
Performance Modelling for Task-Parallel Programs

Matthias Kühnemann
Fakultät für Informatik

Tech. Universität Chemnitz
09107 Chemnitz

Germany
kuehnemann@informatik.tu-chemnitz.de

Thomas Rauber
Institut für Informatik

Universität Halle-Wittenberg
06099 Halle (Saale)

Germany
rauber@informatik.uni-halle.de

Gudula Rünger
Fakultät für Informatik

Tech. Universität Chemnitz
09107 Chemnitz

Germany
ruenger@informatik.tu-chemnitz.de

Keywords: execution time analysis, runtime formulas, mixed task
and data parallelism, scientific computing.

ABSTRACT
Many applications from scientific computing and physical simula-
tions can benefit from a mixed task and data parallel implementation
on parallel machines with a distributed memory organization, but it
may also be the case that a pure data parallel implementation leads to
faster execution times. Since the effort for writing a mixed task and
data parallel implementation is large, it would be useful to have an a
priori estimation of the possible benefits of such an implementation
on a given parallel machine. In this article, we propose an estima-
tion method for the execution time that is based on the modelling of
computation and communication times by runtime formulas. The ef-
fect of concurrent message transmissions is captured by a contention
factor for the specific target machine. To demonstrate the usefulness
of the approach, we consider a complex method for the solution of
ordinary differential equations with a potential for a mixed task and
data parallel execution.

1. INTRODUCTION
We consider task parallel programs in a form where the entire
program is built up from multi-processor tasks each of which can
be executed on an arbitrary number of processors. Different multi-
processor tasks can cooperate in a compositional way which means
that one task produces data to be used as input data by another task.
But a program may also contain independent tasks which can be
executed concurrently to each other on subsets of processors, also
called groups of processors. There usually exists a large variety of
different parallel realizations of the same application program. The
program versions can differ in the execution order of the tasks and
the mapping of each multi-processor task onto a set of processors of
a specific size. In this paper we address the question how to select
an efficient parallel program version from the described class of
programs when using a distributed memory machine (DMM).

Whether a pure data parallel or a mixed task and data parallel
program version is more efficient strongly depends on the specific
application program and its requirement for communication,
especially for collective communication operations. Collective
communication operations performed on smaller processor groups
lead to smaller execution times due to the logarithmic or linear
dependence of the communication times on the number of pro-
cessors [?, ?, ?]. This behavior of the communication time can
be an advantage for a concurrent computations on disjoint subsets

of processors. On the other hand, changing the data distribution
from a pure data parallel execution to a group-oriented execution
may require additional data redistribution which can outperform
the advantage of a task parallel execution. In general, the effort to
implement a task parallel program is considerable and so it would
be useful to have an effective method to determine the most efficient
program version before implementing all the details. Such a method
needs a notion of costs assigned to different program versions
under consideration where the costs of a specific version meet some
requirements: they should be based on the specific task structure
and they should reflect the behavior of the parallel execution times
resulting on a specific parallel machine. A cost model with those
properties is suitable for distinguishing between different program
versions for which different task structures are known but final
programs do not yet exist.

In this paper, we suggest a method based on costs estimating paral-
lel execution times of task parallel programs with multi-processor
tasks. The modelling of costs is based on a specification of the
task structure and assumes a corresponding partition of the set of
processors into groups or subsets of processors. The costs are given
as runtime formulas that contain parameters describing the parallel
target machine and characteristics of the algorithm to be imple-
mented [?]. Runtime formulas have been used before for modelling
the execution time of communication operations in isolation [?, ?,
?], but their use for modelling the execution time of task parallel
programs has not yet been studied. The runtime formulas are
built up from computation costs and communication costs which
reflect the actual execution of a computation or a communication
operation in isolation. But due to complex processor architectures,
memory hierarchies and network properties, the execution time of
an entire program might strongly be influenced by cache effects
or network contention. Our aim is to investigate whether a purely
program-oriented construction of the runtime formulas is suitable
to model costs for task parallel executions and whether additional
effects like cache effects and network contention have to be taken
into consideration to obtain an accurate prediction.

