Original published: T. Jakobs, M. Hofmann, and G. Riinger. Reducing the power consumption of matrix multiplications by vectorization. In
Proceedings of the 19th IEEE International Conference on Computational Science and Engineering (CSE 2016), pages 1-8. IEEE, August
2016. Online available at http://dx.doi.org/10.1109/CSE-EUC-DCABES.2016.187.

Reducing the Power Consumption of Matrix
Multiplications by Vectorization

Thomas Jakobs, Michael Hofmann, Gudula Riinger
Technische Universitdt Chemnitz
Department of Computer Science
Professorship of Practical Computer Science
E-mail: [thomas.jakobs, mhofma, ruenger] @informatik.tu-chemnitz.de

Abstract—The power consumption of programs and algo-
rithms is currently a very active research field. This includes
the investigation of the effect of different programming tech-
niques on power consumption. Some programming techniques
have already been studied intensively. However, there are
techniques that did not get as much attention as needed so
far. One of these techniques is the vectorization of programs,
which uses special operations to calculate several data in one
step. In this article, we investigate the effect of vectorization on
the power consumption and study several program versions of
dense matrix multiplication which combine vectorization with
other techniques, such as loop unrolling or compiler options.
We show that the use of vectorization is not only capable of
improving the performance but can also reduce the power and
energy consumption of programs.

I. INTRODUCTION

The power consumption of modern computer systems
gains more and more importance and is a main concern
especially in computing centers where the amount of energy
transferred to the center is a limiting factor in computations
and cooling. Considerations of energy and power savings
are already made during the design phase of the hardware
system. However, the behavior of software with respect to
power and energy is equally important. To study the energy
and power behavior of software, a general knowledge of the
behavior of different programming and design techniques is
required, which has been an active field of research during
the last years. A programming technique that did not get
much attention so far in recent research is the vectorization
of programs.

The use of vectorized algorithms is becoming increasingly
important in current computer systems. This is due to the
fact that for most processors the speed limit of the processor
has reached its maximum. To bypass this limit, multiproces-
sor systems were invented that can run different threads in
parallel on a set of cores. This leads to the performance
being limited by the number of cores and the suitability
of the program to be parallelized. Another approach to
execute programs faster is the use of the built-in SIMD
operations with which several data can be synchronously
calculated in one step. The modification of a program such
that it uses such SIMD operations is called vectorization.
The principles of vectorization are well known from vector
computers and more recently since the introduction of the

Pentium Processors with Multi Media Extension (MMX) and
its successor Streaming SIMD Extensions (SSE). Today, the
Advanced Vector Extensions (AVX) support vectors that can
hold up to 8 single precision floating point values which can
be processed in one step. This makes it possible to speed
up a synchronous calculation and leaves the possibilities of
multi-threading for asynchronous calculations.

The programming of SIMD units can either be done
with sequential code that is auto-vectorized by the compiler
or it can be programmed using compiler specific intrinsic
functions. The differences in performance achieved by the
two approaches are already known from other fields of
research, see [1f], [2]. In our work, among other things, we
investigate whether these differences also apply to the power
consumption of an algorithm.

The investigations are done for two Intel® processors,
of the Sandy Bridge and the Haswell architecture, and
the SIMD instructions AVX. As a typical example from
synchronous linear algebra algorithms, we have chosen the
matrix multiplication for dense matrices, which is a kernel in
many scientific simulation codes. Starting with a first basic
sequential algorithm, we provide two vectorized versions,
which are an auto-vectorized program version and a man-
ually vectorized program version using AVX intrinsics. In
addition, we apply loop unrolling in three different ways
resulting in three program versions for each basic version.
Moreover, different compiler optimization levels are used
and environmental features, such as processor frequency,
are changed. All these program versions have been studied
concerning their power and energy behavior. The goal is
to find out whether one or more of the presented program
code modifications reduce the consumption of energy and/or
power during execution time.

