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Abstract

Complex simulation programs in science and engineering are often built up from
a diverse set of existing applications. The large variety of application codes and
their high computational demands lead to an increasing utilization of distributed
computing systems. Furthermore, the need for developing sustainable simula-
tion programs, especially with regard to ever increasing data sizes, requires
a profound flexibility such that application codes and hardware resources can
be easily replaced or extended. In this article, we propose a methodology for
building complex simulation programs for distributed computing systems. A
software library specifically designed to support a client-server-based develop-
ment of simulation program components is presented. An application example
for the simulation and optimization of lightweight structures in mechanical en-
gineering is used to demonstrate the approach.

Keywords: scientific computing, distributed simulations, data coupling,
parallel computing

1. Introduction

Today’s simulation programs in science and engineering are increasingly com-
plex and are often built up from already existing application codes which might
come from commercial or scientific sources. Since the existing application codes
are diverse in many aspects, such as the mathematical simulation method, the5

internally and externally available data structures, the programming language
and environment as well as the sequential or parallel hardware addressed, their
combination includes several challenges. In addition, the cooperation of the
application codes should usually be flexible in the sense that each specific sci-
entific or engineering problem might require a different combination of these10

codes. Naturally, building a specific simulation program that combines different
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application codes leads to a programming effort which is too large a burden for
a quick and productive use by the scientist interested in the specific scientific
question. Furthermore, the continuing trend towards multi-simulations as well
as the need for an efficient utilization of distributed computing resources and15

future ultrascale systems leads to great challenges for application programmers.
The goal of our work is to support the building of complex simulation

programs with great flexibility to ensure a sustainable development process.
We propose a component-based client-server programming model with which a
coarse-grained program structure can be specified. As an application example20

in mechanical engineering, we consider the optimization of lightweight struc-
tures within the project MERGE1. This complex simulation program includes
application codes for computational fluid dynamics (CFD) and finite element
methods (FEM), optimization codes, and customized programs to prepare the
input data for the simulations and to evaluate their results.25

For each application code, there might exist different variants which should
be interchangeable in the complex simulation program. An interchange might
be desirable when a specific functionality is required; for example, an FEM
code might be interchanged by an adaptive FEM code. The execution of the
simulation program should be flexibly distributed in a hardware setting with30

replaceable components. That means it should be possible to utilize both single
computers and distributed computing systems with sequential or parallel hard-
ware. To support these demands, we have designed a programming model in
which each application code is a component which provides its functionalities
as service and accesses other components as client.35

The proposed programming model requires a transformation of already ex-
isting application codes into codes that are able to act as clients and/or servers.
Such a transformation can be a tedious and time-consuming work. To support
the application programmer, we developed a library for Simulation Component
and Data Coupling (SCDC). Figure 1 gives an overview of the software and40

hardware environment with the SCDC library. The SCDC library provides
functionalities to set up and access application codes as clients and servers.
To support a flexibly distributed execution of the simulation components, the
SCDC library encapsulates all data exchange operations. Depending on the
distributed execution, these operations are mapped to appropriate data access45

methods, for example, through direct function calls or network communication.
Since the data sizes of simulation programs can be very large, the SCDC library
especially allows data exchanges without a limitation of size. Thus, our general
contribution is twofold. We propose a programming model for large modular
scientific simulation programs and we provide the SCDC library for the actual50

programming in such a model. This approach will lead to a more sustainable
development process for simulation programs by reducing their need for ad-hoc
interfaces and solutions that are only applicable for single use cases or platforms.

1MERGE Technologies for Multifunctional Lightweight Structures, http://www.
tu-chemnitz.de/merge
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Figure 1: Overview of the software and hardware environment for complex simulations with
the SCDC library.

The rest of this article is organized as follows. The programming model is
described in Sect. 2 and the SCDC library in Sect. 3. Section 4 demonstrates55

the proposed development process for an application example in mechanical
engineering. Section 5 discusses related work and Sect. 6 concludes the article.

2. Programming model for complex simulation programs

Advanced scientific or technical simulations, such as weather or atmospheric
simulations or material design simulations, require complex simulation programs60

comprising several specific simulations as sub-simulations. Usually, these sub-
simulations are developed in isolation by specialists with the appropriate knowl-
edge about the specific mathematics or algorithmic properties. From these basic
application codes, complex simulation programs are built.