In the following sections, we describe how to build up program-
specific runtime formulas for parallel platforms with distributed
memory. In Section 2 we summarize the general approach. Section 3
briefly introduces the parallel target platforms used, a Cray T3D and
T3E and a Beowulf cluster of PCs, and presents the runtime formu-
las for communication operations for those machines. As complex
example application we consider one-step methods for solving or-
dinary differentiation equations (ODEs) which have a potential for

multi-processor task parallelism. In Section 4, we model the runtime
formula for an entire application. Section 5 shows that the runtime
formulas reflect the performance behavior of the parallel program
and Section 6 concludes the paper.

2. RUNTIME FORMULAS
The runtime formulas of our cost model are composed according to
the structure of the programs whose execution time they describe.
The runtime formulas consist of two parts describing the computa-
tion times and the communication times.

2.1 Computation operations
The computation times are modelled by taking into account the
number of operations to be executed. For each arithmetic operation
we use a computation time ��� that can be determined by runtime
measurements with simple sequential test programs on the parallel
machine used. In addition, we use execution times �� for specific
functions � which are needed to describe specific application
problems. The execution time for such a function � can be build
up from single computation operations or can be a measured time
for the function in isolation. The reason to use a single value ��
in the runtime formula is that most numerical methods, like ODE
solvers, are designed as black-box solvers, so that they can be used
for arbitrary functions � describing the right-hand side of the ODE
system. For different ODEs, the structure of the runtime formula
remains the same but the specific cost �� is exchanged when a
different function � is used.

The memory access time may have a large influence on the execution
time due to the temporal or spatial locality of the memory accesses
of the specific program considered. Such effects can be captured
by sophisticated approaches like the cache miss equations [?]. We
could use this technique here to model the memory access time ac-
curately and would get more complicated runtime formulas, but as it
will be shown in Section 4, the simple approach of just using an av-
erage memory access time for the program does a sufficiently good
job for regular programs from scientific computing. Moreover, when
considering the modelling of communication times in the context of
concurrent communication operations by different task parallel pro-
gram parts, it is much more difficult to obtain accurate predictions
since memory contention effects and the variations in the communi-
cation times dominate the variations in the execution times.

2.2 Communication operations
The communication times are modelled by formulas that describe
the execution time of individual communication operations, such as
single-transfer or broadcast operations. These formulas are used to
model the internal communication time of a multi-processor task,
which are often realized in a data parallel way. Communication for-
mulas may also be used to describe the time for data redistributions
inserted between different multi-processor tasks related in a compo-
sitional way. The runtime formulas for communication operations
are functions in closed form that depend on the message size � and
the number � of processors participating in the communication op-
eration. For a given DMM, the value of these parameters result from
modelling the runtime formulas by the least squares method. The ex-
ecution of a broadcast operation, for example, on a Cray T3E using
MPI Bcast() can be described by the runtime formula

������ �� � �� � �� ����� � 	
� � � �

In Section 3 we present runtime formulas for different communica-
tion operations in isolation, see also [?, ?, ?, ?].

2.3 Task parallel programs
Runtime formulas for entire programs are built up according to the
task structure of the specific program. First, each participating multi-
processor task � is assigned a runtime formula built up from com-
munication and computation times according to the internal struc-
ture. We assume a data parallel or SPMD-like internal computation
structure consisting of alternating phases of computation and com-
munication, so that the execution time can be represented by

����� �� � �������� �� � �������� ���

�������� �� is the maximum of the execution times of the partici-
pating processors. �������� �� is the sum of the runtimes of the
communication operations used. Second, the runtime of an entire
program is built up from the costs of the multi-processor tasks ac-
cording to the task structure. In the case that two multi-processor
tasks �� and �� are executed concurrently to each other on dis-
joint sets of processors, the maximum of the runtimes is taken:

	
�����
���� ���� ���

���� �����

���
��	� �	� denotes the runtime of task �	 for problem size �	 on

a group of �	 processors, =1,2. The sets of processors executing
�� and �� are assumed to be disjoint. In the case that two multi-
processor tasks �� and �� are executed one after another, the run-
times are added:

����
��� ��� � ���

��� ���� � �
��	����	��

Both times ���
��� �	� contain the same parameter � for the sizes

of the processor groups indicating that both tasks �� and �� are
executed on a processor group of the same size, which is usually the
same group. In addition, some communication between successive
task activations might be necessary to realize redistribution of data.
The time needed for the redistribution is denoted by �
��	����	�
where � is the number of participating processors and 	 the size of
the data to be redistributed.

