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Abstract

Performance analysis and modeling of collective commu-
nication operations plays an important role in the perfor-
mance modeling of message passing programs. For stan-
dard collective MPI operations the performance modeling
and predictions show good results for a large range of dis-
tributed memory machines and clusters. In this paper, we
look at specific realizations of collective MPI operations
on top of MPI and investigate whether such optimizations
can be modeled using the given modeling of the standard
MPI operations. In particular, we consider two-phase re-
alizations of communication operations. We present run-
time functions for the modeling and verify that these run-
time functions can predict the execution time both for com-
munication operations in isolation and for communication
operations in the context of an application program. The
performance model presented can be used for an a priori
estimation of different implementation variants of large ap-
plication programs.

1 Introduction

For the realization of parallel programs, there are usually
many different design decisions to make, but it is often diffi-
cult to estimate the effect of each of these decisions. Design
decisions include the selection of an appropriate data distri-
bution for a distributed address space, a suitable assignment
of the operation to be performed, and also task scheduling
for larger application programs. To get an efficient imple-
mentation, it is usually necessary to implement the most
promising decisions and to compare the resulting execu-
tion time on a specific hardware platform. This is a time-
consuming process and many application programmers are
reluctant to invest the effort. Moreover, it is often the case
that the design decisions depend on specific characteristics
of the hardware platform, and porting the application pro-
gram to another platform would require using a different
decision to get the best performance.

To reduce the implementation effort, performance models
can be applied. Using a performance model, the applica-
tion programmer can get a fast a priori estimation of the
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effects of different implementation decisions and can thus
compare the effect of different decisions on the resulting
performance on a specific hardware platform before an im-
plementation. The programmer can also test the effects of
the design decisions for different hardware platforms and
can thus select the decisions such that the resulting perfor-
mance is portable to a different platform. This could mean
that for the case that the program is intended to run on two
different platforms A and B, the design decisions are taken
such that the resulting implementation is efficient for both A
and B, but when considering A or B in isolation a different
design decision might lead to a better performance.

There are many approaches for performance modeling,
including statistical and queuing methods as well as ex-
perimental approaches like simulation, benchmarking and
trace-driven experiments, see the section on related work.
In this article, we consider an analytical modeling with run-
time functions that are structured according to the computa-
tion and communication operations. Analytical models are
suitable for data parallel programs [8] as well as for mixed
task and data parallel programs [7], and they can also be
used for large and complicated application programs [6].

In this paper, we consider the use of runtime functions for
the modeling of MPI collective communication operations
with a specific internal realization that is based on an or-
thogonal structuring of the processors in a two-dimensional
grid. The communication operations are realized in two
communication phases performed on selected subsets of the
processors. The advantage of such two-phase realizations
lies in the fact that, depending on the specific target plat-
forms, a much faster execution time can be obtained com-
pared to the usual implementation that considers the set
of processors without any specific structure. This can be
shown for such different platforms as the Cray T3E with a
high-speed 3D torus network or a Beowulf cluster with a
comparably slow interconnection network. Being able to
model the execution time of two-phase communication op-
erations, it is possible for the implementation of a parallel
program to a priori select the collective communication op-
eration with the appropriate functionality as well as the best
implementation variant (orthogonal vs. non-orthogonal).

The runtime function for a specific communication oper-
ation for both the orthogonal and the non-orthogonal case
depends on several hardware parameters like the number



of processors as well as on specific network parameters that
are influenced by the performance characteristics of the net-
work like latency and bandwidth. The parameter values are
also affected by the specific MPI implementation. More-
over, there is a dependence on the size of the message to
be transmitted. For the orthogonal implementation, there
is an additional dependence on the processor grid used for
the realization and the organization into phases. The run-
time functions for communication operations are the basis
for the runtime functions of complete programs. These are
assembled according to the communication structure of the
application and also contain subfunctions to model the ex-
ecution time of the computations performed. The subfunc-
tions depend on parameters describing the performance of
the node processors and their memory hierarchy which af-
fects the time to perform memory accesses. We derive run-
time functions for orthogonal implementations of MPI col-
lective communication operation for a Cray T3E and a Be-
owulf cluster.

The rest of the paper is structured as follows. Section 2
describes the two-phase implementation of collective MPI
communication operations. Section 3 presents the runtime
functions. Section 4 considers the runtime modeling of a
complete application programs. Section 5 discusses related
work and Section 6 concludes.

