic opera-
tions. The multi-broadcast operation performed to provide
the entire vector to each processor transferspn

p q elements
of data typedouble.
In the column-wise distribution of matrixA each processor
computes a new vectord of sizen. Adding up all those
vectors gives the new iteration vectorx. Since the vectors
d are located in different address spaces, collective commu-
nication is required to perform the addition. There are two
possibilities, a multi-broadcast and a single-broadcast vari-
ant.
The multi-broadcast variant uses a MPIAllreduce and
MPI Allgather operation. The compiler tool generates the
following simplified function to represent the execution
time

Tcol mb(p, n) = 2 · n

p
· top · (2 · (n− 1) · top)

+ 3 · n

p
· top + Tmacc(p, n) + Tmb(p,

n

p
)

whereTmacc denotes the time of an MPIAllreduce opera-
tion.
The single-broadcast variant uses a single-accumulation op-
eration and a single-broadcast operation resulting in the fol-
lowing simplified runtime function

Tcol sb(p, n) = 2 · n

p
· top · (2 · (n− 1) · top)

+ 2 · n · top + Tacc(p, n) + Tsb(p, n).

Tacc denotes the runtime function of a single-accumulation
operation (MPI Reduce) andTsb denotes the runtime func-
tion of a single-broadcast operation (MPI Bcast). Again,
the runtime function is obtained automatically. The differ-
ence between both variants lies in the computation of an
intermediate result for the iteration vectorx. The multi-
broadcast variant provides the vector to each processor such
that only n

p components are computed concurrently (3 · n
p),

whereas the single-broadcast variant reduces the intermedi-
ate result to root processorP0 such that a single processor
computes the entire vector (2 · n). Afterwards, the proces-
sorP0 uses a single-broadcast operation to provide the en-
tire vectorx to each processor for the next iteration step.
We consider the quality of the runtime prediction based on
the automated performance prediction tool. Figure 4 and
Figure 5 show the measured and predicted runtime for ade-
quate values of varying matrix sizes and number of proces-
sors on the CLiC, on a dual Xeon cluster and on an IBM
p690 cluster. The figures illustrate that the predictions fit
the measurements quite accurately for different target ma-
chines. The deviations between the predicted and measured
runtime lies below 7% for the most cases on the CLiC and

6

20
40

60
80

100 5000

10000

15000

20000

25000
0

2

4

6

8

10

system size

modeling of row−wise Jacobi iteration on CLiC (LAM−MPI)

processors

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

0 5 10 15 20 25 30 35

5000

10000

15000

0

0.5

1

1.5

2

2.5

system size

modeling of row−wise Jacobi iteration on dual Xeon cluster (SCI)

processors

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

Figure 4. Modeling of row-wise realization of
Jacobi iteration on CLiC using LAM-MPI (top)
and on dual Xeon cluster using ScaMPI (bot-
tom).

below 5% on the dual Xeon cluster and the IBM p690 clus-
ter.

6 Related Work

There are several analytical approaches to predict the ex-
ecution behavior of parallel program performance, e.g. the
Falcon [4] project of the Georgia Institute of technology,
the Pablo [3] project of the university of Illinois and the
PAMELA[16] project.The major conceptual components of
Falcon are a monitoring specification mechanism, which
consists of a low-level sensor specification language and a
high level view specification language and mechanisms for
on-line information collection, analysis, and for program
steering. The primary objective of the tool set is the evalu-
ation of monitoring information to provide a graphical user
interface for instrumentation and runtime manipulation. In
contrast to the compiler tool introduced in this paper no ana-
lytical investigation and evaluation based on the source code
of the parallel applications are supported.

0 5 10 15 20 25 30 35

5000

10000

15000

0

0.5

1

1.5

2

2.5

system size

modeling of row−wise Jacobi iteration on IBM p690 cluster

processors

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

0 5 10 15 20 25 30 35

5000

10000

15000

0

0.5

1

1.5

2

2.5

system size

modeling of column−wise Jacobi iteration with MPI_Bcast on IBM p690 cluster

processors

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

Figure 5. Modeling of row-wise (top) and
column-wise (bottom) realization of Jacobi it-
eration on IBM p690 Regatta cluster.

The ongoing goal of thePablo project is the develop-
ment of a portable performance data analysis environment
that can be used with a variety of massively parallel sys-
tems. ThePablo software environment contains both
a portable performance data analysis environment and a
portable source code instrumentation component that are
united via a portable data meta-format called SDDF. This
performance file, stored in thePablo Self-Defining Data
Format (SDDF), is input toSvPablo, which presents the per-
formance data in the context of the original source code. An
advantage of the toolkit introduced in this paper lies in the
fact that the resulting runtime functions are available in the
independent SUIF IR and can be used in a more open and
more interdisciplinary manner.
ThePAMELAproject aims at the development of a modeling
methodology that yields fast, parameterized performance
models of parallel programs running on shared-memory as
well as distributed-memory machines. The project uses
similar methodologies and approaches to obtain and provide
a performance prediction tool as our compiler tool, but ap-

7

plies a specific performance simulation language to achieve
the objectives.

