Improving the Execution Time of Global Communication
Operations

*
Matthias Kiihnemann
Fakultat fiir Informatik
TU Chemnitz
09107 Chemnitz, Germany

kumat@informatik.tu—chemnitz.de

ABSTRACT

Many parallel applications from scientific computing use
MPI global communication operations to collect or dis-
tribute data. Since the execution times of these commu-
nication operations increase with the number of participat-
ing processors, scalability problems might occur. In this
article, we show for different MPI implementations how the
execution time of global communication operations can be
significantly improved by a restructuring based on orthog-
onal processor structures. As platform, we consider a dual
Xeon cluster, a Beowulf cluster and a Cray T3E with dif-
ferent MPI implementations. We show that the execution
time of operations like MPI_Bcast() or MPI_Allgather() can
be reduced by 40% and 70% on the dual Xeon cluster and
the Beowulf cluster. But also on a Cray T3E a significant
improvement can be obtained by a careful selection of the
processor groups. We demonstrate that the optimized com-
munication operations can be used to reduce the execution
time of data parallel implementations of complex application
programs without any other reordering of the computation
and communication structure.

Categories and Subject Descriptors

D.3.2 [Programming Languages|: Language Classifi-
cations—Concurrent, distributed, and parallel languages;
D.3.1 [Programming Techniques]: Concurrent Program-
ming—distributed programming, parallel programming

General Terms

Algorithm, Measurement, Performance, Experimentation

Keywords

orthogonal processor groups, global communication opera-
tions, parallel programs, MPI

*Supported by DFG (Deutsche Forschungsgemeinschalft).

Permission to make digital or hard copies of all or part of this work for

Thomas Rauber
Fakultat fiir Mathematik u. Physik
Universitat Bayreuth
95445 Bayreuth, Germany

rauber@uni-bayreuth.de

Gudula Ringer
Fakultat fiir Informatik
TU Chemnitz
09107 Chemnitz, Germany

ruenger@informatik.tu—chemnitz.de

1. INTRODUCTION

Parallel machines with distributed address space are
widely used for the implementation of applications from sci-
entific computing, since they provide good performance for
a reasonable price and portable message-passing programs
can be written using message-passing standards like MPI or
PVM. For most applications, like grid-based computations,
a data-parallel execution usually leads to good performance.
But for target machines with a large number of processors,
data parallel implementations may lead to scalability prob-
lems, in particular when collective communication opera-
tions are used for exchanging data. Often the scalability
can be improved by re-formulating the program as a mixed
task and data parallel implementation. This can be done
by partitioning the computations into multiprocessor tasks
and by assigning the tasks to disjoint processor groups for
execution such that one task is executed by the processors
of one group in a data parallel way, but different indepen-
dent tasks are executed concurrently by disjoint processor
groups. The advantage of a group-based execution is caused
by the communication overhead of collective communication
operations whose execution time shows a logarithmic or lin-
ear dependence on the number of participating processors,
depending on the communication operation and the target
machine.

Another approach to reduce the communication overhead
is the use of orthogonal processor groups which are based
on an arrangement of the set of processors as a virtual two-
or higher-dimensional grid and a fixed number of decom-
positions into disjoint processor subsets representing hyper-
planes [15]. To use orthogonal processor groups the appli-
cation has to be re-formulated such that it consists of tasks
that are arranged in a two- or higher-dimensional task grid
that is mapped onto the processor grid. The execution of
the program is organized in phases. Each phase is executed
on a different partitioning of the processor set and performs
communication in the corresponding processor groups only.
For many applications, this may reduce the communication
overhead considerably but requires a specific potential of
parallelism within the application and a complete rearrange-
ment of the resulting parallel program.

personal or classroom use is granted without fee provided that copies are In this article we consider a different approach to reduce
not made or distributed for profit or commercial advantage and that copies {},¢ programming overhead. Instead of rearranging the en-

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
CF’04, April 14-16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/00045.00.

tire program to a different communication structure, we use
the communication structure given in the data parallel pro-
gram. But for each collective communication operation, we

rearrange the structure of the operation such that it inter-
nally uses an orthogonal arrangement of the processor set.
Using this approach a significant reduction in the execu-
tion time can be observed for different target platforms and
different MPI implementations. The most significant im-
provement results for MPI_Allgather() operations. This is
especially important as these operations are often used in
scientific computing. Examples are iterative methods where
MPI_Allgather() operations are used to collect data from
different processors and to make this data available to each
processor for the next time step. The advantage of the ap-
proach is that the application does not have to provide a spe-
cific potential of parallelism and that all programs using col-
lective communication can take advantage of the improved
communication. Also no rearrangement of the program is
necessary.

The internal rearrangement of the collective communica-
tion operations is done on top of MPI on the application
programmers level. So, the optimization can be used on
a large range of machines providing MPI. As target plat-
forms we consider a Cray T3E-1200, a Beowulf cluster with
528 processors connected by a fast Ethernet interconnection
network and a dual Xeon cluster with a SCI network.

The rest of the paper is organized as follows. Section 2
describes how collective communication operations can be
re-arranged such that they consist of different steps, each
performed on a subset of the entire set of processors. Section
3 applies the improved operations in the context of larger
application programs and shows the resulting improvements.
Section 4 discusses related work, Section 5 concludes the

paper.

2. ORTHOGONAL STRUCTURES FOR
REALIZING COMMUNICATION
OPERATIONS

Many implementations of the MPI standard are available,
including highly-tuned versions for proprietary massively-
parallel processors (MPPs), such as the Cray T3E, as well
as mostly hardware-independent implementations such as
MPICH [5] and LAM-MPI [14], which have been ported to
run on a vast array of machine types.

In this section we describe how collective communica-
tion operations can be realized in phases based on an or-
thogonal partitioning of the processor set. The resulting
orthogonal realizations can be used for arbitrary commu-
nication libraries that provide the collective communica-
tion operations. We demonstrate this for MPI consider-
ing the following collective communication operations: a
single-broadcast operation (MPI_Bcast()), a gather opera-
tion (MPI_Gather()), a scatter operation (MPI_Scatter()),
a single-accumulation operation (MPI_Reduce()), a multi-
accumulation operation (MPI_Allreduce()) and a multi-
broadcast operation (MPI_Allgather()).

