
PERFORMANCE MODELLING
FOR TASK-PARALLEL PROGRAMS

Matthias K̈uhnemann
Department of Computer Science
Chemnitz University of Technology
Germany

Thomas Rauber
Department of Mathematics and Physics
University of Bayreuth
Germany

Gudula R̈unger
Department of Computer Science
Chemnitz University of Technology
Germany

Abstract Many applications from scientific computing and physical simulations can ben-
efit from a mixed task and data parallel implementation on parallel machines
with a distributed memory organization, but it may also be the case that a pure
data parallel implementation leads to faster execution times. Since the effort
for writing a mixed task and data parallel implementation is large, it would be
useful to have an a priori estimation of the possible benefits of such an imple-
mentation on a given parallel machine. In this article, we propose an estimation
method for the execution time that is based on the modelling of computation and
communication times by runtime formulas. The effect of concurrent message
transmissions is captured by a contention factor for the specific target machine.
To demonstrate the usefulness of the approach, we consider a complex method
for the solution of ordinary differential equations with a potential for a mixed
task and data parallel execution. As distributed memory machine we consider
the Cray T3E and a Linux cluster.

Keywords: execution time analysis, runtime formulas, mixed task and data parallelism, sci-
entific computing.



1. Introduction

We consider task parallel programs in a form where the entire program is
built up from multi-processor tasks (M-task) each of which can be executed on
an arbitrary number of processors and is often implemented in a data-parallel
way. Different M-tasks can cooperate in a compositional way which means that
one task produces data to be used as input data by another task. But a program
may also contain independent tasks which can be executed concurrently to each
other on subsets of processors, also called groups of processors. There usually
exists a large variety of different parallel realizations of the same application
program. The program versions can differ in the execution order of the tasks
and the mapping of each M-task onto a set of processors of a specific size. In
this paper we address the question how to select an efficient parallel program
version from the described class of programs when using a distributed memory
machine (DMM).

Whether a pure data parallel or a mixed task and data parallel program ver-
sion is more efficient strongly depends on the specific application program and
its requirement for communication, especially for collective communication
operations. Collective communication operations performed on smaller pro-
cessor groups lead to smaller execution times due to the logarithmic or linear
dependence of the communication times on the number of processors [14, 10,
7]. This behavior of the communication time can be an advantage for a con-
current computations on disjoint subsets of processors. In general, the effort
to implement a task parallel program is considerable and so it would be useful
to have an effective method to determine the most efficient program version
before implementing all the details. Such a method needs a notion of costs
assigned to different program versions under consideration where the costs of
a specific version meet some requirements: they should be based on the spe-
cific task structure and they should reflect the behavior of the parallel execution
times resulting on a specific DMM.

In this paper, we suggest a method based on costs estimating parallel exe-
cution times of task parallel programs with M-tasks. The modelling of costs is
based on a specification of the task structure and assumes a corresponding par-
tition of the set of processors into groups or subsets of processors. The costs
are given as runtime formulas that contain parameters describing the parallel
target machine and characteristics of the algorithm to be implemented [11].
Runtime formulas have been used before for modelling the execution time
of communication operations in isolation [14, 10, 6], but their use for mod-
elling the execution time of task parallel programs has not yet been studied.
The runtime formulas are built up from computation costs and communication
costs which reflect the actual execution of a computation or a communication
operation in isolation. But due to complex processor architectures, memory



hierarchies and network properties, the execution time of an entire program
might strongly be influenced by cache effects or network contention. Our aim
is to investigate whether a purely program-oriented construction of the runtime
formulas is suitable to model costs for task parallel executions and whether ad-
ditional effects like cache effects and network contention have to be taken into
consideration to obtain an accurate prediction.