2.4 Comparison with other cost models
Our approach of performance modelling with runtime formulas
combines a modelling part for SPMD-like computations and a con-
struction part for the upper level task parallelism of multi-processor
tasks. The combination is inspired by the specific goal to compare
the efficiency of different realizations with mixed task and data par-
allelism for the same given algorithm. Other cost models for parallel
programming, like the the LogP model and its variations [?, ?] or
the BSP model [?, ?, ?], are aimed at aspects different from ours.
The LogP model is more architecture oriented with an emphasis on
a detailed modelling of parallel runtimes but is less suited to express
explicitly upper level task parallelism. The BSP model concentrates
on a specific program structure of supersteps which is not straight-
forwardly related to a mixed task and data parallelism with multi-
processor tasks. The advantage of using runtime formulas for the
modelling of the execution times lies in the fact that they can easily
be adapted to a mixed task and data parallel execution of program
parts. Moreover, runtime formulas are able to capture the effect that
the same communication operation may lead to different execution
times, depending on whether other communication operations are si-
multaneously executed by concurrent processor groups or not. This

effect cannot easily be captured by other models like the BSP model
[?, ?, ?] or the LogP model and its variations [?, ?] that assume a
pure data-parallel execution of the program. In these models, it is
difficult to capture runtime effects that occur only in a task parallel
execution. Using runtime formulas, such effects can be captured,
e.g., by contention factors introduced in Section 3.2.

In constrast, the presented approach of runtime formulas exactly
matches this program structure and its realization with communica-
tion libraries like MPI or PVM on distributed memory machines by
separating the two programming levels also in the the cost model,
i.e. by combining different methods of runtime estimation for the
different kinds of parallelism. More precisely, the machine behavior
and the realization of the communication and other runtime formu-
las are captured within some parameters of the modelling part as
abstractly as possible while getting reasonable runtime estimations
for the data parallel computations as it will be discussed in the next
section. The further construction of more complex runtime formulas
exactly mimics the task structure to be considered. Altogether, this
results in a method that is ideally suited to be used by application
programmers to compare the expected parallel runtime of different
task structures without dealing with low-level architectural and im-
plementation details.

3. COMMUNICATION COSTS
We consider the communication on different machine with dis-
tributed memory a Cray T3D, a Cray T3E and a Beowulf-Cluster.
The T3D and T3E use a three-dimensional torus network. The
six communication links of each node are able to simultaneously
support hardware transfer rates of 600 MB/s for the T3E.
The Beowulf Cluster CLiC (’Chemnitzer Linux Cluster’) is build
up of 528 Pentium III processors clocked at 800 MHz. The
processors are connected by two different networks, the commu-
nication network and the service network. Both are based on the
fast-Ethernet-standard, i.e., the PEs can swap 100 MBit per second.
The service network (Extreme Block Diamant) allows external
access to the cluster. The communication network (Cisco Catalyst)
is used for inter-process communication between the PEs.

We consider message-passing programs that are coded using the
MPI standard [?]. On the CLiC, LAM MPI 6.3.2 is used.

3.1 Communication operations in isolation
For single-transfer operations and collective communication oper-
ations we consider different variants and measure their runtime on
the CLiC and on a Cray T3E-1200. For single-transfer operations,
the runtimes are obtained on a 4-processor partition with processor
0 sending data to processor 3. The message sizes are between 2
KByte and 400 KByte. Except for some anomalies of the buffered
single-to-single transfer on the Cray T3E, the runtimes increase lin-
early with the message size. On the Cray T3E-1200 the standard
single-to-single transfer is the fastest operation. For the CLiC we
have additionally implemented a piecewise single-to-single trans-
fer operation that splits the message to be transmitted into pieces
of 4KB and sends the pieces separately. This is the fastest single-
transfer operation on the CLiC. For collective communication oper-
ations which may involve more than two processors, we consider
single-broadcast operations (MPI Bcast()), accumulation oper-
ations (MPI Reduce()), gather operations (MPI Gather()),
scatter operations (MPI Scatter()), and multi-broadcast oper-

ations (MPI Allgather()). The execution times for collective
communication operations on the Cray are essentially faster than on
the CLiC. Again, we have implemented piecewise communication
operations on the CLiC that rurn out to be faster than the original
operations.