The rest of this article is structured as follows. Section [[I]
introduces the initial problem for matrix multiplication and
several program versions. Measurement results of energy
and power consumption for the program versions are pre-
sented and discussed in Section A brief overview over
related research is given in Section and Section
concludes the article.

http://dx.doi.org/10.1109/CSE-EUC-DCABES.2016.187

for(i < 1; stride 1) {
for(j < n; stride 8) {
Clilljl =0
CLil[j+7] = 0
for(k < m; stride 1) {
CLillj1 += A[i1[k] = B[kI[]]
CLIiTLj+7] += ALi1[k] * BIKI[j+7]

}
}
Listing 1: Basic algorithm for calculating a matrix
multiplication with unrolled loop body of 8 elements
(named Seq8 in the following).

for(i < 1; stride 1) {
for(j < n; stride 8) {

c0 = _mm256_setzero_ps ()

for(k < m; stride 1) {
a0 _mm256_broadcast_ss(A[i][k])
b0 _mm256_load_ps(B[k][]j])
t = _mm256_mul_ps (a0, b0)
c0 = _mm256_add_ps(t, c0)

}
_mm256_store_ps (C[i][j], c0)
}

Listing 2: Vectorized algorithm of the matrix multipli-
cation given in Listing [T] using intrinsic functions given
in Table |I| (named In8 in the following).

II. PROBLEM STATEMENT

In this article, we investigate whether the energy or power
consumption of an algorithm can be reduced by using
vectorization techniques. For our investigations, we use an
algorithm for a dense matrix multiplication given by the
following equation:

m

where it =1...1;j=1...n
and [,m,n € N

A. Program versions

Matrix multiplications are commonly used subroutines
in many algorithms of scientific computing, which makes
its studies widely interesting. We use the well known
optimization techniques loop unrolling in combination with
loop tiling to create different versions of the matrix multi-
plication. By loop unrolling the body of a loop is packed
several times into one new loop body within a loop with
adjusted loop counters. The advantage of loop unrolling is
that the effects of pipelining and caching can be utilized
in a more sophisticated way by the compiler. A basic
matrix multiplication algorithm with an unrolled loop body
is shown in Listing

[Intrinsic

Description

_mm?256_setzero_ps set elements of vector to O
_mm?256_broadcast_ss | load one element and copy it to all vector
elements

load 8 consecutively stored elements into
vector

multiply two vectors

add two vectors

multiply two vectors then add a third
store vector elements to 8 consecutive
memory positions

_mm?256_load_ps

_mm?256_mul_ps
_mm?256_add_ps
_mm?256_fmadd_ps
_mm?256_store_ps

Table 1: Overview of AVX intrinsic functions used and their
corresponding purpose.

[Algorithm | Sequential | Auto-vectorized [Intrinsic]
1x8 loop unrolling Seq8 Av8 In8
3x24 loop unrolling Seq24 Av24 In24

Table 2: The table shows the overview of the program
versions implemented. It also gives the names of the im-
plementations used in this article.

We compare a sequential, an auto-vectorized and an
intrinsic program version of the matrix multiplication. To
enforce the sequential (shown in Listing [I) and the auto-
vectorized program versions to be compiled entirely without
or with auto-vectorization respectively, we have used the
#pragma directives of the Intel® Compiler [3]]. These
#pragma directives are novector for the sequential ver-
sion and vector always for the auto-vectorized version.

The intrinsic code has been implemented using the Intel®
Compiler intrinsics as shown in Listing [2] Intrinsics rep-
resent special assembler commands in a function-wrapped
form. The specific intrinsic functions used in this article
are given in Table [l These intrinsic functions begin with a
specifier for their domain (mm256 for AVX) followed by a
specific name for a function and the data types used (e.g.
ps for float), see [3].

Table [2] gives the various program versions which result
from the different types of loop unrolling and introduces
their respective names used in this article. The loop unrolling
stages are shown in short names (e.g. 1x8), where the first
number represents the unrolling factor of the outermost loop
(1 < 1 in Listing[I) and the second factor represents the
second loop (j < n in Listing [T). These combinations are
each implemented as separately coded algorithms.