In the following sections, we describe how to build up program-specific run-
time formulas for parallel platforms with distributed memory. In Section 1.2
we summarize the general approach. Section 1.3 briefly introduces the parallel
target platforms used, a Cray T3E and a Beowulf cluster of PCs, and presents
the runtime formulas for communication operations for those machines. As
complex example applications we consider one-step methods for solving ordi-
nary differentiation equations (ODEs) which have a potential for M-task paral-
lelism. In Section 1.4, we model the runtime formula for an entire application.
Section 1.5 shows that the runtime formulas reflect the performance behavior
of the parallel program and Section 1.6 concludes.

2. Runtime formulas

The runtime formulas of our cost model are composed according to the M-
task structure of the programs whose execution time they described in [11]and
summarized in the following. The runtime formulas consist of two parts de-
scribing the computation times and the communication times.

Computation and communication operations. The computation times are
modelled by taking into account the number of operations to be executed. For
each arithmetic operation we use a computation timetop that can be determined
by runtime measurements with simple sequential test programs on the parallel
machine used. In addition, we use execution timesTf for specific functions
f which are needed to describe specific application problems. The execution
time for such a functionf can be build up from single computation operations
or can be a measured time for the function in isolation. The reason to use a
single valueTf in the runtime formula is that most numerical methods, like
ODE solvers, are designed as black-box solvers, so that they can be used for
arbitrary functionsf describing the right-hand side of the ODE system.

The communication times are modelled by formulas that describe the ex-
ecution time of individual communication operations, such as single-transfer
or broadcast operations. These formulas are used to model the internal com-
munication time of a M-task, which are often realized in a data parallel way.
Communication formulas may also be used to describe the time for data re-
distributions inserted between different multi-processor tasks related in a com-
positional way. The runtime formulas for communication operations are func-
tions in closed form that depend on the message sizeb and the numberp of



processors participating in the communication operation. For a given DMM,
the value of these parameters result from modelling the runtime formulas by
the least squares method. In Section 1.3 we present runtime formulas for dif-
ferent communication operations in isolation, see also [14, 10, 6, 4].

Task parallel programs. Runtime formulas for entire programs are built
up according to the task structure of the specific program. First, each partici-
pating M-taskM is assigned a runtime formula built up from communication
and computation times according to the internal structure. We assume a data
parallel or SPMD-like internal computation structure consisting of alternating
phases of computation and communication, so that the execution time can be
represented by

TM (p, b) = Tcomp(p, b) + Tcomm(p, b).

Tcomp(p, b) is the maximum of the execution times of the participating proces-
sors.Tcomm(p, b) is the sum of the runtimes of the communication operations
used. Second, the runtime of an entire program is built up from the costs of the
M-tasks according to the task structure. In the case that two M-tasksM1 and
M2 are executed concurrently to each other on disjoint sets of processors, the
maximum of the runtimes is taken:

max(TM1(p1, n1), TM2(p2, n2)).

TMi(pi, ni) denotes the runtime of taskMi for problem sizeni on a group of
pi processors,i=1,2. The sets of processors executingM1 andM2 are assumed
to be disjoint. In the case that two M-tasksM1 andM2 are executed one after
another and the runtimes are added:

(TM1(p, n1) + TM2(p, n2)) + Tredist(p,m).

Both timesTMi(p, ni) contain the same parameterp for the sizes of the proces-
sor groups indicating that both tasksM1 andM2 are executed on a processor
group of the same size, which is usually the same group. In addition, some
communication between successive task activations might be necessary to re-
alize redistribution of data. The time needed for the redistribution is denoted
by Tredist(p,m) wherep is the number of participating processors andm the
size of the data to be redistributed.