Runtime formulas: The runtime formulas that are used for the mod-
elling are summarized in Table 1. The value � denotes the message
size in bytes, � is the number of processors participating in the com-
munication operation. The coefficients � and �� can be considered
as startup and byte-transfer times and are determined by curve fit-
ting with the least-squares method. For different internal realization
of the same communication operation, different values for the coef-
ficients are obtained. We therefore use an additional parameter � to
distinguish the different variants; the specific values for the coeffi-
cients � (V), ��(V), ��(V) and ��(V) are given in Tables 2 - 3.

operation runtime formula

MPI Send ������� � � � �� � �
MPI Bcast ������ �� � � ������� � �� � ������� � �
MPI Reduce ������ �� � � ������� � �� � ������� � �
MPI Allgather ������ �� � �� � �� � �� �� � � � �

Table 1: Runtime formulas for communication operations.

Single transfer: The runtime for a single-to-single transfer is mod-
elled by a linear function ������� � � � �� � � where � �� � denotes a
startup time and ���� � denotes the byte-transfer time for the specific
operation V. Curve fitting results in the parameter values given in Ta-
ble 2. The negative coefficients arise when using the least squares
method for measured runtimes in the complete range of message
sizes. Restricting the method to small message sizes up to 2 KByte
leads to a separate, more accurate runtime formula for small mes-
sages, which does not contain negative coefficients. A comparison
between the predicted and measured runtimes for all MPI single-
transfer operations shows that the predictions fit the measured run-
times quite accurately, especially for large messages (not shown in a
figure).

Coefficient for runtime formula of single-transfer,
single-broadcast and accumulation

CLiC Cray T3E
variant ��� ����� ���� ����� ��� ����� ���� �����

MPI Send -7.526 0.10607 13.965 0.00267
Send P 145.021 0.08804 9.748 0.00533
MPI Bcast -3420.688 0.3409 7.723 0.0039
Bcast P 564.125 0.0939 7.007 0.0050
MPI Reduce -119.871 0.1223 168.516 0.0093

Table 2: Parameter values for single-transfer operations and for the
runtime of collective operations with a logarithmic dependence on the
number of participating processors.

Single broadcast and accumulation: The modelling of single-
broadcast (MPI Bcast()) operations is performed with the for-
mula from Table 1. The logarithmic dependence on the number �
of processors is used because the broadcast transmissions are based
on broadcast trees with logarithmic depth. The same formula can
also be used for the prediction of single-accumulation operations
(MPI Reduce()). Again, the values of the parameters ��� � and
���� � are determined from a set of measured runtimes.

Multi-broadcast and gather/scatter: The predictions for multi-
broadcast operations (MPI Allgather()) are made using the for-
mula from Table 1, which increases linearly with the message size
and the number of processors. This formula can also be used for the
prediction of scatter and gather operations. The resulting coefficients
are shown in Table 3.

Coefficient for multi-broadcast/gather/scatter
CLiC ���� Cray T3E [��]

variant ���� � ���� � ���� � ���� � ���� � ���� �

MultiBcast -33270.8 21801.5 1.031 -3.72 42.60 0.028
MultiBcast P -9724.2 8385.5 0.690 -24.20 -0.81 0.036
MPI Allgather 9175.3 -7542.0 3.182 6.04 -0.75 0.019
Allgather P -669.9 543.3 2.806 7.72 13.23 0.018
MPI AllgatherV -709.6 -957.0 5.443 11.83 17.47 0.019
MPI Gather -316.2 654.5 0.095 31.08 -118.51 0.006
MPI Scatter 24.6 1439.5 0.086 -0.48 5.45 0.003

Table 3: Parameter values for the runtime formulas with a linear de-
pendence on the number of participating processors.