2.1 Realization using a two-dimensional
processor grid

We assume that the set of processors is arranged as a
two-dimensional grid with a total number of p = p; - p2 pro-
cessors. The grid consists of p; row groups Ry, ..., Rp, and
p2 column groups C1, ..., Cp, with |Ry| = p2 for 1 < ¢ < py
and |Cy| = p1 for 1 < r < p2. The row groups provide a par-
titioning into disjoint processor sets. The disjoint processor

sets resulting from column groups are orthogonal to the row
groups. Using these two partitioning, the communication
operations can be implemented in two phases, each working
on a different partitioning of the processor grid. Based on
the processor grid and the two partitioning induced, group
and communicator handles are defined for the concurrent
communication in the row and column groups. Based on
the 2D grid arrangement, each processor belongs to both a
row group and a column group. Figure 1 illustrates a set of
6 processors Py, P1, ..., Ps arranged as p1 X p2 = 3 X 2 grid.
The overhead for the processor arrangement itself is very
small; only two functions to create the groups are required
and the arrangement only has to be performed once for an
entire application program.

2.1.1 Single-Broadcast

In a single-broadcast operation, a root processor sends a
block of data to all processors in the communicator domain.
Using the 2D processor grid as communication domain, the
root processor first broadcasts the block of data within its
column group C; (leader group). Then each of the receiving
processors acts as a root in its corresponding row group and
broadcasts the data within this group (concurrent group)
concurrently to the other broadcast operations. Figure 2
illustrates the resulting two communication phases for the
processor grid from Figure 1 with processor P, as root of
the broadcast operation. Processors Py, P> and P, form the
leader group.

2.1.2 Gather

For a gather operation, each processor contributes a block
of data; the root processor collects the blocks in rank or-
der. For an orthogonal realization, the data blocks are first
collected within the row group by concurrent group based
gather operations such that the data blocks are collected by
the processor belonging to that column group (leader group)
to which the root of the global gather operation also belongs
to. In a second step, a gather operation is performed within
the leader group only and collects all data blocks at the root
processor specified for the global gather operation. If b is
the size of the original message, each processor in the leader
group contributes a data block of size b - p2 for the second
communication step. The order of the messages collected at
the root processor is preserved.

Figure 3 (upwards) illustrates the two phases for the pro-
cessor grid from Figure 1 where processor P; contributes
data block A;.

2.1.3 Scatter

A scatter operation is the dual operation to a gather oper-
ation, so a scatter operation can be realized by reversing the
order of the two phases used for a gather operation: first,
the messages are scattered in the leader group, such that
each processor in the leader group obtains all messages for
processors in the row group to which it belongs to; then
the messages are scattered in the row groups by concurrent
group-based scatter operation.

2.1.4 Single-Accumulation

For a single-accumulation operation, each processor con-
tributes a buffer with n elements; the root processor ac-
cumulates the values of the buffer with a specific reduction
operation, like MPI_SUM. For an orthogonal realization, the

root

B |AJALA]AALAS

Scatter

A AL (A [A

Ieeqer groupC1

ba
Gather

A A

Figure 3: lllustration of an orthogonal realization of a gather operation (upward) and a scatter operation (downward) with 6 processors and
root processor Py for 3 concurrent groups R1, Rz and R3 of 2 processors each. In step (1) for the gather operation, processors Py, P2, Py
concurrently collect messages from its row groups. In step (2), the leader group collects the messages built up the previous step.

buffers are first reduced within the row group by concurrent
group-based reduce operations such that the buffer are ac-
cumulated in that column group to which the root of the
global reduce operation belongs to. In a second step, a re-
duce operation is performed within the leader group, thus
accumulating all values of the buffer at the specific root pro-
cessor. The number of elements are always the same, which
means that all messages have the same size in both phases.

2.1.5 Multi-Accumulation

For a multi-accumulation operation, each processor con-
tributes a buffer with n elements and the operation makes
the result buffer available for each processor. Using a 2D
processor grid, the operation can be implemented in two
steps: first, a group-based multi-accumulation operation is
executed concurrently within the row groups, thus making
the result buffer available to each processor of every row
group. Second, concurrent group-based multi-accumulation
operation are performed to reduce this buffer within the
column groups. The messages have the same size in both
phases.

2.1.6 Multi-Broadcast

For a multi-broadcast operation, each processor con-
tributes a data block of size b and the operation makes all
data blocks available in rank order for each processor. Us-
ing a 2D processor grid, the operation can be implemented
in two steps: first, group-based multi-broadcast operations
are executed concurrently within the row groups, thus mak-
ing each block available for each processor within column
groups, see Figure 4 for an illustration. Second, concur-
rent group-based multi-broadcast operations are performed
to distribute the data blocks within the column groups; for
this operation, each processor, contributes messages of size
b - p2. Again, the original rank order of data blocks is pre-
served.

2.2 MPI Performance results in isolation

To investigate the performance of the implementation de-
scribed in Section 2.1, we consider the communication on
three different platforms with a distributed address space,
a Cray T3E-1200, a small dual Xeon cluster and a large
Beowulf-Cluster (CLiC). The T3E uses a three-dimensional
torus network. The six communication links of each node
are able to simultaneously support hardware transfer rates of
600 MB/s. The Beowulf Cluster CLiC (’Chemnitzer Linux

Cluster’) is built up of 528 Pentium IIT processors clocked
at 800 MHz. The processors are connected by two different
networks, a communication network and a service network.
Both are based on the fast-Ethernet-standard, i.e. the pro-
cessing elements (PEs) can swap 100 MBit per second. The
service network (Cisco Catalyst) allows external access to
the cluster. The communication network (Extreme Black
Diamond) is used for inter-process communication between
the PEs. On the CLiC, LAM MPI 6.3 b2 and MPICH 1.2.4
were used for the experiments.

The Xeon cluster is built up of 16 nodes and each node
consists of two Xeon processors clocked at 2 GHz. The nodes
are connected by three different networks, a service network
and two communication networks. The service network and
one communication network are based on the fast-Ethernet-
standard and the functionality is similar to the two intercon-
nection networks of the CLiC. Additionally, a high perfor-
mance interconnection network based on Dolphin SCI inter-
face cards is available. The SCI network is connected as 2-
dimensional torus topology and can be used by the ScaMPI
(SCALI MPI) [4] library. The fast-Ethernet based networks
are connected by a switch and can be used by two portable
MPI libraries, LAM MPI 6.3 b2 and MPICH 1.2.4.