2.1 Comparison with other cost models

Our approach of performance modelling with runtime formulas combines
a modelling part for SPMD-like computations and a construction part for the
upper level task parallelism of M-tasks. The combination is inspired by the
specific goal to compare the efficiency of different realizations with mixed task



and data parallelism for the same given algorithm. Other cost models for paral-
lel programming, like the LogP model and its variations [2, 1]or the BSP model
[8, 5], are aimed at aspects different from ours. The LogP model is more archi-
tecture oriented with an emphasis on a detailed modelling of parallel runtimes
but is less suited to express explicitly upper level task parallelism. The BSP
model concentrates on a specific program structure of supersteps which is not
straightforwardly related to a mixed task and data parallelism with M-tasks.
The advantage of using runtime formulas for the modelling of the execution
times lies in the fact that they can easily be adapted to a mixed task and data
parallel execution of program parts. Moreover, runtime formulas are able to
capture the effect that the same communication operation may lead to differ-
ent execution times, depending on whether other communication operations
are simultaneously executed by concurrent processor groups or not. This ef-
fect cannot easily be captured by other models like the BSP model [8, 5]or the
LogP model and its variations [2, 1]that assume a pure data-parallel execution
of the program. In these models, it is difficult to capture runtime effects that
occur only in a task parallel execution. Using runtime formulas, such effects
can be captured, e.g., by contention factors introduced in Section 1.3.2.

3. Modelling Communication Costs

We consider the communication on different machine with distributed mem-
ory, a Cray T3E and a Beowulf-Cluster. The T3E uses a three-dimensional
torus network. The six communication links of each node are able to simulta-
neously support hardware transfer rates of 600 MB/s for the T3E.
The Beowulf Cluster CLiC (’ChemnitzerLi nux Cluster’) is build up of 528
Pentium III processors clocked at 800 MHz. The processors are connected by
two different networks, the communication network and the service network.
Both are based on the fast-Ethernet-standard, i.e., the PEs can swap 100 MBit
per second. The service network (Extreme Block Diamand) allows external
access to the cluster. The communication network (Cisco Catalyst) is used for
inter-process communication between the PEs.

We consider message-passing programs that are coded using the MPI stan-
dard [3]. On the CLiC, LAM MPI 6.3.2 is used.

3.1 Communication operations in isolation

For single-transfer operations and collective communication operations we
consider different variants. The message sizes are between 2 KByte and 400
KByte. Except for some anomalies of the buffered single-to-single transfer on
the Cray T3E, the runtimes increase linearly with the message size. On the
Cray T3E-1200 the standard single-to-single transfer is the fastest operation.
For the CLiC we have additionally implemented a piecewise single-to-single



transfer operation that splits the message to be transmitted into pieces of 4KB
and sends the pieces separately. This is the fastest single-transfer operation on
the CLiC.

For collective communication operations we consider single-broadcast
operations (MPI Bcast() ), accumulation operations (MPI Reduce() ),
gather operations (MPI Gather() ), scatter operations (MPI Scatter() ),
and multi-broadcast operations (MPI Allgather() ). The execution times
for collective communication operations on the Cray are essentially faster than
on the CLiC. Again, we have implemented piecewise communication opera-
tions on the CLiC that turn out to be faster than the original operations.

Runtime formulas: The runtime formulas that are used for the modelling
are summarized in Table 1. The valueb denotes the message size in bytes,p
is the number of processors participating in the communication operation. The
coefficientsτ andtc can be considered as startup and byte-transfer times and
are determined by curve fitting with the least-squares method. For different
internal realization of the same communication operation, different values for
the coefficients are obtained. We therefore use an additional parameterV to
distinguish the different variants; the specific values for the coefficientsτ (V),
tc(V), t1(V) andt2(V) are given in Tables 2 - 3.

Table 1. Runtime formulas for communication operations.

operation runtime formula

MPI Send ts2s(b) = τ + tc · b
MPI Bcast tsb(p, b) = τ log2(p) + tc · log2(p) · b
MPI Reduce tsa(p, b) = τ log2(p) + tc · log2(p) · b
MPI Allgather tmb(p, b) = τ1 + τ2 · p + tc · p · b

Single transfer: The runtime for a single-to-single transfer is modelled by a
linear functionts2s(b) = τ +tc ·b whereτ(V ) denotes astartup timeandtc(V )
denotes thebyte-transfer timefor the specific operation V. Curve fitting results
in the parameter values given in Table 2. The negative coefficients arise when
using the least squares method for measured runtimes in the complete range of
message sizes. Restricting the method to small message sizes up to 2 KByte
leads to a separate, more accurate runtime formula for small messages without
negative coefficients. A comparison between the predicted and measured run-
times for all MPI single-transfer operations shows that the predictions fit the
measured runtimes quite accurately, especially for large messages (not shown
in a figure).