3.2 Communication in task parallel executions
In the last subsection, we have considered runtime formulas for the
execution time of communication operations in isolation, which
means that there was no concurrent communication operation of
the same application program in transmission. In Section 4 those
runtime formulas are used for the modelling of data parallel realiza-
tions of regular programs from scientific computing [?, ?]. But it
is not a priori clear whether those runtime formulas (where as the
parameter � the group size performing a communication is taken)
can also be used for modelling the execution time of mixed task
and data parallel programs and in fact, experiments have shown that
using the runtime formulas from Subsection 3.1 leads to predicted
runtimes that are too small compared to the measured runtimes.
The effect is much larger on the Beowulf cluster than on the T3E.
This behavior indicates that concurrent communication operations
of the same application program can interfere with each other in the
sense that the transmission time is delayed, especially when many
single-to-single transmissions are executed concurrently.

Further experiments have shown that only a slight change of the
runtime formula for communication operations is needed to model
the runtime of concurrent communication transmissions. The
change can be concluded from the following observation made
when using the runtime formulas for data parallel realizations
from Subsection 3.1 to model the runtime for concurrent collective
communication operations: The difference between the measured
and the predicted runtimes is increasing with the number � of
processors (used for the entire application program) and the size �
of the message transmitted. The dependence on � is more significant
than the dependence on �. Both dependencies correspond to the
expectation that collisions in the network become more likely when
the number of participating processors and the message sizes are
increasing. To capture the interference of a concurrent execution of
communication operations in the runtime formulas, we adjust the
byte transfer time of the runtime formulas by introducing a network
contention factor ���� �� that depends on � and �. In principle,
this factor can be determined by a detailed queuing analysis, but
this would require the knowledge of the internal realizations of
the MPI communication operations. Thus, we take the approach
to determine the contention factor empirically starting from the
runtime estimation with the runtime formulas from Subsection 3.1.

We determine the contention factor by comparing the delay in the
execution times for communication operations, when they are per-
formed concurrently, with the execution times of these operations
without network contention. The contention factor itself is modelled
as a function of � and � and the shape of the contention factor (or
contention function) has been determined by experiments from the
measured delays in the execution times. The coefficients within this
function are then determined by curve fitting. The resulting con-
tention factor is used for the modelling of the communication times
of those program parts of complex application programs that are
executed in a mixed task and data parallel way. For each parallel
machine, a different contention factor results because of the differ-
ent network architectures of the machines. To summarize, using the
contention factor, the structure of the runtime formulas for one com-
munication operation does not change but the contention factor is
used to adjust the byte-transfer time �� to the specific situation. Es-
pecially, the startup times are not changed. Thus, for example, the
runtime formula of a multi-broadcast operation is

������� �� � �� � �� � �� ���� �� � �� � � � �� (1)

The same contention factor is used for each communication
operation, i.e., there is no need to determine different contention
factors for different communication operations. The communication
operations of pure data parallel parts of application programs
are modelled without the contention factor because there is no
interference of message transmission. The contention factors for the
modelling of concurrent message transmissions are

������� �� � ���� � � � ������������������� � �������
������� �� � ��� � � � ������������� � �������
���	���� �� � ����� � � � � � ������� � �������� � ��������,

where � denotes the total number of processors participating in the
execution and � the size of the message transmitted.

4. COMPLEX EXAMPLE APPLICATION
To investigate the usefulness of the modelling approach for complex
application programs, we consider parallel implementations of a
specific solution method for ordinary differential equations (ODEs),
the iterated Runge-Kutta method (iterated RK method).

4.1 Task structure of iterated RK methods
The iterated RK method is an explicit one-step method for the so-
lution of initial value problems of ODEs. The iterated RK methods
determines a sequence of approximation values ��� ��� ����� for the
exact solution of the ODE System in a series of sequential time steps.
In each of the time steps a fixed number � of stage vectors are iter-
atively computed and combined to the next approximation vector in
the following way:

for � � �� ���� � initialize stage vector �����
for � � �� ���� 	

for � � �� ���� �: compute new stage vector approximation �����

compute new approximation vector ����
���,

compute approximation vector ��������� for step size control.

The number 	 of iterations is given by the specific RK method.

Each computation of a stage vector approximation requires an eval-
uation of the function � that describes the ODE to be solved. The
advantage of the iterated RK methods for a parallel execution is that
the iteration system of size � � � consists of � independent function
evaluations that can be performed in parallel [?]. For systems of dif-
ferential equations, an additional data parallelism can be exploited.
Thus, the algorithm provides several possibilities for a parallel im-
plementation. The computation of the stage vectors in one iteration �
of the stage-vector computation can be performed on subsets of pro-
cessors at the same time (group implementation) or alternatively by
all processors one after another (consecutive implementation). The
group implementation is a mixed task and data parallel implementa-
tion whereas the consecutive implementation is a pure data parallel
realization.