As an example for the combination of vectorization and
loop unrolling, Listing [3] shows the 3x24 unrolled algorithm
using intrinsic functions. Additionally, Figure [I] gives an
overview on how the use of loop unrolling creates a block-
wise pattern in the innermost loop. This program version
gives the ability to use loaded data for more than one
calculation of an intermediate result ¢;. In detail, one load
operation can be used for the calculation of three intermedi-
ate result values c¢;, which shifts the ratio of loaded vectors
to calculated vectors from 2:1 in the basic program version
of Listing [1| to a ratio of 2:3 (6 loads:9 results) in the 3x24

bo

b,

~-B0,71}B10,81..B10,151|B[0,161..BL0,23]B[0,24]..B[0,n]
R Co S &)
: c o T :
ax IA[0,0]: .A[0,7] A[0,8]..A[0,m] C3 C[0,0]..C 714CI[0,8]..C[0,15])|C[0,16]..C 0,23ﬂ_£[0,24]..C[0,n]
ax{:[A 1,01 .A[1,7] A[1,8]..A[1,m] 6 i(C[1,0]..C 71](CI1,81..C[1,15]|[C[1,16]..C[1,23]|C[1,24]..C[1,n]
TA[2,00: .A[2,7]1 A[2,8]..A[2,m] IC[2,01..C02,71)[C[2,8]..C12,15]|[C[2,16]..C[2,23]]C[2,24]..C[2,n]
WYER cfz,o7 777 T T
(o] Cg
All,0] C[L,0]

Figure 1: Schematic view of a dense matrix multiplication with the use of AVX-vectors (black boxes) containing 8 float
values. The single values of matrix A are copied (broadcast) into each of the vector elements. The blue dotted lines show
the operands of the innermost loop without loop unrolling. The red dotted lines highlight the operands of the innermost loop
in the 3x24 unrolled program version. This loop unrolling leads to a block-wise calculation of intermediate result values c¢; in

matrix C.
for(i < 1; stride 3) {
for(j < n; stride 24) {

c0 = _mm256_setzero_ps ()

CS: _mm256_setzero_ps ()

for(k < m; stride 1) {
a0 = _mm256_broadcast_ss(A[i][k])
al = _mm256_broadcast_ss(A[i+1][k])
a2 = _mm256_broadcast_ss(A[i+2][k])
b0 = _mm256_load_ps(B[k][j])
bl = _mm256_load_ps(B[k][]j+81])
b2 = _mm256_load_ps(B[k][j+16])
t = _mm256_mul_ps(a0, b0)
c0 = _mm256_add_ps(t, c0)
t = _mm256_mul_ps(a2, b2)
c8 = _mm256_add_ps(t, c8)

_mm256_store_ps (C[i][j], c0)

_mm256_store_ps(C[i+2][j+16], c8)

}
}

Listing 3: Vectorized algorithm using intrinsics for
block-wise calculation of a matrix multiplication
(named In24 in the following). The outer loop is
unrolled 3 times and the second loop is unrolled 24
times.

unrolled program version. Since calculation operations are
the desired effect of the program, whereas load and store
operations take up uncredited time, this shift increases the
utilization of used hardware for the matrix multiplication.
Since the 3x24 unrolling program version already uses all
of the 16 available AVX-registers a further unrolling is not
reasonable.

In addition to vectorization, we are further interested
in the influence of compiler optimizations, of different
frequencies and of different hardware architectures on the
power and energy consumption.

B. Execution environment and software

The experiments have been executed on a Linux Debian
utilizing kernel version 3.16.0 and additional modules for
the usage of Model Specific Registers (MSRs) and fre-
quency manipulation. In order to measure the pure effects
of the energy consumption of the matrix multiplication the
desktop manager has been disabled and all unnecessary
processes have been turned off. The Intel® Compiler icc
with additional flags —std=c++11 -restrict -xavx
has been used.

Program code that is compiled can be optimized by
the compiler in different ways. When implementing an
algorithm with untypical technology, such as vectorization,
the compiler might not be able to apply all optimizations
that can be applied to standard code. This may lead to a
difference in energy and power consumption of the pro-
gram version resulting from a different set of compiler
optimizations used. The interesting point is whether the
power consumption of a vectorized algorithm can be further
reduced by the use of a special optimization level. These
optimization levels are called from OO (no optimization) to
03 (aggressive optimization) according to the command line
arguments handed over to the compiler.