Single broadcast and accumulation:The modelling of single-broadcast
(MPI Bcast() ) operations, see Table 1, uses a logarithmic dependence on
the numberp of processors because the broadcast transmissions are based on



Table 2. Parameter values for single-transfer operations and for the runtime of collective op-
erations with a logarithmic dependence on the number of participating processors.

Coefficient for runtime formula of single-transfer,
single-broadcast and accumulation

CLiC Cray T3E
variant τ(V )[µs] tc(V )[µs] τ(V )[µs] tc(V )[µs]

MPI Send -7.526 0.10607 13.965 0.00267
SendP 145.021 0.08804 9.748 0.00533
MPI Bcast -3420.688 0.3409 7.723 0.0039
BcastP 564.125 0.0939 7.007 0.0050
MPI Reduce -119.871 0.1223 168.516 0.0093

broadcast trees with logarithmic depth. The same formula can also be used for
the prediction of single-accumulation operations (MPI Reduce() ).

Multi-broadcast and gather/scatter: The runtime formula for multi-
broadcast operations (MPI Allgather() ), see Table 1, increases linearly
with the message size and the number of processors. This formula can also
be used to model scatter and gather operations. The resulting coefficients are
shown in Table 3.

Table 3. Parameter values for the runtime formulas with a linear dependence on the number
of participating processors. MultiBcastP and AllgatherP are piecewise implementations.

Coefficient for multi-broadcast/gather/scatter
CLiC [µs] Cray T3E [µs]

variant τ1(V ) τ2(V ) tc(V ) τ1(V ) τ2(V ) tc(V )

MultiBcast -33270.8 21801.5 1.031 -3.72 42.60 0.028
MultiBcast P -9724.2 8385.5 0.690 -24.20 -0.81 0.036
MPI Allgather 9175.3 -7542.0 3.182 6.04 -0.75 0.019
Allgather P -669.9 543.3 2.806 7.72 13.23 0.018
MPI AllgatherV -709.6 -957.0 5.443 11.83 17.47 0.019
MPI Gather -316.2 654.5 0.095 31.08 -118.51 0.006
MPI Scatter 24.6 1439.5 0.086 -0.48 5.45 0.003

3.2 Communication in task parallel executions

In the last subsection, we have considered runtime formulas for the execu-
tion time of communication operations in isolation, which means that there
was no concurrent communication operation of the same application program
in transmission. In Section 1.4 those runtime formulas are used for the mod-
elling and prediction of data parallel realizations of regular programs from
scientific computing [10, 12]. But it is not a priori clear whether those run-



time formulas can also be used for modelling the execution time of mixed task
and data parallel programs and in fact, experiments have shown that using the
runtime formulas from Subsection 1.3.1 leads to predicted runtimes that are
too small compared to the measured runtimes. The effect is much larger on
the Beowulf cluster than on the T3E. This behavior indicates that concurrent
communication operations of the same application program can interfere with
each other.

Further experiments have shown that only a slight change of the runtime
formula for communication operations is needed to model the runtime of con-
current communication transmissions. The change can be concluded from the
following observation made when using the runtime formulas for data parallel
realizations from Subsection 1.3.1 to model the runtime for concurrent col-
lective communication operations: The difference between the measured and
the predicted runtimes is increasing with the numberp of processors (used for
the entire application program) and the sizen of the message transmitted. The
dependence onp is more significant than the dependence onn. Both dependen-
cies correspond to the expectation that collisions in the network become more
likely when the number of participating processors and the message sizes are
increasing. To capture the interference of a concurrent execution of communi-
cation operations in the runtime formulas, we adjust the byte transfer time of
the runtime formulas by introducing a network contention factorC(p, n) that
depends onp andn. In principle, this factor can be determined by a detailed
queuing analysis, but this would require the knowledge of the internal realiza-
tions of the MPI communication operations. Thus, we take the approach to
determine the contention factor empirically starting from the runtime estima-
tion with the runtime formulas from Subsection 1.3.1.