In the following, we present runtime tests for 48 and 96
processors on the T3E and CLiC and for 16 and 32 proces-
sors on the dual Xeon cluster. For other processor numbers,
similar results are obtained. For 48 processors 8 different
two-dimensional layouts (2 * 24, 3 * 16, ..., 24 % 2) and for
96 processors 10 different layouts (2 % 48, 3 % 32, ..., 48 x 2)
are possible. For the runtime tests, we have used message
sizes between 10 KBytes and 500 KBytes. This denotes the
block of data contributed (e.g. MPI_Gather()) or obtained
(e.g. MPI Scatter()) by each participating processor. The
following figures show the minimum, average and maximum
performance improvements achieved by the orthogonal im-
plementation described in Section 2.1 compared with the
original MPI implementation over the entire interval of mes-
sage sizes.

2.2.1 Orthogonal realization using LAM-MPI on the

CLiC
On the CLiC, the orthogonal implementations based on
the LAM-MPI library lead to the highest performance im-
provements for most collective communication operations.
The orthogonal realizations of a MPI_Bcast(),

@
O @ R
@:>
® [AlAd
d>
® a7 ® aA

>| | >

>

PO®

0O

@) [AdAd

@

5
Z]

AdAJA]As Al

JAJAJAAIA
e
E> ®

) [AdAJAJAJALAS

Figure 4: lllustration of an orthogonal implementation of multi-broadcast operation with 6 processors and root processor Py. The operation
may be realized by 3 concurrent groups R1, R2 and R3 of 2 processors each and 2 orthogonal groups C7 and C32 of 3 processors each. Step
(1) shows concurrent multi-broadcast operations on row groups and step (2) shows concurrent multi-broadcast operations on column groups.

MPI_Allgather() and MPI_Allreduce() operation show
the most significant performance improvements. All par-
titions show a considerable improvement, but the largest
improvements can be obtained when using a layout for
which the number of row and column groups are about
the same. The MPI_Bcast() operation shows significant
average improvements of more than 20% for 48 and 40%
for 96 processors, respectively, using balanced grid layouts,
see Figure 5 (top). The orthogonal implementation of a
MPI_Allreduce() operation shows average improvements
of more than 20% for 48 and 30% for 96 processors,
respectively, again using balanced group sizes, see Figure 6
(top). The execution time of the MPI_Allgather() operation
can be dramatically improved by an orthogonal realization,
see Figure 6 (bottom). For some of the group partitioning,
improvements of over 60% for 48 and 70% for 96 processors,
respectively, can be obtained. The difference between the
minimum and maximum performance enhancements are
extremely small, which means that this method leads to a
reliable improvement for all message sizes.

The main reason for the significant performance improve-
ments of these three collective communication operations
achieved by orthogonal realization is the specific implemen-
tation of the MPI_Bcast() operation in LAM-MPI. The algo-
rithm of the MPI_Bcast() operation to distribute the block
of data does not exploit the star network topology of the
CLiC, since the algorithm uses a structure describing a tree
topology. In general, the orthogonal realization leads to a
better utilization of the network, caused by a more balanced
communication pattern. Both the MPI_Allgather() and the
MPI_Allreduce() operation use a MPI_Bcast() operation to
distribute the block of data to all participating processors.
More detailed, the MPI_Allreduce() operation is composed
of a MPI_Reduce() and a MPI_Bcast() operation. First the
root processor reduces the blocks of data from all members
of the processor group and broadcasts the result buffer to
all processors participating in the communication operation.
The message size is constant in both phases. The improve-
ments correspond to the performance enhancements of the
MPI_Bcast() operation, since the preceding MPI_Reduce()
operation with orthogonal structure leads to a small per-
formance degradation. The MPI_Allgather() operation is
composed of a MPI_Gather() and a MPI_Bcast() operation
in LAM-MPI. First the root processor collects blocks of data
from all members of the processor group and broadcasts the

entire message to all processors participating in the commu-
nication operation. The root processor broadcasts a con-
siderably larger message of size b - p, when b denotes the
original message size and p is the number of participating
processors. The significant improvements are again caused
by the execution of the MPI_Bcast() operation correspond-
ing to the larger message size.

The orthogonal implementation of the MPI Gather() op-
eration shows a small, but persistent average performance
improvement for all grid layouts of more than 1% for 48
and 2% for 96 processors, respectively, see Figure 5 (bot-
tom). There are only small variations of the improvements
obtained for different layouts, but using the same number
of row and column groups again leads to the best average
performance.

An average performance degradation can be observed for
the MPI_Scatter() and the MPI_Reduce() operation. Only
for specific message sizes, a small performance improvement
can be obtained, not shown in a figure.

2.2.2 Orthogonal realization using MPICH on the

CLiC

The performance improvements on the CLiC based on the

MPICH library are not as significant as with LAM-MPI, but
also with MPICH persistent enhancements by an orthogonal
realization can be obtained for some collective communica-
tion operations.
The orthogonal implementations of the MPI_Gather() and
MPI _Scatter() operations lead to small, but persistent
performance enhancements. For the MPI_Gather() and
MPI_Scatter() operations more than 1% for 48 and 2% for
96 processors, respectively, can be obtained using balanced
grid layouts. Depending on the message size up to 5% per-
formance enhancements can be obtained with an optimal
grid layout in the best case (no figure shown).

The orthogonal realization of the MPI_Allgather() opera-
tion leads to dramatical performance improvements for mes-
sage sizes in the range of 32 KBytes and 128 KBytes, see
Figure 7 (top); for larger message sizes up to 500 KBytes
slight performance degradation between 1 % and 2 % can
be observed. The main reason for the large differences in
the improvements depending on the message size are the
different protocols used for short and long messages. Both
protocols are realized using non-blocking MPI_Isend() and
MPI_Irecv() operations. For messages up to 128 KBytes, an

Figure 1: A set of 6 processors arranged as a two-dimensional
grid with p1 = 3 row groups and p2 = 2 column groups in row-

oriented mapping.
root

Broadcast

Al Al [A] [A] [A] [A]

Figure 2: lllustration of an orthogonal realization of an single-
broadcast operation with 6 processors and root processor Py re-
alized by 3 concurrent groups of 2 processors each. In step (1),
processor Py sends the message A within its column group Ci;
this is the leader group. In step (2), each member of the leader
group sends the message within its row group.

eager protocol is used where the receiving processor stores
messages that arrive before the corresponding MPI_Irecv()
operation has been activated in a system buffer that is dy-
namically allocated each time that such a message arrives.
Issuing the MPI_Irecv() operation leads to copying the mes-
sage from the system buffer to the user buffer. For messages
that are larger than 128 KBytes, a rendezvous protocol is
used that is based on request messages send by the desti-
nation processor to the source processor as soon as a re-
ceive operation has been issued, so that the message can
be directly copied into the user buffer. The reason for the
large improvements shown in Figure 7 (top) is caused by
the fact that the asynchronous standard realization of the
MPI_Allgather() operation leads to an allocation of a tem-
porary buffer and a succeeding copy operation for a large
number of processors whereas the orthogonal group-based
realization uses the rendezvous protocol in the second com-
munication phase according to an increased message size
b * p2.