The execution of the implementations with different fre-
quencies is done by setting the CPU clock speed to a fixed
value. This can be done using so called governors provided
by the operating system and the frequency manipulation
module. One of the used governors is the userspace
governor that allows setting a fixed processor frequency
out of a predefined set of values. Additionally, dynamic
frequency governors can alter the frequency during the
runtime of a program. There are several governors available,
each trying to achieve a specific goal with its frequency
modifications. One example is the powersave governor

[Processor | Sandy Bridge [Haswell]

Level 3 Cache 8 MB 8 MB
of Cores 4 4

of Threads 8 8
Base Frequency 3,4 GHz 3,5 GHz
Turbo Frequency 3,8 GHz 3,9 GHz
Memory Bandwidth 21 GB/s 25,6 GB/s

Table 3: Brief specification overview of processors used.

[frequency [varying [max | dynamic |
variable matrix sizes v
fixed matrix size of 3360 v v v
Optimization Levels (00 - O3) v

Table 4: Overview of combinations for all implementations
of Table E] used for measuring.

which uses the frequency of the processor to execute the
programs with a low power consumption.

C. Utilized hardware

For the execution of the given implementations, we
have used two different Intel® architectures, which are an
17-2600 processor of the Sandy Bridge architecture and an
17-4770K of the Haswell architecture. We have chosen these
two processors, since they have different architectures but
are similar in their architectural properties which are given
in Table

The different architectures of the two processors also lead
to different AVX intrinsics available. More precisely, the
extension AVX2 is additionally available on the Haswell
processor. Using this extension, it is possible to use fused-
multiply-add (FMA) instructions, with which a multiplica-
tion and an addition can be done in one machine operation
rather than first multiplying, storing the intermediate result
and then adding another vector.

III. EXPERIMENT/MEASUREMENT

Intel® Running Average Power Limits (RAPL) is a well
known interface for measuring the energy and power con-
sumption of an Intel® CPU on software level [4]. It is used
in many applications especially to determine the impact
of software changes to the overall power consumption of
a computer system. Using the RAPL interface makes it
possible to read the values of energy consumption for the
computation units or for the whole CPU.

We have measured the energy consumption of the differ-
ent versions of a matrix multiplication under different condi-
tions. Each of the combinations has been run and measured
ten times and the mean value has been calculated and is
shown in the graphs. Additionally, the sample variance is
calculated and shown as error bar in the graphs.

The Intel® RAPL Interface is used to measure the energy
and the time consumption of the different implementations.
These energy values are then used to calculate the power

consumption values using the formula Power = %.

1600 T T T
Haswell Seq8
Haswell Av8
1500 - Haswell In8 7
Sandy Seq8
Sandy Av8
1400 _
= Sandy In8
[=
2 1300 e
o
£
3
1200 -
o
]
F 1100 - -
=
]
=
w
1000 -
900 - b
800 1 Lo 1 1 1 1

RN 25 % e % RONIESY
Frequency [100 * MHz]

Figure 2: Energy consumption of basic (8 times unrolled)
algorithms sequential, auto-vectorized and intrinsic for both
architectures depending on CPU frequency.

In the following, we show the power and energy consump-
tion with respect to different aspects, which are frequency
and architecture, auto-vectorization, loop unrolling, matrix
sizes, and compiler optimization levels. An overview of the
program versions that have been run is given in Table
We first consider the energy consumption depending on the
frequency.

A. Effects of vectorization on energy consumption

Figure [2] shows the energy consumption of the implemen-
tations given in Table[2]on both architectures. First, it can be
observed, that the execution on the Sandy Bridge architec-
ture uses less energy than on the Haswell architecture. On
each architecture, the auto-vectorized algorithm consumes
up to 7% less energy than the sequential algorithm. The
intrinsic algorithm consumes even less energy which adds up
to an energy saving of up to 15% compared to the sequential
implementation.

Figure (3| shows the energy consumption values for the
block-wise algorithms Seq24, Av24 and In24, which are
lower for all algorithms than the energy values in Figure [2]
The relation of the energy values of the different imple-
mentations remains the same as for the basic algorithm.
However, the differences are higher and the energy saving of
the auto-vectorized implementations can be up to 26% and
the energy saving of the intrinsic algorithm can be up to
65% compared to the Seq24 program version. This shows
that the consideration of optimization techniques, such as
loop unrolling and intrinsics, can save vast amounts of
energy. Additionally, the results show that the highest energy
saving can be achieved by using a medium value for the
frequency between the minimum and maximum frequency.
The optimum is reached for a frequency of 2.3 GHz for
the Haswell architecture and 2.5 GHz for the Sandy Bridge
architecture.