We determine the contention factor by comparing the delay in the execution
times for communication operations, when they are performed concurrently,
with the execution times of these operations without network contention. The
contention factor itself is modelled as a function ofp andn and the shape of the
contention factor (or contention function) has been determined by experiments
from the measured delays in the execution times. The coefficients within this
function are then determined by curve fitting. The resulting contention factor
is used for the modelling of the communication times of those program parts of
complex application programs that are executed in a mixed task and data paral-
lel way. For each parallel machine, a different contention factor results because
of the different network architectures of the machines. To summarize, using
the contention factor, the structure of the runtime formulas for one commu-
nication operation does not change but the contention factor is used to adjust
the byte-transfer timetc to the specific situation. Especially, the startup times
are not changed. Thus, for example, the runtime formula of a multi-broadcast



operation is
˜tmb(p, b) = τ1 + τ2 · p + C(p, n) · tc · p · b. (1)

The same contention factor is used for each communication operation, i.e.,
there is no need to determine different contention factors for different commu-
nication operations. The communication operations of pure data parallel parts
of application programs are modelled without the contention factor because
there is no interference of message transmission. The contention factors for
the modelling of concurrent message transmissions are

CT3E(p, n) = 0.04 · p · log2(log2(p)) · log2(n)
CCLiC(p, n) = 0.0045 · p · p · log2(p) · (log2(n) + log2(p)),

wherep denotes the total number of processors participating in the execution
andn the size of the message transmitted.

4. Example Application

To investigate the usefulness of the modelling approach for complex appli-
cation programs, we consider parallel implementations of a specific solution
method for ordinary differential equations (ODEs), the iterated Runge-Kutta
method (iterated RK method).

4.1 Task structure of iterated RK methods

The iterated RK method is an explicit one-step method for the solution of
initial value problems of ODEs. The iterated RK methods determines a se-
quence of approximation valuesy1, y2, y3... for the exact solution of the ODE
system in a series of sequential time steps. In each of the time steps a fixed
numbers of stage vectors are iteratively computed and combined to the next
approximation vector in the following way:

for l = 1, ..., s initialize stage vectorvl
(0)

for j = 1, ..., m
for l = 1, ..., s: compute new stage vector approximationvl

(j)

compute new approximation vectory
(m)
k+1,

compute approximation vectory
(m−1)
k+1 for step size control.

The numberm of iterations is given by the specific RK method. Each com-
putation of a stage vector approximation requires an evaluation of the function
f that describes the ODE to be solved. The advantage of the iterated RK
methods for a parallel execution is that the iteration system of sizes · n con-
sists ofs independent function evaluations that can be performed in parallel
[9]. For systems of differential equations, an additional data parallelism can



be exploited. Thus, the algorithm provides several possibilities for a parallel
implementation. The computation of the stage vectors in one iterationj of
the stage-vector computation can be performed on subsets of processors at the
same time (group implementation) or alternatively by all processors one after
another (consecutive implementation). The group implementation is a mixed
task and data parallel implementation whereas the consecutive implementation
is a pure data parallel realization.

4.2 Consecutive implementation
The computation time of the consecutive execution onp processors without

the stepsize control can be modelled by the formula

Tdp(n, p) =

(
ms

⌈
n

p

⌉
+

⌈
n

p

⌉)
(2s+1) top +

(
ms

⌈
n

p

⌉
+ s

⌈
n

p

⌉)
Tf + n s top

whereTf denotes the time for the evaluation ofonecomponent off andtop

denotes the time for the execution of one arithmetic operation. In each loop
body each processor has to computen/p components of the argument vector
using2s + 1 operations andn/p components off . Sincef and its access
pattern are not known in advance, the complete argument vector has to be
made available to each processor with a multi-broadcast operation. For the
communication time, the following formula is used withtmb from Table 1.