2.2.3 Orthogonal realization using LAM-MPI on the

dual Xeon cluster
The Xeon Cluster consists of 16 nodes with two proces-
sors per node. The processors participating in a communi-
cation operation are assigned to the nodes in a cyclic order

performance improvements of MPI_Bcast by group communication
with 48 (bottom) and 96 processors (top) on CLiC (LAM-MPI)
T

48*2 N i .|
3213 [] 1
204 [1
16'6 [] 1
128 [] 1
S]]
2616]]
g 42 []]
S]]
3 2*48 []]
-g 1
2242 [] : 1
S16'3 [] 1
S512%4 []]
86 [] 1
68 [] 1
4112 [] El minimum
3*16 I [average
2+24 : [maximum
0 10 20 30 40 50 60

performance improvements (in %)

performance improvements of MPI_Gather by group communication
with 48 (bottom) and 96 processors (top) on CLiC (LAM-MPI)

23432 B
o 2*48 q
g
g L 4
< 24*2 4
S16+3 |
°
5124 E
8*6 T
6*8 b
4112 Hl minimum |
3*16 [average
2424 1 maximum ||
i I | | |
0 1 2 3 4 5 6 7

performance improvements (in %)

Figure 5: Performance improvements by group-based realization
of MPI_Bcast() (top) and MPI_Gather() (bottom) with 48 and 96
processors on the CLiC (LAM-MPI).

to achieve a reasonable utilization of both interconnection
networks. For runtime tests with 16 processors all 16 nodes
are involved, i.e., processor ¢ uses one physical processor of
node i for 0 < ¢ < 15. When 32 processors participate in the
communication operation, node ¢ provides the processors
and 7+ 16 for 0 <4 < 15.

The performance results of the different communication op-
erations are similar to the performance enhancements using
LAM-MPI on the CLiC. The main reason is that both plat-
forms use a star network topology, the same interconnection
network (fast-Ethernet) and the same realization of com-
munication operation based on the LAM-MPI library. Fig-
ure 8 shows as example that for an MPI_Bcast() (top) and
an MPI_Allgather() (bottom) operation similar performance
improvement as on the CLiC can be obtained. Because of
the specific processor arrangement of the cluster the perfor-
mance improvements of the various two-dimensional group
layouts differ from the performance results on the CLiC,
such that a balanced grid layout does not necessarily lead
to the best average performance improvement. Concerning
performance improvements and grid layouts similar perfor-
mance improvements on the CLiC can be observed for the
remaining collective MPI communication operations.

performance improvements of MPI_Allreduce by group communication
with 48 (bottom) and 96 processors (top) on CLiC (LAM-MPI)

48*2 q

3213 [] 1
204 E—]
16'6 [] 1
12'8 [] 1
Loz]]
5616 [] 1
g 42 | 1
(=2} -
D332 []
3 248 [] b
o
E B
2o S]
S163] 1
Si12va []]
86 [] 1
o [|]
412 [] El minimum
3*16 [] average
2*24 : ‘ [maximum
0 5 10 15 20 25 30 35 40 45

performance improvements (in %)

with 48 (bottom) and 96 processors (top) on CLiC (LAM-MPI)
T T T
12*8
3 4r24
2

T T
48"l minimum : 1
32:3 | B average : 4
24%4] maximum i

Se12

S}

S332

performance improvements of MPI_Allgather by group communication
16*6
2616
5 2*48
Qo

22472
S16*3
5,124 [] 4
86 [B
68 [4
412 [] B
3*16 I B
2+24 [B

0 10 20 30 40 50 60 70 80
performance improvements (in %)

Figure 6: Performance improvements of MPI_Allreduce() (top)
and MPI_Allgather() (bottom) by group communication with 48 and
96 processors on the CLiC (LAM-MPI).

2.2.4 Orthogonal realization using ScaMPI on the

dual Xeon cluster

In general, collective communication operations using the
two-dimensional SCI torus are significantly faster than oper-
ations using an Ethernet network. Depending on the specific
communication operation the SCI interface is by a factor
of 100 faster than the Ethernet network. Several collec-
tive communication operations using ScaMPI on SCI still
show performance improvements obtained by orthogonal
group realization, see Figure 9 for an MPI_Gather() (top)
and MPI_Allgather() (bottom) operation for smaller mes-
sage sizes. For MPI_Scatter() similar performance results
like for MPI_Gather() can be observed. For MPI_Bcast()
and the accumulation operations slight performance degra-
dations can be observed. The assignment of processors par-
ticipating in the communication operation to the cluster
nodes is done as described in Section 2.2.3.

2.2.5 Orthogonal realization on the Cray T3E-1200

For MPI_Bcast() and MPI_Allgather() operations, good
performance improvements up to 20% can be obtained on
the T3E using suitable grid layouts for messages in the range
of 10 KBytes and 500 KBytes. The execution times of the

performance improvements of MPI_Allgather by group communication
with 48 (bottom) and 96 processors (top) on CLiC (MPICH)

482 Il minimum
32*3]] I average
244 [1 maximum

[]
i
16*6 [4
12:8 [
Y2 [
2616 [
3424 [,
2332 [] R
g24s] : |
£ |
€ 2472 []
gle*a [
512*4 [] B
86 []
6'8 []
412 [] B
3*16 [] : 4
2424 [: |

0 10 20 30 40 50 60 70 80 90 100
performance improvements (in %)

performance improvements of MPI_Gather by group communication
with 48 (bottom) and 96 processors (top) on Cray T3E-1200
T T T T

g2 T T T T 1
32:3 [] 4
244 [] 1
16% []]
12'8 [] 1

o2 —]

0616 [] 1

3424 [] 1

>332 [] 8

T 248 []]

-g . : 1

Z 24%2 S 1

S16%3] i

124 [] 1

86 [] .
68 []]
412 [] Hl minimum ||
3*16 [] [average
2424 - : : : : : I:I ma>‘<imum H
0 5 10 15 20 25 30 35 40 45 50

performance improvements (in %)

Figure 7: Performance improvements by group-based realization
of MPI_Allgather() for message sizes in the range of 32 KBytes and
128 KBytes on the CLiC (MPICH) (top) and MPI_Gather() for mes-
sages sizes between 10 KBytes and 500 KBytes on the Cray T3E-
1200 (bottom).

orthogonal realizations are quite sensible to the grid lay-
out and the specific message size, i.e., other grid layouts
lead to smaller improvements or may even lead to perfor-
mance degradation. Moreover, there is a large variation of
the performance improvements with the message size. This
is especially true for large messages where messages of sim-
ilar size may lead to a significant difference in the perfor-
mance improvement obtained. This leads to the large dif-
ferences between the minimum and maximum improvement.
In contrast to this smaller message sizes in the range of 10
KBytes and 100 KBytes lead to persistent average perfor-
mance improvements for both operations, see Figure 10 for
the MPI_Bcast() (top) and MPI_Allgather() (bottom) oper-
ations.