T L
Haswell Seq24 ——

Haswell Av24
25 - Haswell In24
Sandy Seq24

Sandy Av24

700 T T T
Haswell Seq2d ——
650 Haswell Av24 B
Haswell In24
600 Sandy Seq24 1
Sandy Av24
= 550 - Sandy In24 N
c
2 500 - b
a
§ asof R
[0}
3 - g
S 400
>
D 350 - b
]
=
w300 - b
250 |- b
200 b
150 1 L 1 1 1 1
¢ & ¥ % S % NS

Frequency [100 * MHz]

Figure 3: Energy consumption of block-wise (3x24 times
unrolled) algorithms sequential, auto-vectorized and intrin-
sic for both architectures depending on CPU frequency.

T T
Haswell Seq8
Haswell Av8
25 - Haswell In8
Sandy Seq8
Sandy Av8
Sandy In8

20 -

15

Power Consumption [J/s]

10 - b

5 | L 1 | | |
® % 286 % BN % RONE S

Frequency [100 * MHz]

Figure 4: Power consumption of basic (8 times unrolled)
algorithms sequential, auto-vectorized and intrinsic for both
architectures depending on CPU frequency.

The important question to ask here is: Is the energy
reduction only due to a shorter runtime or are there effects
taking place that additionally save energy? This question
will be answered in the following sections by investigating
the power consumption of the matrix multiplication with
respect to different influences.

B. Correlation of power consumption and frequency

In [5] and [6], it has already been shown that the power
consumption of a sequential algorithm can be significantly
reduced when it is executed with a lower CPU frequency.
These findings also apply to the use of vectorization
techniques. This is shown in Figures] and [5] in which
the sequential program versions show the same qualitative
behavior as the vectorized versions. The measurements
also show that the power consumption follows a convex

Sandy In24

20 - /l -

Power Consumption [J/s]
[
v
T
L

10/ b
e
5 I L1 I 1 I I

¢ & 256 % EN % LN
Frequency [100 * MHz]

Figure 5: Power consumption of block-wise (3x24 times un-
rolled) algorithms sequential, auto-vectorized and intrinsic
for both architectures depending on CPU frequency.

curve, leading to a higher power consumption for higher
frequencies. The overall measurements show that the power
consumption is about 70% lower for the execution with
the lowest frequency compared to the highest possible
frequency. Additional measurements show that the number
of Level 1 Cache Misses is nearly constant over the range of
all frequencies. Thus, the power saving of the algorithm with
lower frequencies is not resulting from a different number
of memory waits.

As the measurements shown in Figures [Z_f] and E] indicate,
the execution on a Haswell architecture in general consumes
more power. More precisely, the Sandy Bridge architecture
consumes about 10% less power when running on the same
frequency. On second glance, it is visible that the maximum
power both architectures consume at their maximum fre-
quency is nearly the same. This might follow from a design
decision possibly made for the Haswell architecture to limit
the frequency to a certain amount of power consumption.

With the launching of the Haswell architecture, also
a new subset of AVX commands became available. One
of the important new features are the FMA instructions
that process one addition and one multiplication in one
step. We have compared the FMA instruction against the
original AVX command-set, i.e. combining the add and
mul operation to one fmadd instruction. When comparing
the results, there are different outcomes for the basic and
the block-wise implementation.

For the basic implementation In8, there is no difference
when using FMA commands as shown in Figure [6] When
taking the energy consumption into account, it turns out to
be the same values, too. This can be due to the executed code
waiting for memory transfers, which in turn is limiting the
execution speed.

For the block-wise implementation In24 the measure-
ments in Figure [6] show that the use of FMA instructions

15 T T T T
In8 AVX ——

- I8 AVX2 ——
e In24 AVX
X 10F In24 AVX2 i
Z
[44]
c
@
£ st _
[+
o
o
f=
S
o
s o
3
"
=
]
(9]
§ - 1
2
o
o

10 | [| L |

¢ % 5% <0 <5 © I

Frequency [100 * MHz]

Figure 6: Power consumption intrinsic algorithms on Has-
well architecture using the AVX2 extension with FMA
instructions shown as percentage against the use of standard
AVX instructions in In8.

slightly increases the power consumption of the algorithm.
The energy consumption values for this scenario show that
the energy consumption is reduced by the use of the FMA
instructions. This implies that the faster execution of FMA
instructions saves slightly more time than energy.