2 Two-phase MPI implementation

For an two-phase implementation, the p processors avail-
able are arranged in a two-dimensional processor grid of
size p = p1 - pe, i.e., the processors are arranged as p;
row groups with p, processors each and p» column groups
with p; processors each. Based on the orthogonal arrange-
ment of the processors, the collective communication op-
erations are restructured and are performed in two phases.
In each phase standard MPI operations are performed on
one or several sub-groups. The combined effect of those
MPI-operations performed in both phases is identical to the
effect of the original MPI-operation being reimplemented.
Depending on the collective communication operation to be
realized, the first phase works on one row group or all row
groups such that each of the row groups performs a commu-
nication operation and all row groups work concurrently to
each other. Similarly, the second phase is executed on one
column group or on all column groups concurrently.

Figure 1 illustrates the two-phase implementation of an
MPI_Allgather() operation for 6 processors arranged as 3 x 2
processor grid. Each of the processors P; contributes a
block of data A;, i = 0,...,5. In the first phase, an
MPI_Allgather() operation is performed in each of the row
groups, thus making the data block contributed by each pro-
cessor available in the row group resulting in a larger data
block at each processor. In the second phase, each processor
participates in an MPI_Allgather() operation in its column
group, thus making each of the larger data blocks available
to all processors.
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Figure 1. lllustration of a two-phase implementation
of an MPI_Allgather() operation with 6 processors.

3 Performance modeling

In this section, we consider the performance modeling of
the two-phase realization of collective communication op-
erations using runtime functions. Runtime functions have
been successfully used to model the execution time of com-
munication operation for various communication libraries
[4, 8]. The execution of an MPI Bcast() operation, for ex-
ample, on the CLiC (Chemnitzer Linux Cluster) using LAM
MPI 6.3 b2 can be described by the runtime function

tsp(p,b) = (0.0383 + 0.474-107% - logs (p)) - b.

For the performance modeling of two-phase implementa-
tions of the collective communication operations we adopt
the approach to model the execution time of each phase of
the orthogonal implementation in isolation. For each phase
we use the runtime functions of the monolithic standard
MPI communication operations from Table 1. The value
b denotes the message size in bytes and p is the number

operation runtime function
MPI_Bcast tsbtin(p,b) = (T+tc-p) - b

tsb_log(pa b) = (T +tc- lng(p)) -b
MPI_Gather toc(p,b) =711 + (T2 +tc-p) - b
MPI_Scatter tga(p,b) =11 + (T2 +tc-p)- b
MPI_Reduce tacetin(p,b) = (T +tc-p)-b

tacc_log(py b) = (T + tc . |_lOg2(17 - 1)J) b
MPI_Allreduce  tmace(p;b) = tace(p, b) + tan(p, b)
MPI_Allgather  £,,5(p,b) = tga(p,b) + tsp(p,p - b)

Table 1. Runtime functions for collective communica-
tion operations on the CLIC.



coefficients for broadcast and accumulation on CLiC

operation formula p coefficients
Tlps] | te[ps]

MPI_Bcast | tsp_iin (p,b) | < 4]|[-0.085| 0.092
tsb_iog(p,b) | > 41]/0.038s| 0.474
MPI_Reduce | tqce_rin (p, b) | < 4] -0.103| 0.105
tace_tog(p,b) | > 4] 0141 | 0.101

Table 2. Coefficients of the runtime function for
(MPI_Bcast()) and (MPI_Reduce()) on the CLiC.

of processors participating in the communication operation.
The coefficients 71 and t., respectively, can be considered
as startup time and byte-transfer time and are determined by
curve fitting with the least-squares method using measured
values. For the measurements, message sizes between 10
KBytes and 500 KBytes have been used.

For an accurate modeling it is important to verify, whether
concurrent group communication operations can interfere
with each other with the effect that the transmission time is
delayed, especially when larger message sizes are transmit-
ted concurrently. If this is not the case, the formulas from
Table 1 can be used for each of the two phases of the orthog-
onal implementation. In some of the formulas the startup
time is very small and can be ignored. For a broadcast op-
eration, for example, the communication time is modeled
by adding the runtime function for the broadcast in the row
group (using the formula from Table 1 with p = p;) and the
runtime function for the concurrent broadcast in the column
groups (using the formula from Table 1 with p = p>). The
accurate predictions for the row and column groups show
that this approach can be used for all collective MPI com-
munication operations. This means that the concurrent sub-
groups do not influence each other. In the following, we
use the notion leader group(s) for the row group(s), since
the members of the row groups often act as leaders for the
succeeding communication in the column group(s). Simi-
larly, we use the notion concurrent group(s) for the column
group(s), as the column groups often work in parallel. In
the following, we consider the modeling of two-phase real-
izations of some important MPI operations.

MPI _Bcast For the single-broadcast operations, LAM-
MPI uses two different internal realizations, one for p < 4
and one for p > 4. If up to 4 processors participate in
the broadcast operation, a formula is used that depends lin-
early on p. For more than 4 processors a formula with a
logarithmic dependence on p is used, because the broadcast
transmissions are based on broadcast trees with logarithmic
depth. The corresponding coefficients are given in Table 2.