For the MPI_Gather() operation a significant perfor-
mance improvement of more than 20% for 48 and 30% for
96 processors, respectively, can be obtained, see Figure 7
(bottom). For small message sizes, a slight performance
degradation can sometimes be observed; for this reason,
there is no minimum improvement shown for most of
the layouts in the figure. For message sizes between 128

performance improvements of MPI_Bcast by group communication
with 16 (bottom) and 32 processors (top) on Xeon—Cluster (LAM-MPI)

Hl minimum
verage
[] maximum

group number * group size

1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
performance improvements (in %)

performance improvements of MPI_Allgather by group communication
with 16 (bottom) and 32 processors (top) on Xeon—Cluster (LAM-MPI)

group number * group size

0 10 20 30 40 50 60 70
performance improvements (in %)

Figure 8: Performance improvements by group-based realization
of MPI_Bcast() (top) and MPI_Allgather() (bottom) with 16 and 32
processors on the dual Xeon cluster (LAM-MPI).

KBytes and 500 KBytes, the improvements obtained are
nearly constant. The runtimes for MPI_Gather() operations
increase more than linearly with the number p of processors.
This effect is caused by the fact that the root processor
becomes a bottleneck when gathering larger messages.
This bottleneck is avoided when using orthogonal group
communication.

2.3 Hierarchical processor group
organization

The orthogonal realization of communication operations
presented in Section 2.1 can be recursively applied to the
internal communication organization of the leader group or
the concurrent groups, so that the communication in the
leader group or the concurrent groups can be performed by
again applying an orthogonal structuring of the group. Each
hierarchical decomposition of a processor group leads to a
new communication phase. For a fixed number of processors,
the hierarchical decomposition can be selected such that the
best performance improvement results.

For up to 96 processors, up to three hierarchical decom-
positions are useful and we present runtime tests for 96 pro-

performance improvements of MPI_Gather by group communication
with 16 (bottom) and 32 processors (top) on Xeon-Cluster (SCALI)
T T

group number * group size

Hl minimum

[average

[1 maximum
;

1
0 10 20 30 40 50 60
performance improvements (in %)

performance improvements of MPI_Allgather by group communication
with 16 (bottom) and 32 processors (top) on Xeon—Cluster (SCALI)

T T
Hl minimum
[average

] maximum

group number * group size

1
0 2 4 6 8 10 12 14 16 18 20
performance improvements (in %)

Figure 9: Performance improvements by group-based realization
of MPI_Gather() (top) for message sizes in the range of 560 Byte and
64 KByte and MPI_Allgather() (bottom) for message sizes between
100 KByte and 500 KByte on the Xeon cluster (ScaMPI).

cessors on the CLiC based on the LAM-MPI library and on
the Cray T3E. In particular, if the original leader group con-
tains 16 or more processors, the group is decomposed again
and the communication is performed in three instead of two
phases.

Compared to the two-phase realization, a hierarchical re-
alization of the MPI_Bcast() and MPI_Gather() operation
leads to additional and persistent performance improve-
ments.

2.3.1 Hierarchical realization using LAM-MPI on
the CLIiC

On the CLiC and T3E a sufficiently large number of pro-
cessors is available to arrange different grid layouts for three
communication phases. Comparing a two-dimensional with
a three-dimensional realization for the MPI_Bcast() opera-
tion, an additional performance improvement of up to 15%
can be obtained for the CLiC based on LAM-MPI. Figure 11
(top) shows the overall performance improvements obtained
by a 3-dimensional realization. The hierarchical realization
for the MPI_Gather() operation shows no additional perfor-
mance improvements compared to the two-dimensional re-

performance improvements of MPI_Bcast by group communication
with 48 (bottom) and 96 processors (top) on T3E for small messages

minimum
average

[maximum
|

| I I
0 2 4 6 8 10 12 14 16 18 20
performance improvements (in %)

performance improvements of MPI_Allgather by group communication
with 48 (bottom) and 96 processors (top) on T3E for small messages
T

El minimum ||

[average H

1 maximum ||

| |

0 10 20 30 40 50 60 70
performance improvements (in %)

Figure 10: Performance improvements by group communication
of MPI_Bcast() (top) and MPI_Allgather() (bottom) for message
sizes in the range of 10 KBytes and 100 KBytes on the Cray T3E-
1200.

alization, see Figure 11 (bottom). The resulting differences
between the minimum and maximum performance improve-
ments are larger over the entire interval of message sizes.

2.3.2 Hierarchical realization on the Cray T3E-1200

For the MPI_Bcast() operation all group partitioning
show an average performance improvement, compared to
the runtime tests with two communication phases for mes-
sage sizes up to 500 KBytes on the T3E, see Figure 12 (top).
For suitable grid layouts average improvements of more than
20% can be obtained. The hierarchical realization with three
communication phases for the MPI_Gather() operation leads
to additional performance improvements, see Figure 12 (bot-
tom). The improvements vary depending on the group par-
titioning. For some of the group partitionings, additional
improvements of over 60 % can be obtained, which means
that the hierarchical variant is more than twice as fast as
the variant with two communication phases.