C. Effect of vectorization techniques on power consumption

When comparing the auto-vectorization and intrinsic im-
plementations against the sequential implementations there
are multiple interesting differences. In Figure [] it is clearly
visible that the auto-vectorized implementation Av8 con-
sumes less power than the sequential version. For the Sandy
Bridge architecture, the intrinsic implementation In8 con-
sumes even less power than the auto-vectorized implemen-
tation. For the Haswell architecture, the intrinsic algorithm
In8 consumes nearly as much power as the sequential imple-
mentation. This difference may result because the algorithm
in Listing [2] is not fully optimized and the compiler can be
able to apply additional optimizations.

In comparison, the block-wise algorithms in Figure [3]
shows that the intrinsic implementation In24 consumes the
least power. In this case, for the auto-vectorized implementa-
tion Av24 on the Haswell architecture, there is still a power
saving against the sequential version. On the Sandy Bridge
architecture, the auto-vectorized implementation Av24 is
consuming even more power than the sequential implemen-
tation Seq24. This effect might indicate, that the different
optimizations that are applied by the compiler might also
influence the power consumption with a negative effect.

In summary, it is possible to reduce the power con-
sumption of an algorithm by up to 4% when using auto-
vectorization on the Haswell architecture. Even more power
can be saved if the implementation is done by using intrinsic
functions for a manual vectorization. This saving can be

up to 10% for both architectures.However, these findings
strongly depend on the architecture.

D. Influence of Loop Unrolling on power consumption

The Figures [] and [5 already provide the measurement
data for analyzing the effect of loop unrolling on the power
consumption of a program. In general, applying a higher
stage of loop unrolling reduces the power consumption of a
sequential algorithm.

For the auto-vectorized program versions, the differences
between different loop unrolling stages are lower than those
for the sequential algorithms. When executing on the Sandy
Bridge architecture, the obtained results are nearly the same
for all unrolling stages.

The power consumption of the intrinsic program ver-
sions with loop unrolling behaves qualitatively similar to
the sequential and auto-vectorized ones. For the Haswell
architecture, a higher loop unrolling stage also implies more
power saving. This is mostly visible with higher frequencies.
In total, using the block-wise 3x24 unrolling (In24) for
these loops can save up to 8% of total power consumption
compared to the basic program version. In contrast, the
execution on the Sandy Bridge architecture consumes up
to 6% more power with higher loop unrolling stages.

In general, it can be stated that the use of loop unrolling
can reduce the power consumption of the sequential and
vectorized algorithms.

E. Influence of varying matrix sizes on power consumption

A variable input size for the implementations is the matrix
size. Although the algorithms are capable of taking any
combination of size parameters, we have chosen quadratic
matrices of the same extension for our experiments. This
avoids of padding or inhomogeneous loop runs and, thus,
makes obtained results clearer. Since all parameters [, m and
n are identical, they are depicted as one value (i.e. aXa-axa
matrix size is simply shown as a).

The matrix size can influence the obtained results in
different ways. First, a matrix size that is not fully dividable
by the number of elements used in one iteration of the
innermost loop can lead to the need for padding. To avoid
this, we have chosen to use a stride of 48 for possible input
matrix sizes. This ensures that in none of the loop unrolling
stages, there is a need for padding, since 48 is dividable by
1 and 8, 2 and 16, and 3 and 24.

Choosing a matrix size that is small, reduces the runtime
of the matrix multiplication but also increases fluctuations
in measurement results. Choosing a matrix size that is large,
reduces the size of fluctuations but increases the runtime and
the probability of interference from the operating system.
For that reasons we have empirically chosen the matrix size
3360, which is as small as possible but still delivers steady
measurement results.

F. Effect of optimization levels on power consumption

For the measurements of the influence of compiler op-
timization levels on the power consumption, we have used

Runtime [s]

0 | |
2 %
Compiler Optimization Level

»

Figure 7: Runtimes of sequential, auto-vectorized and intrin-
sic program versions on Haswell architecture with frequency
governor powersave for different compiler optimization lev-
els.

the dynamic frequency controller powersave. The powersave
governor controls the frequency of the processor during
the runtime of the program to consume the least power.
Figure [/| shows that the runtimes of the program execution
for different compiler optimization levels are longer for a
lower optimization level and shorter for higher optimization
levels. Additionally, the influence of the optimization level
on the power consumption of the specific program version
is very small. This leads to the conclusion, that the gained
difference in power saving is vanishingly small and does not
influence the obtained results. For the experiments shown
before, we have used the compiler optimization level O3.