2.1. Non-functional requirements for complex simulation programs65

Complex simulations in science and engineering are usually very specific and
assembled for a specific problem to be solved. Thus, a standard approach is
that the scientist designs the entire task, identifies subtasks to be performed by
existing application codes, e. g. an FEM code, plans the interactions of existing
and newly programmed parts, and finds strategies for storing and exchanging70

the data used or created. Furthermore, the execution of the simulation program
is adapted to a specific hardware platform to be used while keeping in mind the
hardware requirements of the different application codes.

The development of complex simulation programs is usually done by the
application programmer in several steps in a very individual and interactive75

way. Although, the experienced scientist can handle such a task, there are sev-
eral drawbacks with the approach. First, this is a tedious and time-consuming
work, which leads to a software that is only useful for a single scientist or re-
search group. The development process usually has to be repeated for each new
simulation program and if the problem to be solved or the hardware platform to80

be used changes significantly. Second, the development is strongly focused on
functional properties to get a single simulation program work. Non-functional
requirements, such as a reasonable flexibility of the simulation program, are
usually neglected.
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The intention of our work is to provide a methodology for a sustainable85

development of complex simulation programs. To achieve this goal, the simula-
tion code created has to be flexible in the sense that the scientist gets all the
variations he is otherwise used to implement in a manual and time-consuming
way. These variations include flexible combinations of basic application codes,
exchanges of basic application codes with similar functionality, diverse ways90

of storing data, and adaptations to and utilizations of different hardware plat-
forms. Thus, it will be necessary to support a flexible combination of simulation
components and a flexibly distributed execution on distributed platforms. The
development should be based on a programming model in which the scientist
can design the application in the way he is used to and at the same time, it95

should be possible to map the application into a running simulation code.

2.2. Designing the structure of complex simulation programs
We propose a programming model similar to component-based programming

in which a program consists of well-defined components hiding the internal im-
plementation and providing interfaces for the incoming or outgoing data. In our100

case, the basic application codes performing simulations or sub-simulations play
the role of components. In addition, there might be components for storing the
simulation data as well as for data handling, such as transformations or evalu-
ations. Furthermore, we assume that any kind of additional program control,
such as simulation loops, conditional executions, compositions of subprograms,105

or user interactions, is also represented by dedicated components. Since there
are no further obligations or limitations for the implementation of components,
this approach provides a great flexibility for the application programmer.

Given a set of components, a complex simulation program is built up in
a bottom-up method driven by the application to be designed. The result is110

a graph-like structure in which the nodes represent basic application codes or
other codes from the set of components and directed edges represent the data ex-
changes between them. Thus, the design of the structure of a complex simulation
program as well as the cooperation and coordination between its components
will be reduced to the underlying data flow. Whether or not a specific data115

flow between two components also represents a flow of control depends on the
specific role and implementation of the components. In this model, the control
flow is only a subset of the data flow in order to model situations in which, for
example, the simulation control flows from component A to component B, but
the data flow from A to a third component C where they are stored, processed120

further, or send to other components of the complex simulation program.
Figure 2 shows the graph of a simulation program example with four compo-

nents L, A, B, and E. The enumerated edges represent the data flow between
the components. The component L performs a simulation loop and uses data
transfers along the edges (1) and (2) to start the computations of the compo-125

nents A and B. The edges (3)–(5) represent data dependencies between the
compute components A and B and the evaluation component E. The final edge
(6) represents the data transfer of the evaluation result back to the component
L such that it can decide whether and how to continue the simulation loop.
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Figure 2: Data flow example for a simulation program consisting of four components.

2.3. Client-Server Interface130

For the implementation and coordination of the components, we use a client-
server model in which each component can play both the role of a server provid-
ing data and the role of a client requesting data from other components. This
data-oriented model allows the abstraction from the large variety of components
of a complex simulation program. The different tasks and purposes of compo-135

nents, such as executing an application code or storing or converting data, are
reduced to their common functionality of accepting and providing data. The
interactions between the different components are reduced to a common scheme
where active client components interact with passive server components.

Since many kinds of components might exists, the client-server interface140

is not implemented directly, but specified with a programming library to be
described in the next section. The library is used to implement different versions
of the components from which the appropriate one is chosen when the complex
simulation program is executed. The implementation version can be procedural
on one processor as well as parallel or distributed to utilize compute resources145

such as HPC clusters or servers. In the case that two components get data from
one another, the appropriate data access methods are used by the library.

The library provides functions to set up and run a component as a server as
well as to access other components as a client. Variations within the complex
simulation program will be implemented as separate server components. This150

includes variations, such as alternative application codes and hardware plat-
forms or integrating different data sources and stores. However, since a client
accesses all servers through the same library functions, the complex simulation
program can be flexibly changed without additional programming efforts.