2.3.3 Hierarchical realization on the Xeon cluster

Figure 13 shows performance enhancements for four MPI
communication operations obtained by a hierarchical or-

performance improvements of MPI_Bcast by hierarchical
group communication with 96 processors on CLiC (LAM-MPI)

241212 minimum
16/3/2 average

o 12/4128 7 maximum
N g/6/2

@ 212412 []
® 16/2/3
§ 8/4/3
5, 4/8i3
5 2/16/3
N12/2/4 []
o 8/3/4
6/4/4 [] b
4/6/4 []
3/8/4
2/12/4 []
8/2/6
4/4/6 []
2/8/6
0 10 20 30 40 50 60
performance improvements (in %)

leader group s

performance improvements of MPI_Gather by hierarchical
group communication with 96 processors on CLiC (LAM-MPI)

241212 minimum l

16/3/2

8/2/6 b
4/416 B
2/8/6 ; L i i i |

i
0 0.5 1 15 2 25 3 35 4 4.5
performance improvements (in %)

Figure 11: Overall performance improvements by hierarchical
group communication of MPI_Bcast() (top) and MPI_Gather() (bot-
tom) on the CLiC (LAM-MPI).

thogonal grid layout with three communication phases.
Since 32 processors are available three different group lay-
outs (2 x 8 x4, 4x4x2, 8% 2x2) are chosen for the
Xeon cluster. Figure 13 shows the additional performance
improvements for the orthogonal realization of MPI_Bcast(),
MPI_Allgather() using LAM-MPI (top) and MPI_Gather(),
MPI_Scatter() using ScaMPI (bottom). The orthogonal re-
alizations using ScaMPI are obtained for smaller message
sizes in the range of 560 Byte and 64 KByte, see also Sec-
tion 2.2.4.

2.4 Grid Selection

For a given machine and a given MPI implementation, a
suitable layout of the processor grid can be selected by per-
forming measurements with different grid layouts and differ-
ent message sizes for each of the collective communication
operations to be optimized. The process of obtaining and
analyzing the measurements can be automated such that
for each communication operation, a suitable layout is de-
termined that leads to smaller execution times. This pro-
cess has to be done only once for each target machine and
each MPI implementation and the selected layout can then
be used for all communication operations in all application

performance improvements of MPI_Bcast by hierarchical
group communication with 96 processors on Cray T3E-1200

24122 inimum [] b

16/32| E average [] B
© 124120 T maximum J 1
N 8/6/2 7 : : 1
o 6/8/2
3 411212
2301602
@ 212412
@ 16/2/3

[]
[1]
[]
S 8/4i3 [] : 1
[]
[]
[]

si

S 483
> 2/16/3
N 12/2/4
8/3/4
6/4/4
4/6/4
3/8/4
S 2/12/4

= 826 []
4/416

2/8/6 [1 ; ; ; 1

0 5 10 15 20 25 30

performance improvements (in %)

der group si

performance improvements of MPI_Gather by hierarchical
group communication with 96 processors on Cray T3E-1200

— R | |
247212 minimum [| 1

16/3/2 [1
g average
1A
[]
[]

o 1214121 [maximum
N 8/6/2 |

o 6082
3 411212 [1 1
23/16/2 [1] B
@ 212412 [] 1
@ 16/2/3 []
g 8/4/3] 3
S 4/8/3 [] 1
~ 2/16/3 [] 3
N 12/2/4 []
8/3/4 [1] B
6/4/4 []
4/6/4 [1] b
3/8/4 [] B
2/12/4 [] : 3
8/2/6 [] 1
4/4/6 [1 3
2/8/6 ; : 1
0 10 20 30 40 50 60 70 80
performance improvements (in %)

si

leader group size / g

Figure 12: Overall performance improvement by hierarchical
group communication of MPI_Bcast() (top) and MPI_Gather() (bot-
tom) on the Cray T3E-1200.

programs. In general, different optimal layouts may result
for different communication operations, but our experiments
with LAM-MPI, MPICH and Cray-MPI show that using
the same number of row and column groups usually leads
to good and persistent improvements compared to the stan-
dard implementation of the MPI operations.

Based on the measured execution times of the communi-
cation operation, it is also possible to identify intervals of
message sizes such that a different grid layout is selected for
a different interval, depending on the expected performance
improvement. The measured data also shows whether for
a specific communication operation and for a specific mes-
sage size, no performance improvement is expected by an
orthogonal realization. In this case, the original MPI imple-
mentation should be used.

As shown in Section 2.2 the performance improvements
obtained by an orthogonal realization depend on different
features, like architectural characteristics of the parallel tar-
get platform or the internal implementation of the global
communication operation. This means that there is no war-
ranty for performance improvements by using orthogonal
realization of global communication operation. But the run-
time experiments show that an orthogonal realization may

performance improvements of MPI_Bcast (top) and MPI_Allgather (bottom) by hierarchical
group communication with 32 processors on Xeon cluster (LAM-MPI)

&
=
5

»
@
N

@
N
IS

£
=
5

o
N
)
o
5
o
=)
o
N
)
o
5
]
5
o
N
)
o
B
o
S
@
k]
@
Qo

0 10 20 30 40 50 60 70 80
performance improvements (in %)

performance improvements of MPI_Gather (top) and MPI_Scatter (bottom) by
hierarchical group communication with 32 processors on Xeon—Cluster (ScaMPI)

minimum

average
maximum

&

&

N
i

N

IN]

@

N
i

&

&

N
I

leader group size / group size / group size

0 10 20 30 40 50 60
performance improvements (in %)

Figure 13: Overall performance improvements by hierarchical
group communication of MPI_Bcast(), MPI_Allgather() using LAM-
MPI (top) and MPI_Gather(), MPI_Scatter() using ScaMPI (bot-
tom) on the Xeon cluster. The improvements for orthogonal realiza-
tions using ScaMPI (bottom) are obtained for message sizes between
560 Byte and 64 KByte.

lead to a significant performance improvement of the com-
munication behavior, especially for portable message pass-
ing libraries, which have been developed with a view to run
on a wide range of machine types.

The result of the analysis step is a realization of the collec-
tive communication operations that uses orthogonal realiza-
tion with a suitable layout whenever it is expected that this
leads to a performance improvement compared to the given
MPI implementation. In this way also a hierarchical layout
can be obtained and analyzed. Furthermore, as described in
Section 2.3, a hierarchical grid layout can be selected such
that the best performance improvement results.

3. APPLICATIONS AND RUNTIME TESTS

To investigate the efficiency improvement of the approach
for entire application programs, we consider parallel imple-
mentations of the Jacobi iteration with and without opti-
mized communication and complex application programs,
the parallel Adams methods to show the performance im-
provements by concurrent group communication.

performance improvements of Jacobi iteration
by orthogonal group communication with 96 processors on CLiC (LAM-MPI)
T T T

Il row-wise (MPI_Allgather)
[column-wise (MPI_Allreduce)
- [column-wise (MPI_Bcast)

performance improvement (in %)

12000 24000 36000 48000 60000 72000
system size n

performance improvements of Jacobi iteration

by orthogonal group communication with 96 processors on Cray T3E-1200
50 T T T T

Il row-wise (MPI_Allgather)
I column-wise (MPI_Alireduce)
[column-wise (MPI_Bcast)

40

@
S

N
5]

performance improvement (in %)
N ~
& 3

10

i L IIH ||H I

1200 1440 1680 1920 2160
system size n

96(

Figure 14: Performance improvements of Jacobi iteration by or-
thogonal group communication using balanced grid layouts on the
CLiC (LAM-MPI) (top) and for smaller system sizes on the T3E
(bottom).