G. Summary

To depict optimal combinations of the program versions
shown before, Figure [8| shows the power consumption of
the different versions against their respective energy con-
sumption. This enables the direct comparison of the power
and energy consumption properties. Especially, Figure [§]
enables to search for a program version that delivers the
best trade-off for ones special needs. Since the runtime
of a program also increases from left to right, a program
delivering a good performance is located left. Additionally,
a program consuming less power is located on the lower
end of the figure. As an example for this the Haswell In24
execution consumes nearly the same amount of power as
the Sandy Bridge In8, while delivering higher performance
and consuming less energy. Another example might be the
comparison of Haswell Av24 and Sandy Bridge Av24: The
Haswell execution consumes less power, but the Sandy
Bridge execution consumes less energy. It is clear that
the Haswell In24 execution consumes the least power and
energy.

26.5 T T T T T T T T
Sandy Seq8

26

Sandy Av24 Hasw‘ell In8

% 255 - Sandy Av8 * ° 7
& Haswell Seq8
g 2 Sandy Seq24 B
E *Haswell Seq24

8 24.5 Haswell Av24 Hasw-ell Av8|
g

i 24 _Sandy In24 7

23.5 [Haswell In24 Sandy In8
. .

23 1 1 1 1 1 1 1 1 1

[> &
% % %

I
9 % < < <
O, (o) & <, >
> %9 Yo o, 4

Energy Consumption [J]

Figure 8: Power consumption of different program versions
on different hardware architectures depicted against their
respective energy consumption. the program versions Seq,
Av and In in their unrolled stages 1x8 and 3x24 executed on
a fixed frequency of 3.5 GHz on the Haswell architecture
and 3.7 GHz on the Sandy Bridge architecture.

IV. RELATED WORK

In recent times there has been much research on energy
efficiency of software. Especially, models for predicting the
power consumption for the execution of different program-
ming models have been introduced [S]-[7]. The focus of
these studies mainly lies on the execution of parallel and
concurrent programs. In our article, the parallelism is studied
in the form of the SIMD vector instructions.

Ibrahim et al. have shown in [8]] that vectorization can
influence the power consumption of an embedded system
based on a chip of Texas Instruments. However, they mainly
focused on the usage of different compiler optimizations
and their influence on the power consumption. On top of
that, they rechecked their results against a vectorized code
version. In our work, we are focusing on general purpose
processors and the direct impact of vectorization which
produces deviating results.

A brief analysis of the influence of vector operations on
general purpose CPUs was done by Cebridn et al. in [9].
Additionally, they extended their research on further hard-
ware platforms in [10]]. They used the PARSEC-benchmarks
blackscholes and streamcluster for their measurements.
These benchmarks showed the capability of saving power
when vectorizing them with intrinsics. For our research,
we wanted to isolate the vectorization from concurrency to
further investigate the influence of different optimizations
and environment features. For this reason, we are using a
handwritten algorithm, which we could modify easily.

Based on the performance of auto-vectorization in com-
parison to intrinsic vectorization, there are articles by Intel®
[1], [2], which show that the auto-vectorization of the
compiler is not capable of reaching the full performance

which can be achieved by intrinsic programming. This
performance gap can be narrowed by using special program-
ming paradigms to make the code easier understandable for
the compiler. We have evaluated if this performance gap also
applies for the power consumption and could show that the
performance gap is directly visible in power consumption,
too.

V. CONCLUSION

In this article, we have investigated the influence of
vectorization techniques on energy and power consumption
of dense matrix algorithms. We inspected the interrelation
between vectorization, compiler optimization levels, loop
unrolling, and other environmental influences, such as fre-
quency, input data size, and processor architecture. The
energy consumption of a program can be easily reduced
using performance aimed optimizations and executing the
program on a mid-level processor frequency. This results
out of the shorter execution time which is directly reflected
in energy saving.