Figure 2 (top) shows the deviations between measured and
predicted execution times for single-broadcast on the CLiC
for an two-phase realization. The figure shows the devia-
tions for the leader group (LG) used in the first phase and
the communication times for the concurrent groups (CG)
used in the second phase; the bar total shows the total devia-
tion of both communication phases. The figure shows mini-
mum, maximum and average deviations between measured
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Figure 2. Deviations between measured and pre-
dicted runtimes for 96 processors (top) and modeling
(bottom) of MPI_Bcast() on the CLIC.

and predicted runtime over the entire interval of message
sizes. The predictions are quite accurate, but not absolutely
precise for some groups, because the depth of the broadcast
tree remains constant for a specified interval of processor
sizes. This means that the communication time increases in
stages and the runtime formulas do not model these stages.
Figure 2 (bottom) shows the measured and predicted run-
time of the single-broadcast operation as a function of the
number of processors for fixed message sizes.

MPI _Gather The coefficients of the runtime functions for
the CLiC are shown in Table 3. Using these coefficients,
the predictions fit the measured runtimes quite accurately,
see Figure 3 (top). The approximations are quite accurate
for the entire interval of message sizes. The average devi-

coefficients for gather/scatter on CLiC
operation [ 71 (V)[s][ (V) [us] [ t(V)[us]
MPI_Gather || 0.009 | -0.0825 0.0929
MPI_Scatter 0.0 -0.0730 | 0.0897

Table 3. Coefficients for runtime function of
MPI_Gather and MPI_Scatter on the CLIC.



runtime functions of gather/scatter operations on Cray T3E-1200

MPI_Gather

No. p  [n[kbyte] runtime function

1 ||002 -128| < 8448
2 ||017-032| > 8448
3 ||033-128| > 8448

Ti(p,b) = (r2 +tc-p)-b
To(p,b) =711+ (T2 +tc-p) - b

Ta(p,b) =11+ (2 +tc-p)-b
-b

MPI_Scatter T(p,b) = (12 + tc - p)

Table 4. Runtime functions of MPI_Gather and
MPI_Scatter for a Cray T3E.

ations between measured and predicted runtimes lie clearly
below 3 % in most cases.

On the T3E, the runtimes of MPI_Gather operations in-
crease more than linearly with the number p of processors.
This effect might be caused by the fact that the root pro-
cessor is a bottleneck when gathering larger messages. To
capture the sharp increases of the runtimes we use different
runtime functions for different message sizes. Each increase
can be captured by a specific formula, see Table 4. The
use of a specific formula depends on the root message size,
which is the size of the message that the root processor is
gathering from all members of the processor group. Above
8448 KBytes a different runtime formula is used. Note that
for the first formula no startup-time is necessary. The values
of the coefficients are shown in Table 5.

Figure 3 (bottom) shows the deviations between measured
and predicted runtimes on the T3E. The approximations
are quite accurate for the entire interval of message sizes.
The average deviations of 16 different processor groups are
clearly below 3 %.

MPI _Scatter The predictions for the Scatter operations
use the formula from Table 4. The values of the coefficients
are shown in Table 5. The predictions fit the measured run-
times very accurately on both systems. The average devia-
tions of most processor groups are below 2 % over the entire
interval of all message sizes on the CLiC, see also Figure 4
(top). For instance the deviations of the leader group lies be-
low 1 % for nearly all group sizes. The deviations between
measurements and predictions of the MPI _Scatter operation
on the Cray T3E-1200 are shown in Figure 4 (bottom).

M PI __Reduce The modeling of MPI_Reduce() operations
is performed with the formula from Table 1. LAM-MPI
uses a different internal realization for p < 4 than forp > 4.
The specific values for the coefficients are shown in Table 2
for both cases. The communication time of a reduce opera-
tion increases in stages, because the number of time steps to
accumulate an array depends on the depth of the reduce tree;

[ operation [No.[[mi(V)[s][r2(V)[ps] [t (V)[us]]

MPI_Gather | 1 - -0.00134 | 0.00308
2 -0.020 0.0157 0.00505
3 -0.036 0.0265 | 0.00617
MPI_ Scatter | - - 0.0002453 | 0.00297

Table 5. Coefficients for runtime function of
MPI_Gather and MPI_Scatter for a Cray T3E-1200.
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Figure 3. Deviations between measured and pre-
dicted runtimes for MPI_Gather on the CLIC (top) and
Cray T3E-1200 (bottom) for 96 processors.

a detailed analysis shows that the number of processors can
be partitioned into intervals such that for all processor num-
bers within an interval, reduce trees with the same depth
are used. The predictions are very accurate and the aver-
age deviations between measured and predicted runtimes
lies clearly below 3 % for most cases.