3.1 Jacobi iteration

For the Jacobi iteration, three different implementations
were investigated to distribute the iteration vector at the end
of each iteration step. One possibility is to use a row-wise
distribution of the iteration matrix and an MPI_Allgather().
The other two versions result from a column-wise distri-
bution; one uses an MPI_Allreduce(), the other uses an
MPI_Reduce() followed by an MPI_Bcast(). Figure 14 shows
the performance improvements obtained by a 2D orthogonal
structure for the CLiC with LAM-MPI (top) and the T3E
(bottom). Figure 15 shows the improvements for the dual
Xeon cluster using LAM-MPI (top) and ScaMPI (bottom).
For the parallel realization using ScaMPI a specific imple-
mentation with MPI_Gather() and MPI_Scatter() instead of
MPI_Allreduce() is shown in Figure 15 (bottom). The im-
provements are obtained for a large range of system sizes
using balanced grid layouts.

performance improvements of Jacobi iteration by orthogonal

group communication with 32 processors on Xeon cluster (LAM-MPI)
T T T T

Il row-wise (MPI_Allgather)
[column-wise (MPI_Allreduce)
[column-wise (MPI_Bcast)

||H LH II |8

12000 24000 36000 48000
system size n

performance improvement (in %)

72000

performance improvements of Jacobi iteration by orthogonal
group communication with 32 processors on Xeon cluster (ScaMPI)
T

Il row-wise (MPI_Allgather)
[column-wise (MPI_Gather)
[column-wise (MPI_Bcast)

Wil

12000 24000 36000 48000 60000
system size n

Figure 15: Performance improvements of the Jacobi iteration by

orthogonal group communication on the Xeon cluster with LAM-MPI

(top) and with ScaMPI (bottom).

performance improvement (in %)

3.2 Parallel Adams methods PAB und PABM

The parallel Adams methods are variants of general linear
methods for solving ordinary differential equations (ODEs)
y'(t) = £(t,y(t)) proposed in [17]. General linear methods
compute several stage values y.,; in each time step x which
correspond to numerical approximations of y.; = y(tx +
a;h) with abscissa vector (a;), i = 1, ..., k, and stepsize h =
tx —tw+1. The stage values of one time step are combined in
the vector Yi = (Yw,1, - ¥r,k); for an ODE system of size
n, this vector has size n - k. The computation in each step
is given by:

Yiri = RIDY.+h(SIDF(Y.)+h(TRDF(Yit1), (1)

for k = 1,2,.... The resulting methods have the ad-
vantage that the computations of the parallel stages within
each time step are completely independent from each other.
Strong data dependencies only occur at the end of each time
step. In a data parallel implementation of the PAB method,
the stage values are computed one after another with all
processors available. For a task parallel implementation,
the stage vectors are computed by independent sets of pro-

performance improvements of PAB-method
by orthogonal group communication with 96 processors on CLIC (LAM-MPI)
T

100 T T T T
group number / group size

90 Hl 2/48 7
Hl 3/32

80 Il 4/24 B
M b 1 I 6/16

70+ n M Il 8/12 1
L N | I 12/8

60H L [[16/6 il
[24/4
L L | 32/3

50 [14802 b

30 b

performance improvements (in %)

20t 1

10 b
0 11 L1 1] Ll
5000 20000 45000 80000 180000
system size n
performance improvements of PABM-method
by orthogonal group communication with 96 processors on CLiC (LAM-MPI)
100 T T T T T
group number / group size
90 Hl 2/48 1
Hl 3/32
< 80 m Il 4/24 B
b . L Il 6/16
< 70k L b rn--| I 8/12 il
£ ; I I 1218
UEJ 60H L L | 16/6 i
9] [24/14
s ol i 323| |
g% I] 4812
8 40p] 1
c
£
5 307 b
€
[
= 20 1
10 b

45000 80000 180000
system size n

5000 20000
Figure 16: Performance improvements of data parallel PAB-
method (top) and PABM-method (bottom) by orthogonal group
communication on the CLiC (LAM-MPI).

cessors that work concurrently to each other.

We consider an explicit PAB version and an implicit
PABM version of the methods. The implicit methods use
fix-point iteration with the PAB method as predictor. As
application, an ODE system has been used that result from
the spatial discretization of a reaction diffusion equation.
This is a sparse ODE system, i.e., the evaluation time of
one component of f is constant. We consider a data par-
allel, a orthogonal data parallel, a task parallel and a or-
thogonal task parallel implementation for varying processor
numbers and different system sizes. The orthogonal realiza-
tion of the data parallel implementation can be obtained as
described in Section 2.2. The original MPI communication
operation (MPI_Allgatherv()) is simply replaced by a corre-
sponding group-based operation. The program structure of
the original data parallel implementation is not rearranged.
The task parallel versions require a complete reorganization
of the code, but result in a small additional improvement
compared to the orthogonal realization of the data parallel
version.

Figures 16 and 17 show the performance improvements
obtained for the PAB and PABM methods by a 2D orthogo-

performance improvements of PAB-method
by orthogonal group communication with 96 processors on Cray T3E-1200

100 T T T T T T T
group number /:group size

90} Hl 2/48 B
Hl 3/32

sol Hl 4/24 4
Il 6/16

70k Il 8/12 i
[12/8
[16/6

60 244 |
1323
50 [1482

40

30

performance improvements (in %)

20

10

50 200 800 5000 20000 45000 80000
system size n

performance improvements of PABM-method
by orthogonal group communication with 96 processors on Cray T3E-1200

100 T T T T T T T
group number /- group size

90 Il 2/48 b
Hl 3/32

80+ Il 4/24 i
I 6/16

70r Il 8/12 i
[12/8

601 [16/6 i
[24/4
1323

50 1482)

40

30

performance improvements (in %)

20

10

50 200 8007 5000 20000 45000 80000
system size n

Figure 17: Performance improvements of data parallel PAB-
method (top) and PABM-method (bottom) by orthogonal group
communication for small system sizes with 96 processors on the Cray
T3E-1200.

nal realization of the communication operations on the CLiC
(LAM-MPI) and the T3E, respectively. The figures show
the improvements of the data parallel implementation with
orthogonal structure compared to the original data paral-
lel variant for different system sizes. Figure 17 shows the
PAB and PABM methods for small system sizes on the Cray
T3E, confirming the performance improvements of orthog-
onal communication operations for small message sizes in
isolation on this platform.