2.4. Deriving the execution of a simulation run155

The graph structure described in Sect. 2.2 represents the data flow of a
complex simulation program. Even though the graph constitutes an order for
the data processing, it does not entail a unique order for the execution of the
components. Therefore, performing a simulation run requires further decisions
about the desired flow of control within the simulation program. We propose a160

request-driven invocation and execution of the components for the data-oriented
client-server model. In this approach, active client components request data
exchanges during their execution and passive server components react to these
requests. Thus, each edge of the data flow graph has to be implemented by
a request taking place between the two connected components. Two different165

implementations can be distinguished for each single edge of the data flow:
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Push-based For the push-based implementation, a directed edge from a com-
ponent X to a component Y is realized in such a way that the client compo-
nent X transfers its data to the server component Y . Thus, the component
X has to perform a request to which the component Y reacts, for example,170

by starting computations or by transferring its data to other components.

Pull-based For the pull-based implementation, a directed edge from a compo-
nent X to a component Y is realized in such a way that the client component
Y requests data from the server component X. Thus, the component Y has to
perform a request to which the component X reacts, for example, by starting175

computations or by requesting its data from other components.

Figure 3 shows pseudocode for the data flow example of Fig. 2 using both
push- and pull-based implementations. A data exchange is performed with the
Cmd function by a client component and answered with the Do-Cmd function
of a server component. The function Cmd(srv, cmd, inp) performs an arbitrary180

command cmd with input data inp on the server component srv and returns the
output data of the command. A function Do-Cmd(cmd, inp) is invoked on a
server component to perform the command cmd with the given input data inp.
Calling the Cmd function blocks until the corresponding Do-Cmd function is
finished by returning the output data of the command.185

It is assumed that all components are running at the same time, but the
Do-Cmd functions are only executed as reaction to calls of the Cmd function.
The component L represents an initially active client component that executes
a simulation loop (line 1). In each iteration, data exchanges according to the
edges connected to the component L are performed. First, data is transferred190

to the components A and B with a push-based implementation of the edges (1)
and (2) (lines 4–5). Afterwards, the result data is requested from the component
E with a pull-based implementation of the edge (6) (line 6).

The components A, B, and E react to requests by executing their Do-Cmd
functions. The data exchanges from the component L initiate the computations195

of the components A and B as asynchronous jobs (lines 4 and 5, respectively).
Thus, the client component L can finish their calls to the Cmd function and
continues its work while the computations of the components A and B are
performed. The components B and E request data from their predecessors
(line 4 of component B and lines 3–4 of component E). The components A200

and B react to these requests by waiting for the end of their computations to
return their results (lines 6–8 of component A and lines 7–9 of component B).
Furthermore, the component E reacts by evaluating the results obtained from
the components A and B and returns its results (line 6 of component E). This
data exchange finishes the last call to the Cmd function of the component L205

(line 6) such that it can continue with the simulation loop.

3. Simulation Component and Data Coupling library

The design of complex simulation programs defines several demands concern-
ing the actual implementation. This demands include the handling of different
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Component L Component E

1 while not finished do
2 id = ’XYZ’
3 prepare input inA and inB
4 Cmd(A, put, {id, inA})
5 Cmd(B, put, {id, inB})
6 outE = Cmd(E, get, {id, ∅})

1 function Do-Cmd(cmd, {id, d})
2 if cmd = get then
3 outA = Cmd(A, get, {id, ∅})
4 outB = Cmd(B, get, {id, ∅})
5 outE = Eval(outA, outB)
6 return outE

Component A Component B

1 function Do-Cmd(cmd, {id,
d})

2 if cmd = put then
3 start job id
4 outA = Comp(d)

5 return OK

6 if cmd = get then
7 wait for job id to finish
8 return outA

1 function Do-Cmd(cmd, {id, d})
2 if cmd = put then
3 start job id
4 outA = Cmd(A, get, {id,

∅})
5 outB = Comp(d, outA)

6 return OK

7 if cmd = get then
8 wait for job id to finish
9 return outB

Figure 3: Pseudocode for implementing the example components shown in Fig. 2.

data structures, the combination of components written in different languages210

and programming models, a flexible adaption to sequential or parallel hardware
as well as different kinds of data transfers. Most important are data transfers
without limitations of the data size and flexible recombinations of the compo-
nents to perform diverse simulation runs. To meet all these requirements, we
have designed a library for Simulation Component and Data Coupling (SCDC)215

which is based on the programming model described in the previous section.