Cdp(n, p) = s m tmb

(
p,

⌈
n

p

⌉)
+ tmb

(
p,

⌈
n

p

⌉)
.

4.3 Group implementation

A group implementation of the iterated RK method usess independent
groups of processors where each groupGi of sizegi, i = 1, . . . , s, is responsi-
ble for computing the approximations of one specific stage vector.

The processor groups should be of equal size, since the computation of each
stage vector approximation requires an equal amount of computation. As it
is possible thatp is not a multiple ofs, the group with the smallest number
gmin = bp/sc of processors determines the computation time

Tgp(n, p) =

(
m

⌈
n

gmin

⌉
+

⌈
n

p

⌉)
(2s+1) top +

(
m

⌈
n

gmin

⌉
+

⌈
n

gmin

⌉)
Tf +

⌈
n

gmin

⌉
s top.

The communication time is modelled by the runtime formula with the machine
specific contention factor, see Equation (1), to reflect the concurrently executed
multi-broadcast operations.

Cgp(n, p) = 2 ·m · ˜tmb

(
gmin,

⌈
n

gmin

⌉)
+ tmb

(
p,

⌈
n

p

⌉)
.



The following pseudo-code illustrates the structure of the program.

forall l ∈ {1, . . . , s} do in parallel (group parallelism)
forall processorsq ∈ Gl do (data parallelism) {

computedn/gle components off(yκ);
initialize dn/gle components ofµ1

(0), . . . , µ
s
(0);

}
for j = 1, . . . , m do (sequential iteration) {

forall l ∈ {1, . . . , s} do in parallel (group parallelism)
forall q ∈ Gl do (data parallelism inside groups) {

computedn/gle components of argumentµ(l, j)
group-multi-broadcast of local components ofµ(l, j);
evaluatedn/gle components of 1f(µ(l, j));
group-multi-broadcast of local components off(µ(l, j))

}
forall processorsq do (data parallelism on all processors)

computedn/pe components ofyκ+1;
multi-broadcast the computed components ofyκ+1;

}
stepsize control;

5. Runtime experiments

To validate the runtime formulas we have performed runtime tests on the
and T3E and the CLiC for up to 128 processors. Since the execution time of
the iterated RK method strongly depends on the ODE system to be solved, we
consider two classes of ODE systems:

Sparse ODE systems.These ODE systems have a right-hand side function
f for which the evaluation of each component has a fixed evaluation time that
is independent of the sizen of the ODE system (sparse function), i.e., the
evaluation time of the entire functionf consisting ofn components increases
linearly with the size of the ODE system.

Dense ODE systems.These ODE systems have a right-hand side function
f for which the evaluation of each component has an evaluation time that in-
creases linearly withn, i.e., the evaluation time of the entire functionf in-
creases quadratically with the size of the ODE system.

Dense ODE systems lead to the fact that the computation time usually
dominates the communication time, i.e., the comparison of measured and pre-
dicted execution times shows how good the computation times are modelled.
On the other hand, for sparse ODE systems the communication time plays an
important role and the comparison also includes this part. We have used an
iterated RK method withs = 4 stages that is based on an implicit RadauIIA



method. This method leads to a convergence order of 7, ifm = 6 iterations
are executed in each time step. The runtimes shown in the following tables
and figures are runtimes for one time step of the method and are obtained by
averaging over a large number of time steps. The (measured and predicted)
runtimes include the time for stepsize and error control.

On the T3E, the runtime of theconsecutiveimplementations of the iterated
RK method fordenseODE systems can be modelled very accurately and are
not shown here. But sparse ODE systems also lead to good predictions. In
this case, no concurrent message transmissions take place, and therefore the
contention factor does not need to be used. For both cases, the predictions are
quite accurate, but not as accurate as the predictions for dense ODE systems.
Nevertheless, they are accurate enough to be used for predicting the effect of a
task parallel implementation.