4.2 Consecutive implementation
The computation time of the consecutive execution on � processors
without the stepsize control can be modelled by the formula

������ 	� �

�

�

�
�

	

�
�

�
�

	

��
������ ��� �

�

�

�
�

	

�
� �

�
�

	

��
�� � � � ���

where �� denotes the time for the evaluation of one component of
� and ��� denotes the time for the execution of one arithmetic oper-
ation. In each loop body each processor has to compute ��� com-
ponents of the argument vector using �� � � operations and ���
components of � . Since � and its access pattern are not known in
advance, the complete argument vector has to be made available to
each processor with a multi-broadcast operation. For the commu-
nication time, the following formula is used with ��� from Table
1.

������ �� � � 	 ���

�
��

�
�

�

��
� ���

�
��

�
�

�

��
�

4.3 Group implementation
A group implementation of the iterated RK method uses � inde-
pendent groups of processors where each group �	 of size �	,
 � �� � � � � �, is responsible for computing the approximations of
one specific stage vector. The pseudocode is illustrated in Figure 1.
The processor groups should be of equal size, since the computa-
tion of each stage vector approximation requires an equal amount of
computation. As it is possible that � is not a multiple of �, the group
with the smallest number ��	� � ����� of processors determines
the computation time

������ 	� �

�

�
�

��	�

�
�

�
�

	

��
������ ��� �

�

�
�

��	�

�
�

�
�

��	�

��
�� �

�
�

��	�

�
� ����

The communication time is modelled by the runtime formula with
the machine specific contention factor, see Equation (1), to reflect
the concurrently executed multi-broadcast operations.

����� 	� � � �
 �

	���

�
��	��

�
�

��	�

��
� ���

�
	�

�
�

	

��
�

forall � � ��� � � � � �� do in parallel (group parallelism)
forall processors � � �� do (data parallelism) �

compute ������ components of �����;
initialize ������ components of ������ � � � � �

�
���;

�
for � � �� � � � �	 do (sequential iteration) �

forall � � ��� � � � � �� do in parallel (group parallelism)
forall � � �� do (data parallelism inside groups) �

compute ������ components of argument ���� ��
group-multi-broadcast of local components of ���� ��;
evaluate ������ components of ������ ���;
group-multi-broadcast of local components of ������ ���

�
forall processors � do (data parallelism on all processors)

compute ����� components of ����;
multi-broadcast the computed components of ����;

�
stepsize control;

Figure 1: Group implementation for one time step of the iterated RK
method.

5. RUNTIME EXPERIMENTS
To validate the runtime formulas we have performed runtime tests on
the T3D and T3E and the CLiC for up to 128 processors. Since the
execution time of the iterated RK method strongly depends on the
ODE system to be solved, we consider two classes of ODE systems:

Sparse ODE systems. These ODE systems have a right-hand side
function � for which the evaluation of each component has a fixed
evaluation time that is independent of the size � of the ODE system
(sparse function), i.e., the evaluation time of the entire function �
consisting of � components increases linearly with the size of the
ODE system.

Dense ODE systems. These ODE systems have a right-hand side
function � for which the evaluation of each component has an eval-
uation time that increases linearly with �, i.e., the evaluation time
of the entire function � increases quadratically with the size of the
ODE system.

Dense ODE systems lead to the fact that the computation time
usually dominates the communication time, i.e., the comparison
of measured and predicted execution times shows how good the
computation times are modelled. On the other hand, for sparse ODE
systems the communication time plays an important role and the
comparison also includes this part. We have used an iterated RK
method with � � stages that is based on an implicit RadauIIA
method. This method leads to a convergence order of 7, if 	 � �
iterations are executed in each time step. The runtimes shown in the
following tables and figures are runtimes for one time step of the
method and are obtained by averaging over a large number of time
steps. The (measured and predicted) runtimes include the time for
stepsize and error control.