MPI _Allreduce In LAM-MPI the MPI_Allreduce() oper-
ation is composed of an MPI _Reduce()- and an MPI1 Bcast()
operation. First the root processor reduces the block of data
from all members of the processor group und broadcasts the
reduced array to all processors participating in the commu-
nication operation. The size of the array is constant in both
phases. Figure 5 shows measured and predicted runtimes
with fixed message sizes.

MPI _Allgather In LAM-MPI the MPI_Allgather() opera-
tion is composed of an MPI_Gather()- and an MPI Bcast()
operation. At first the root processor gathers a block of data
from each member of the processor group und broadcasts
the entire message to all processors participating in the com-
munication operation. The entire message has size p - b,
when b denotes the original message size and p the number
of involved processors. Figure 5 shows measured and pre-



deviation between measured and predicted runtimes of MPI_Scatter with group communication on CLIC
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Figure 4. Deviations between measured and pre-
dicted runtimes for MPI_Scatter on the CLiC (top) and
Cray T3E-1200 (bottom) for 96 processors.

dicted runtimes with fixed message sizes. The predictions
fit the measured runtimes quite accurately. The deviations
between measured and predicted runtimes lies below 5 % in
most cases.

4 Application and runtime tests

In this section, we consider parallel implementations with
two-phase communication of the well-known Jacobi itera-
tion. In each iteration every processor performs ™ %"‘ X n
multiplications and about the same number of additions.
In the row-wise distribution each processor computes ™ %7
scalar products yielding ™ %7 components of the new itera-
tion vector. To provide the entire vector to each processor
for the next step a multi-broadcast operation is performed.
The execution time of the row-wise Jacobi iteration with p
processors and a matrix size n (system size) can be modeled
by the formula

n n
Trow b,n :2'_'to +tm b, — (1)
(p,n) PR b( p)
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Figure 5. Measured and predicted runtimes for
concurrent groups of MPI_ Allreduce() (top) and
MPI_Allgather() (bottom) on the CLiC.

where t,, denotes the time for the execution of an arith-
metic operation. In the column-wise distribution each pro-
cessor computes a new vector d of size n. Adding up
all those vectors requires a single-accumulation operation
(MPI_Reduce) and a single-broadcast operation results in
the runtime

n
Teol (p, n) =2 5 : (n - 1) “top +tacc(p: n) +tsb(p: n) (2)
Figure 6 shows the performance measurements and predic-
tions obtained by a 2D orthogonal processor structure for
the CLiC. The figure shows that the predictions fit the mea-
surements quite good.

5 Reated Work

Runtime predictions using parameterized formulas for
communication operation were proposed by [5] and, inde-
pendently, by [4, 11] for phase-structured programs. [5] de-
rives formulas for the Thinking Machines CM-2 whereas
[4, 11] mainly consider the IBM SP-2 using the native
MPL (message-passing library) runtime system. These ap-
proaches only consider the performance prediction of the
communication operations in isolation, not in the context of
application programs.
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Figure 6. Modeling of row-wise (top) and column-
wise (bottom) two-phase realization of Jacobi iteration
on CLiC.

A predictive analytical model based on runtime functions
that encompasses the performance and scaling characteris-
tics of important ASCI applications is described in [6]. A
multi-dimensional hydrodynamics code with adaptive mesh
refinement is used as example. In contrast to the focus of
this paper, non-orthogonal communication operations are
used and the application is mainly data parallel. A predic-
tive performance model of another ASCI application is de-
scribed in [3]. A performance study for a weather prediction
code has been presented in [1]. The paper is not so much
concerned with predicting the performance, but with tuning
the application for different platforms.

Besides runtime functions, there are many other ap-
proaches to model the execution time of communication
operations or application programs. These include queu-
ing methods [10], methods based on machine signatures and
application profiles [9], or experimental evaluations. More-
over, several tools have been developed to support the pro-
grammer to develop efficient parallel programs. An exam-
ple is the P3T tool that has been implemented for predicting
the performance of data parallel programs [2].

6 Conclusion

Orthogonal realizations of collective communication op-
erations can significantly reduce the execution time, but the
effects in specific situations are sometimes difficult to cap-
ture. In this paper, we have shown that the execution time of
two-phase realization can be modeled by runtime functions.
This gives the programmer a predictive tool to work with
two-phase realizations also in the context of large applica-
tion programs. Using the runtime functions, the application
programmer can get an a priori estimation of the execution
time of the two-phase realization and can thus develop the
design of an efficient parallel implementation without ex-
tensive runtime experiments.
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