4. RELATED WORK

Related work comes from different research directions, in-
cluding programming models and software support for scien-
tific computing, parallel languages and libraries, and mixed
task and data parallelism [2, 16]. Many environments for
scientific computing are extensions to the HPF data paral-
lel language. A good overview can be found in [6]. The
HPF-2 standard supports the execution of tasks defined as
computations on subranges of arrays on processor groups
also defined as parts of the processor grid. Another exam-
ple is HPJava which adopts the data distribution concepts

of HPF but uses a high level SPMD programming model
with a fixed number of logical control threads and includes
collective communication operations encapsulated in a com-
munication library. A language description is given in [18].
The concept of processor groups is supported in the sense
that global data distributed over one process group can be
defined and that the program execution control can choose
one of the process groups to be active.

LPARX is a parallel programming system for the develop-
ment of dynamic, nonuniform scientific computations sup-
porting block-irregular data distributions [11]. KeLP ex-
tends LPARX to support the development of efficient pro-
grams for hierarchical parallel computers such as clusters of
SMPs [1, 6]. In comparison to our approach, LPARX and
KeLP are more directed towards the realization of irregular
grid computations whereas our approach is based on regu-
lar grids using different partitions of the same set of proces-
sors. KeLP has been extended to KeLP-HPF which uses an
SPMD program to coordinate multiple HPF tasks and, thus,
combines regular data parallel computations in HPF with a
coordination layer for irregular block-structured features on
one grid [13]. An API for adaptive mesh algorithms based
on LPARX is presented in [12].

MagPIE is a library of collective communication opera-
tions optimized for wide area systems [10, 9]. The under-
lying algorithms are designed so that a minimum amount
of data is transferred over slow links of a multilayer inter-
connect [3]. But because of the heterogeneity of the target
system, no orthogonal structures are used for the commu-
nication. MPICH-G2 [8] creates multilevel topology-aware
trees for collective communication operations for heteroge-
neous systems and computational grids [7], but again no
orthogonal structures are exploited.

5. CONCLUSION

In this paper, we have shown that the execution time
of MPI collective communication operations can be signifi-
cantly reduced by a restructuring of the communication op-
eration based on a hierarchical decomposition into phases
such that each phase realizes a part of the communication
operation. As platforms, we have used a Cray T3E and
a Beowulf cluster. On both platforms, large performance
improvements have been observed for optimized communi-
cation operations in isolation and also for entire application
programs using those communication operations. The or-
thogonal realization of collective communication operations
can be used to reduce scalability problems in data paral-
lel implementations by replacing the communication opera-
tions. This avoids a restructuring the entire communication
and computation structure of the application, thus reducing
the programming effort for parallel machines with a large
number of processors significantly.

Acknowledgment
We thank the NIC Jiilich for providing access to a T3E.

6. REFERENCES

[1] S.B. Baden and S.J. Fink. A Programming
Methodology for Dual-Tier Multicomputers. IEEE
Transactions on Software Engineering, 26(3):212-226,
2000.

[2] H. Bal and M. Haines. Approaches for Integrating
Task and Data Parallelism. IEEE Concurrency,
6(3):74-84, July-August 1998.

[3] H. Bal, A. Plaat, M. Bakker, P. Dozy, and R. Hofman.
Optimizing Parallel Applications for Wide-Area
Clusters. Proc. of IPPS/SPDP 98, pages 784-790,
1998.

[4] Scali / ScaMPI commercial MPI on
SCI implemetation. http://www.scali.com/.

[5] LAM/MPI Parallel Computing.
http://www.lam-mpi.org/.

[6] S.J. Fink. A Programming Model for Block-Structured
Scientific Calculations on SMP Clusters. PhD thesis,
University of California, San Diego, 1998.

[7] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp,
E. Lusk, and J. Bresnahan. Exploiting Hierarchy in
Parallel Computer Networks to Optimize Collective
Operation Performance. Proc. of IPDPS 2000, pages
377-386, 2000.

[8] N. T. Karonis, B. R. Toonen, and I. T. Foster.
MPICH-G2: A Grid-enabled implementation of the
Message Passing Interface. Journal of Parallel and
Distributing Computing, 63(5):551-563, 2003.

[9] T. Kielmann, H. E. Bal, and S. Gorlatch.
Bandwidth-efficient Collective Communication for
Clustered Wide Area Systems. Proc. of IPDPS, pages
492-499, 1999.

[10] T. Kielmann, R. Hofman, H. E. Bal, A. Plaat, and
R. Bhoedjang. MagPle: MPI’s collective
communication operations for clustered wide area
systems. ACM SIGPLAN Notices, 34(8):131-140,
1999.

[11] S.R. Kohn and S.B. Baden. Irregular Coarse-Grain
Data Parallelism under LPARX. Scientific
Programming, 5:185-201, 1995.

[12] S.R. Kohn and S.B. Baden. Parallel Software
Abstractions for Structured Adaptive Mesh Methods.
Journal of Parallel and Distributed Computing,
61(6):713-736, 2001.

[13] J. Merlin, S.Baden, St. Fink, and B. Chapman.
Multiple data parallelsim with HPF and KeLP. J.
Future Generation Computer Science, 15(3):393-405,
1999.

[14] MPICH-A Portable Implementation of MPI.
http://www-unix.mcs.anl.gov/mpi/mpich.

[15] T. Rauber, R. Reilein, and G. Riinger. ORT - A
Communication Library for Orthogonal Processor
Groups. In Proc. of the ACM/IEEE SC 2001. IEEE
Press, 2001.

[16] D. Skillicorn and D. Talia. Models and languages for
parallel computation. ACM Computing Surveys,
30(2):123-169, 1998.

[17] P.J. van der Houwen and E. Mesina. Parallel adams
methods. J. of Comp. and App. Mathematics,
101:153-165, 1999.

[18] G. Zhang, B. Carpenter, G.Fox, X. Li, and Y. Wen. A
high level SPMD programming model: HPspmd and
its Java language binding. Technical report, NPAC at
Syracuse University, 1998.