7 Conclusion

In this paper we have illustrated an approach for auto-
mated prediction and modeling of parallel application pro-
grams. We have presented how the communication and
computation times are modeled using runtime functions.
The use of static compiler front-end tools and runtime in-
formation in the form of counters in the sense of sensors is
an useful extension for automated performance modeling,
especially for applications containing complex loop struc-
tures. The article shows how the compiler technique is used
to generate correct and efficient code to model the execution
time of application programs. We have considered parallel
application programs with multiple communication phases
and complex computational structures and the results show
that programs with multiple communication pattern can be
automatically analyzed and modeled. In particular, our pre-
dictions are within approximately 7% of measured execu-
tion times for the parallel Jacobi implementation. Further-
more, the models are useful for obtaining scalability metrics
on different network environments.
Another advantage of using runtime formulas is that op-
timization methods can be applied for designing efficient
implementations which minimize the communication costs
and the load imbalance. The approach is used to obtain an
a priori estimation of the prospective gain of a parallel im-
plementation.

References

[1] Scali / ScaMPI commercial MPI on SCI implementa-
tion. http://www.scali.com/.

[2] D.E. Culler, R. Karp, A. Sahay, K.E. Schauser, E. San-
tos, R. Subramonian, and T. von Eicken. LogP: To-
wards a realistic model of parallel computation.Proc.
of 4th Symp. on Principles and Practice of Parallel
Programming, 28(4):1–12, 1993.

[3] L. DeRose and D. A. Reed. SvPablo: A Multi-
Language Architecture-Independent Performance
Analysis System. InProc. of the International Con-
ference on Parallel Processing (ICPP), September
1999.

[4] G. Eisenhauer, W. Gu, K. Schwan, and
N. Mallavarupu. Falcon – Toward Interactive
Parallel Programs: The On-line Steering of a Molec-
ular Dynamics Application. InProc. of the Third
International Symposium on High-Performance
Distributed Computing (HPDC-3), August 1994.

[5] R. Foschia, T. Rauber, and G. Rünger. Modeling the
Communication Behavior of the Intel Paragon. In
Proc. of 5th Symp. on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems
(MASCOTS’97), IEEE, pages 117–124, 1997.

[6] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss
Equations: A Compiler Framework for Analyzing and
Tuning Memory Behavior.ACM Transactions on Pro-
gramming Languages and Systems, 21(4):703–746,
1999.

[7] The Stanford SUIF Compiler Group.
http://suif.stanford.edu/.

[8] J. L. Hennessy and D. A. Patterson.Computer Archi-
tecture A Quantitative Approach. Morgan Kaufmann,
2003.

[9] K. Hwang, Z. Xu, and M. Arakawa. Benchmark Eval-
uation of the IBM SP2 for Parallel Signal Processing.
IEEE Transactions on Parallel and Distributed Sys-
tems, 7(5):522–536, 1996.

[10] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini,
H. Wasserman, and M. Gittings. Predictive Perfor-
mance and Scalability Modeling of a Large-Scale Ap-
plication. InProc. of IEEE/ACM SC2001, 2001.

[11] M. Kühnemann, T. Rauber, and G. Rünger. Perfor-
mance Modelling for Task-Parallel Programs. InProc.
of Communication Networks and Distributed Systems
Modeling and Simulation (CNDS’02), pages 148–154,
2002.

[12] T. Rauber, R. Reilein, and G. Rünger. ORT – A Com-
munication Library for Orthogonal Processor Groups.
In Proc. of the Supercomputing 2001 (CD-ROM),
Denver, USA, 2001. IEEE Press.

[13] T. Rauber and G. R̈unger. PVM and MPI Communica-
tion Operations on the IBM SP2: Modeling and Com-
parison. InProc. 11th Symp. on High Performance
Computing Systems (HPCS’97), 1997.

[14] T. Rauber and G. R̈unger. Library Support for Hier-
archical Multi-Processor Tasks. InProc. of the Super-
computing 2002, Baltimore, USA, 2002.

[15] C. U. Smith. Performance Engineering of Software
Systems. Addision Wesley, 1989.

[16] A.J.C. van Gemund. Symbolic Performance Modeling
of Parallel Systems. InProc. of IEEE Transactions on
Parallel and Distributed Systems, volume 14, No. 2,
pages 154–165, Feb 2003.

8