100 500 1000 1500 2000 3000 5000
0

2

4

6

8

10

12

14

16

18

20

system size

de
vi

at
io

n 
(in

 %
)

deviation between measured and predicted runtime
of group implementation for dense ODE system on the T3E

processors

16
32
64
128

288 800 1568 3200 6272 15488 32768
0

5

10

15

20

25

30

system size

de
vi

at
io

n 
(in

 %
)

deviation between measured and predicted runtime
of group implementation for sparse ODE system on the T3E

processors

16
32
64
128

Figure 1. Deviation between measured and predicted runtime of group implementa-
tion for dense (left) and sparse (right) ODE system on the Cray T3E-1200.

Figure 1 shows the deviations between measured and predicted runtime for
a group implementation of the iterated RK method fordense(left) and for
sparse(right) ODE systems on a T3E, again using the contention factor for the
concurrent message transmissions because of a task parallel execution. Fig-
ure 2 illustrates the accuracy of thegroup implementation fordense(left) and
sparse(right) ODE systems of large sizes on the T3E for different numbers
of processors. In contrast to dense ODE systems, the solution of sparse ODE
systems leads only to considerable speedups for processor numbers of up to
16. For larger numbers of processors, the communication time dominates the
computation times.

Table 4 compares measured and predicted execution times forgroup imple-
mentations of the iterated RK methods fordenseODE systems on the CLiC.
Figure 3 shows an illustration for a fixed message size and different numbers
of processors. For this machine, the deviations between the measured and pre-



4 8 12 16 20 24 28 32 64 96 128
0

10

20

30

40

50

60

70

80

processors

ru
nt

im
e 

(in
 s

ec
)

runtime of group IRK method for dense function with n=5000 on T3E

measurement
prediction

4 8 12 16 20 24 28 32 64 96 128
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

processors

ru
nt

im
e 

(in
 s

ec
)

runtime of group IRK method for sparse function with n=32768 on T3E

measurement
prediction

Figure 2. Measured and predicted execution times for a group implementation of one
time step of the iterated RK method for a dense function of size n = 5000 (left) and for
a Brusselator system of size n = 32768 (right) on a Cray T3E-1200.

Table 4. Group implementation fordenseODE system on the CLiC. The average deviation is
25.5 %.

measured runtimes predicted runtimes
n p=16 p=32 p=64 p=128 p=16 p=32 p=64 p=128

100 0.018 0.030 0.060 0.494 0.011 0.022 0.082 0.424
500 0.104 0.129 0.216 2.423 0.092 0.127 0.406 1.797

1000 0.301 0.296 1.288 3.425 0.283 0.306 0.840 3.667
1500 0.600 0.515 2.274 3.446 0.572 0.535 1.302 5.451
2000 1.049 1.492 2.418 4.296 0.959 0.813 1.790 7.372
3000 2.313 2.656 2.506 3.601 2.033 1.519 2.856 11.154
5000 7.814 5.180 4.714 15.303 5.361 3.528 5.289 19.036

dicted execution times are much larger than for the T3E, especially for a larger
number of processors. Although the deviations may be quite large, they can
still be used as a rough estimate of the performance of a task parallel execution.
The main reason for the large deviations are caused by the large increase of the
communication time with an increasing number of processors. But also for a
smaller number of processors, there are considerable deviations for large sys-
tem sizes because of caching effects which are caused by the memory hierar-
chy of the single processors (Intel Pentium III). Such effects are much smaller
on the Alpha 21164 processor of the T3E-1200 because of its different cache
organization, see [13]for a more detailed investigation of such effects. The run-
times on the CLiC show that even for dense ODE systems, the machine only
leads to satisfactory speedups for up to 32 processors. For larger processor
numbers, the communication time and the network contention are too high.