3.1. Overview of SCDC Library design
The SCDC library provides the technical infrastructure for implementing the

components of the data-oriented client-server model. Since software components
of various kinds and purposes should be able to be integrated, we generalize them220

as services that can be accessed by clients. All interactions between components
will be mapped to data access operations between clients and services. Thus,
each component has to be prepared to act as an SCDC client that actively
accesses data and/or act as an SCDC service that passively provides data.

The data provided by services are generalized as datasets and each ser-225

vice can individually define the functionalities of its datasets. For example,
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the datasets of a storage service might represent data objects stored while the
datasets of a scientific simulation service might represent simulation runs. The
functionalities of datasets are utilized by executing commands on them. The
different kinds of datasets are managed by data providers whereas each service230

can have several data providers at the same time. To make an appropriate use
of a service, a client has to know about the existence of the service, the function-
alities of its datasets, and the format of the input and output data of dataset
commands. However, each client accesses the datasets of all services in an equal
way independent from aspects, such as how a service is implemented, where it235

is executed, and what data access methods are used. Services and datasets are
identified with an URI-based addressing scheme such that switching between
different services and datasets is achieved by changing only the URI address.

The SCDC library is used to implement the service functionalities of a com-
ponent. Each service has to specify how clients should be able to gain access,240

e. g. with direct function calls or through network communication. Further-
more, each service has to implement its datasets and functionalities through
data providers. The SCDC library includes data providers with predefined pur-
poses (e. g., for accessing the local file system or a MySQL database) as well
as generic data providers that execute arbitrary programs or user-defined hook245

functions. For example, to create a service from an existing application code,
the application programmer has to use the SCDC library to let the application
code or a dedicated wrapper program act as an SCDC service and configure a
generic data provider that executes the instructions to run the application code.

The SCDC library is implemented with C++, but provides a public C and250

Python interface for the integration into application codes which allow mod-
ifications of their source code. With these interfaces, the data access can be
performed directly through memory buffers provided to the library functions
while at the same time the underlying data exchange is mapped, for example,
to network communication. Additionally, the Python interface is used for wrap-255

ping closed-source (e. g., commercial) application codes that employ usually a
file-based data access. To provide such an application as a service, a dedicated
Python program will be used for setting up the service with the SCDC library,
executing the specific application code, and managing its input and output files.

3.2. SCDC Library functions260

The SCDC Library provides several functions for the application program-
mer to implement its components as SCDC clients and/or services.

3.2.1. Service functions for setting up data access methods
Implementing a software component as a service requires to set up the sup-

ported data access methods. Direct access is enabled as default and connects265

all commands executed by a client to direct function calls of a service. Further
connection-oriented access can be enabled with the following functions:

np = nodeport_open(conf, ...)
nodeport_close(np)

8



The nodeport_open function initializes a new access method specified with270

the configuration string conf and returns a handle np representing the access
method. Additional arguments might be given to pass specific configuration
parameters to the access method. The nodeport_close function release an
existing access method given by the handle np. Currently, the following access
methods can be selected with the configuration string:275

uds A Unix Domain Socket is set up for enabling accesses through inter-process
communication. An additional argument is used as identifier of the socket
within the local file system.

tcp A TCP socket is set up for enabling accesses through network communica-
tion. The additional arguments are used to (optionally) specify the network280

address and port to be used.

mpi Message-passing based on MPI is used for enabling accesses within dis-
tributed memory parallel programs. The additional arguments are used to
either specify an existing communicator to be used or to establish a connection
with the MPI operations MPI_Open_port and MPI_Comm_accept.285

The implementation of the SCDC library uses a self-designed communication
protocol to perform requests with the connection-oriented access methods. The
operations for establishing these connections and for sending and receiving data
are implemented in separate C++ classes that encapsulate the necessary UDS-,
TCP-, and MPI-related commands. After the initialization, each access method290

can be started and stopped temporarily with the following functions:

nodeport_start(np, mode)
nodeport_stop(np)

The mode parameter specifies whether the access method should be started
in a blocking way to keep the service running. Otherwise, the nodeport_start295

function returns immediately such that it is possible to enable further access
methods or to keep the service running by the application itself.