We also have been able to show, that vectorization pro-
vides the ability to reduce the power consumption of a
program if it is implemented by using loop unrolling and
frequency control. In general, the power consumption of
both vectorized and sequential programs can be reduced by
up to 70%, when running on the lowest possible processor
frequency. In many cases, it is possible to reduce the power
consumption of algorithms with the use of vectorization
of up to 10% compared to a similar sequential version
for the same frequency. The manual vectorization of an
algorithm using compiler intrinsics saves more power than
auto-vectorization done by the compiler. The usage of loop
unrolling can alter the power consumption of an algorithm
both to the better or to the worse. The use of different
compiler optimization levels in our research did not lead
to a notable effect on power consumption. However, the
utilization of different hardware architectures results in up
to 10% lower power consumption values.

When applying the results of this article, one has to take
special care that the considered effects are not fully inde-
pendent and the list of influential factors is non-exhaustive.

ACKNOWLEDGMENT

This work was performed within the Federal Cluster of
Excellence EXC 1075 "MERGE Technologies for Multi-
functional Lightweight Structures” and supported by the
German Research Foundation (DFG). Financial support is
gratefully acknowledged.

REFERENCES

[1] C. Kim, N. Satish, J. Chhugani, H. Saito, R. Kr-
ishnaiyer, M. Smelyanskiy, M. Girkar, and P. Dubey,
“Closing the Ninja Performance Gap through Traditional

Programming and Compiler Technology,” 10 2013. [Online].

Available: |http://www.intel.com.br/content/dam/www/public/us/en/

documents/technology-briefs/intel-labs-closing-ninja- gap-paper.pdf

N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-

skiy, M. Girkar, and P. Dubey, “Can Traditional Programming Bridge

the Ninja Performance Gap for Parallel Computing Applications?”
in Proceedings of the 39th Annual International Symposium on

Computer Architecture.

Intel® Corporation, User and Reference Guide for the Intel C++

Compiler 15.0, 3 2015. [Online]. Available: https://software.intel.

com/en-us/compiler_15.0_ug_c

[4] ——, Intel® 64 and IA-32 Architectures Software Developers

Manual Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C, 9

2014. [Online]. Available: http://www.intel.com/content/www/us/en/

processors/architectures-software-developer-manuals.html

T. Rauber, G. Riinger, and M. Schwind, “Energy Measurement and

Prediction for Multi-Threaded Programs,” in 22nd High Performance

Computing Symposium 2014 (HPC 2014), Part of the SCS Spring

Simulation Conference, 2014.

T. Rauber, G. Riinger, M. Schwind, H. Xu, and S. Melzner, “Energy

measurement, modeling, and prediction for processors with frequency

scaling,” 2014.

[7]1 T. Rauber and G. Riinger, “Modeling and Analyzing the Energy Con-
sumption of Fork-Join-based Task Parallel Programs,” Concurrency
and Computation: Practice and Experience, vol. 27, no. 1.

[8] M. Ibrahim, M. Rupp, and A. Fahmy, “Code transformations and
SIMD impact on embedded software energy/power consumption,” in
International Conference on Computer Engineering Systems, 2009.
ICCES 2009., 2009.

[9] J. Cebridn, L. Natvig, and J. Meyer, “Improving Energy Efficiency
through Parallelization and Vectorization on Intel Core i5 and i7
Processors,” in 2012 SC Companion: High Performance Computing,
Networking, Storage and Analysis (SCC), 11 2012.

, “Performance and energy impact of parallelization and vector-

ization techniques in modern microprocessors,” Computing, vol. 96,

no. 12, 2014.

[2

—

[3

[t}

[5

—_

[6

=

[10]

http://www.intel.com.br/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-closing-ninja-gap-paper.pdf
http://www.intel.com.br/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-closing-ninja-gap-paper.pdf
https://software.intel.com/en-us/compiler_15.0_ug_c
https://software.intel.com/en-us/compiler_15.0_ug_c
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

	Introduction
	Problem statement
	Program versions
	Execution environment and software
	Utilized hardware

	Experiment/Measurement
	Effects of vectorization on energy consumption
	Correlation of power consumption and frequency
	Effect of vectorization techniques on power consumption
	Influence of Loop Unrolling on power consumption
	Influence of varying matrix sizes on power consumption
	Effect of optimization levels on power consumption
	Summary

	Related Work
	Conclusion
	References