4 8 12 16 20 24 28 32 64 96 128
0

0.5

1

1.5

2

2.5

3

3.5

4

processors

ru
nt

im
e 

(in
 s

ec
)

runtime of group IRK method for dense function with n=1000 on CLiC

measurement
prediction

4 8 12 16 20 24 28 32 64 96 128
0

5

10

15

20

25

processors

ru
nt

im
e 

(in
 s

ec
)

runtime of group IRK method for dense function with n=5000 on CLiC

measurement
prediction

Figure 3. Measured and predicted execution times for a group implementation of one
time step of the iterated RK method for dense ODE of size n = 1000 (left) and n = 5000
(right) on the CLiC Beowulf cluster.

6. Conclusions

In this article, we have shown that it is possible to model the execution times
of mixed task and data parallel implementations by runtime formulas and that
the use of a simple contention factor is sufficient to capture the interference of
concurrent message transmissions. The runtime formulas model the execution
times quite accurately for parallel machines like the T3E with a high-speed in-
terconnection network. For a Beowulf cluster with an Ethernet-based network,
the network contention caused by concurrent transmissions is much larger and
it is more difficult to capture the effects by a simple contention factor. But
the predictions are still reasonable and give a first impression of the possible
effects of a task parallel realization.

References
[1] A. Alexandrov, M. Ionescu, K.E. Schauser, and C. Scheiman. LogGP: Incorporating

Long Messages into the LogP model - One step closer towards a realistic model for
parallel computation. Technical Report TRCS95-09, University of California at Santa
Barbara, 1995.

[2] D.E. Culler, R. Karp, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of parallel computation.4th Symp. on Principles
and Practice of Parallel Programming, 28(4):1–12, 1993.

[3] The MPI Forum. MPI: A Message Passing Interface Standard. Technical report, Univer-
sity Tennessee, April 1994.

[4] R. Foschia, T. Rauber, and G. Rünger. Modeling the Communication Behavior of the
Intel Paragon. InProc. 5th Symp. on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’97), IEEE, pages 117–124, 1997.



[5] M. Hill, W. McColl, and D. Skillicorn. Questions and Answers about BSP.Scientific
Programming, 6(3):249–274, 1997.

[6] K. Hwang, Z. Xu, and M. Arakawa. Benchmark Evaluation of the IBM SP2 for Parallel
Signal Processing.IEEE Transactions on Parallel and Distributed Systems, 7(5):522–
536, 1996.

[7] S. Johnsson. Performance Modeling of Distributed Memory Architecture.Journal of
Parallel and Distributed Computing, 12:300–312, 1991.

[8] W.F. McColl. Universal Computing. InProceedings of the EuroPar’96, Springer LNCS
1123, pages 25–36, 1996.

[9] T. Rauber and G. R̈unger. Parallel Iterated Runge–Kutta Methods and Applications.
International Journal of Supercomputer Applications, 10(1):62–90, 1996.

[10] T. Rauber and G. R̈unger. PVM and MPI Communication Operations on the IBM SP2:
Modeling and Comparison. InProc. 11th Symp. on High Performance Computing Sys-
tems (HPCS’97), 1997.

[11] T. Rauber and G. R̈unger. A Transformation Approach to Derive Efficient Parallel Im-
plementations.IEEE Transactions on Software Engineering, 26(4):315–339, 2000.

[12] T. Rauber and G. R̈unger. Modelling the runtime of scientific programs on parallel com-
puters. InProc. ICPP-Workshop on High Performance Scientific and Engineering Com-
puting with Applications (HPSECA-00), pages 307–314, Toronto, Kanada, August 2000.

[13] T. Rauber and G. R̈unger. Optimizing Locality for ODE Solvers. InProc. of the 15th
ACM Int. Conf. on Supercomputing, pages 123–132. ACM Press, 2001.

[14] Z. Xu and K. Hwang. Early Prediction of MPP Performance: SP2, T3D and Paragon
Experiences.Parallel Computing, 22:917–942, 1996.