On the T3D and T3E, the runtime of the consecutive implemen-
tations of the iterated RK method for dense ODE systems can be
modelled very accurately and are not shown here. But sparse ODE
systems also lead to good predictions, see Table 4. In this case,
no concurrent message transmissions take place, and therefore the
contention factor does not need to be used. Table 5 evaluates the

measured runtimes predicted runtimes
� p=32 p=64 p=128 p=256 p=32 p=64 p=128 p=256

242 0.017 0.028 0.053 0.104 0.020 0.037 0.075 0.163
882 0.026 0.034 0.058 0.108 0.028 0.043 0.080 0.168

1922 0.041 0.045 0.067 0.115 0.042 0.053 0.067 0.174
3362 0.062 0.061 0.078 0.127 0.060 0.066 0.089 0.184
5202 0.089 0.082 0.094 0.140 0.084 0.083 0.099 0.196
7442 0.123 0.107 0.114 0.157 0.113 0.103 0.112 0.211

10082 0.163 0.137 0.139 0.179 0.147 0.128 0.148 0.227
13122 0.206 0.172 0.170 0.206 0.187 0.156 0.170 0.246
16562 0.257 0.211 0.203 0.239 0.230 0.187 0.196 0.268

Table 4: Consecutive implementation for sparse ODE systems, on a
T3D. The average deviation is 10.3 %.

measured runtimes predicted runtimes
� p=32 p=64 p=128 p=256 p=32 p=64 p=128 p=256

242 0.013 0.019 0.039 0.096 0.023 0.040 0.077 0.156
882 0.036 0.056 0.106 0.218 0.036 0.057 0.106 0.216

1922 0.063 0.088 0.164 0.308 0.058 0.086 0.158 0.319
3362 0.103 0.138 0.253 0.450 0.090 0.129 0.236 0.474
5202 0.153 0.203 0.363 0.642 0.131 0.187 0.338 0.679
7442 0.212 0.281 0.494 0.886 0.183 0.259 0.470 0.937

10082 0.286 0.376 0.665 1.166 0.245 0.346 0.628 1.256
13122 0.368 0.484 0.854 1.489 0.317 0.449 0.816 1.629
16562 0.466 0.607 1.068 1.870 0.400 0.566 1.032 2.061

Table 5: Group implementation for sparse ODE system on a T3D.
The average deviation is 13.5 %.

prediction for the group implementation where the contention factor
is used. For both cases, the predictions are quite accurate, but not
as accurate as the predictions for dense ODE systems. Nevertheless,
they are accurate enough to be used for predicting the effect of a
task parallel implementation. Table 6 shows the predictions for
a group implementation of the iterated RK method for dense ODE
systems on a T3E, again using the contention factor for the con-
current message transmissions because of a task parallel execution.
Table 7 shows the same predictions for sparse ODE systems. Fig-
ure 2 illustrates the accuracy of the group implementation for sparse
ODE systems of large sizes on the T3D and T3E for different num-
bers of processors. In contrast to dense ODE systems, the solution
of sparse ODE systems leads only to considerable speedups for pro-
cessor numbers of up to 16. For larger numbers of processors, the
communication time dominates the computation times.

measured runtimes predicted runtimes
� p=16 p=32 p=64 p=128 p=16 p=32 p=64 p=128

100 0.012 0.012 0.017 0.035 0.016 0.015 0.020 0.032
500 0.194 0.108 0.074 0.082 0.210 0.116 0.076 0.069

1000 0.753 0.394 0.227 0.176 0.808 0.419 0.235 0.164
1500 1.682 0.862 0.468 0.310 1.801 0.920 0.492 0.305
2000 3.227 1.639 0.865 0.524 3.187 1.616 0.848 0.502
3000 7.041 3.555 1.840 1.043 7.145 3.602 1.860 1.038
5000 19.905 9.992 5.097 2.746 19.789 9.946 5.070 2.718

Table 6: Group implementation for dense ODE system on the T3E.
The average deviation is 6.4 %.

measured runtimes predicted runtimes
� p=16 p=32 p=64 p=128 p=16 p=32 p=64 p=128

32 0.004 0.006 0.014 0.031 0.007 0.010 0.017 0.028
128 0.005 0.008 0.016 0.036 0.009 0.012 0.018 0.031
288 0.008 0.011 0.020 0.043 0.011 0.014 0.021 0.036
800 0.018 0.022 0.037 0.075 0.020 0.022 0.032 0.055

1568 0.030 0.035 0.055 0.106 0.032 0.035 0.049 0.086
3200 0.058 0.064 0.098 0.186 0.061 0.063 0.089 0.156
6272 0.109 0.118 0.178 0.329 0.116 0.117 0.167 0.299

15488 0.261 0.280 0.416 0.763 0.284 0.289 0.416 0.758
32768 0.554 0.587 0.864 1.583 0.607 0.624 0.912 1.680

Table 7: Group implementation for sparse ODE system on the T3E.
The average deviation is 16.5 %.

0.1

1

10

0 50 100 150 200 250 300

processors

runtime of group IRK method for Brusselator function

IRK prediction 16562
IRK measured 16562

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140

processors

runtime of group IRK method for sparse function on T3E

IRK prediction 32768
IRK measured 32768

Figure 2: Measured and predicted execution times for a group imple-
mentation of one time step of the iterated RK method for a Brusselator
system of size � � �
�
� on a T3D (top) and of size � � ��
� on a
T3E (bottom).

Table 8 compares measured and predicted execution times for group
implementations of the iterated RK methods for dense ODE systems
on the CLiC. Figure 3 shows an illustration for a fixed message size
and different numbers of processors. For this machine, the devia-
tions between the measured and predicted execution times are much
larger than for the T3D and T3E, especially for a larger number of
processors. Although the deviations may be quite large, they can
still be used as a rough estimate of the performance of a task paral-
lel execution. The main reason for the large deviations are caused

measured runtimes predicted runtimes
� p=16 p=32 p=64 p=128 p=16 p=32 p=64 p=128

100 0.018 0.030 0.060 0.494 0.011 0.022 0.082 0.424
500 0.104 0.129 0.216 2.423 0.092 0.127 0.406 1.797

1000 0.301 0.296 1.288 3.425 0.283 0.306 0.840 3.667
1500 0.600 0.515 2.274 3.446 0.572 0.535 1.302 5.451
2000 1.049 1.492 2.418 4.296 0.959 0.813 1.790 7.372
3000 2.313 2.656 2.506 3.601 2.033 1.519 2.856 11.154
5000 7.814 5.180 4.714 15.303 5.361 3.528 5.289 19.036

Table 8: Group implementation for dense ODE system on the CLiC.
The average deviation is 25.5 %.

by the large increase of the communication time with an increasing
number of processors. But also for a smaller number of processors,
there are considerable deviations for large system sizes because of
caching effects which are caused by the memory hierarchy of the
single processors (Intel Pentium III). Such effects are much smaller
on the Alpha 21164 processor of the T3E-1200 because of its dif-
ferent cache organization, see [?] for a more detailed investigation
of such effects. The runtimes on the CLiC show that even for dense
ODE systems, the machine only leads to satisfactory speedups for up
to 32 processors. For larger processor numbers, the communication
time and the network contention are too high.

6. CONCLUSIONS
In this article, we have shown that it is possible to model the execu-
tion times of mixed task and data parallel implementations by run-
time formulas and that the use of a simple contention factor is suf-
ficient to capture the interference of concurrent message transmis-
sions. The runtime formulas model the execution times quite accu-
rately for parallel machines like the T3D and T3E with a high-speed
interconnection network. For a Beowulf cluster with an Ethernet-
based network, the network contention caused by concurrent trans-
missions is much larger and it is more difficult to capture the effects
by a simple contention factor. But the predictions are still reasonable
and give a first impression of the possible effects of a task parallel
realization.

Acknowledgment
We thank the NIC Jülich for providing access to a Cray T3E and the
EPCC Edinburgh for providing access to a Cray T3D.

0.1

1

10

0 20 40 60 80 100 120 140

processors

runtime of group IRK method for dense function on CLiC

IRK prediction 1000
IRK measured 1000

1

10

100

1000

0 20 40 60 80 100 120 140

processors

runtime of group IRK method for dense function on CLiC

IRK prediction 5000
IRK measured 5000

Figure 3: Measured and predicted execution times for a group imple-
mentation of one time step of the iterated RK method for dense ODE
of size � � ���� (top) and � � ���� (bottom) on the CLiC Beowulf
cluster.