3.2.2. Service functions for setting up data providers
Data providers of a service component are set up with the following functions:

dp = dataprov_open(base_path, conf, ...)300

dataprov_close(dp)

The dataprov_open function initializes a new data provider specified with
the configuration string conf and returns a handle dp representing the data
provider. Additional arguments might be given to pass specific configuration
parameters to the data provider. Each data provider of a service is accessed by a305

client through its individual base path base_path within the URI-based address-
ing scheme. The dataprov_close function release an existing data provider
given by the handle dp. The functionality of a data provider depends strongly
on its type that is specified with the configuration string. Currently, the follow-
ing predefined data providers are supported:310
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fs Access to the local file system of a service is provided, whereas an additional
argument specifies the root directory. The corresponding datasets represent
the directories and the commands are used to navigate through the file system
and to access single files.

store A nonhierarchical folder-oriented storage is provided either within the lo-315

cal file system (store:fs) or a MySQL database (store:mysql). An additional
argument is used to specify either the storage directory or the database access
credentials. In both cases, the corresponding datasets represent the folders
and the commands are used to store and retrieve the data items of the folders.

relay An arbitrary mapping of the access through a path of the service to the320

URI address of another service is provided. Such a data provider might be
used, for example, to connect distributed services across distinct communica-
tion networks or to hide several back-end services behind a single front-end
service. Mapping accesses is also supported within a single service as well as
between several services in series. The corresponding datasets represent the325

target datasets of the mappings and support their individual commands. Ad-
ditional commands are provided to register or remove single mappings. Thus,
it is possible to modify the mappings locally from within a service component
as well as remotely through the access of another client or service component.

jobrun A job-oriented execution of arbitrary programs is provided. Additional330

arguments are used to specify the program and the maximum number of jobs
that can be executed in parallel. The corresponding datasets represent the
jobs and the commands are used to submit a job with its input data as well
as to wait for the completion of a job and to retrieve its output data.

jobrun_relay A specialized mapping for the job-oriented execution based on335

jobrun data providers is provided. This data provider supports the same
functionality as the relay data provider and can be used, for example, to
mediate the accesses to a large number of compute components through an
intermediate component. At the same time, the corresponding datasets and
commands perform the execution of jobs identical to a jobrun data provider.340

If a job is submitted without giving a path that selects a registered mapping,
then the job is assigned automatically to one of the registered jobrun data
providers (i. e., currently, in a round-robin way).

hook A mechanism for executing user-defined hook functions is provided when-
ever a dataset is accessed. An additional argument is used to specify the hook345

functions, whereas it is mandatory to specify at least a hook function to exe-
cute dataset commands. Further hook functions for creating and destroying
datasets and for initializing and releasing the data provider can be (option-
ally) given. The functionalities of the corresponding datasets and commands
are solely defined by the hook functions and can be used, for example, to in-350

tegrate application specific codes or auxiliary tools, such as data conversions.
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Despite their different functionalities, all data providers support a common
way for accessing their configuration parameters as special datasets through
the path <base_path>/CONFIG. These special datasets provide commands for
listing the configuration parameters as well as for retrieving or setting the pa-355

rameter values. Thus, the client functions for accessing datasets with any of the
supported access method can also be used configure of a data provider.

3.2.3. Client functions for accessing datasets
The following client functions are used to access the datasets of a service:

ds = dataset_open(uri)360

dataset_cmd(ds, cmd, input, output)
dataset_close(ds)

The dataset_open function opens a dataset given by an URI address uri
and returns a handle ds to the dataset. An URI address has the following for-
mat: <scheme>://<authority>/<path>. The data access method is specified365

by <scheme>://<authority> and the dataset is selected by <path>. A first
part of <path> represents the base path that selects a specific data provider
and the remaining second part of <path> identifies a specific dataset of this
data provider. Currently, the following types for <scheme> are supported to
choose between the data access methods described in Sect. 3.2.1:370

scdc Access datasets within the same software component through direct func-
tion calls. The <authority> has to be empty.

scdc+uds Access datasets of software components executed on the same com-
pute node through inter-process communication with Unix Domain sockets.
The socket within the local file system is identified by <authority>.375

scdc+tcp Access datasets of software components executed on different com-
pute nodes through network communication with TCP sockets. The hostname
of the compute node and (optionally) the port is specified by <authority>.

scdc+mpi Access datasets within a distributed memory parallel program with
message-passing based on MPI. The <authority> specifies either an address380

of an existing communicator or a port name to establish a connection with
the MPI operation MPI_Comm_connect.

The dataset_cmd function is used to execute an command string cmd with a
given dataset ds. A command string always consists of a command name with
optional parameters, whereas it depends on the data provider of the dataset385

which commands are supported. The predefined data providers described in the
previous subsection implement their functionalities with the commands “put”,
“get”, “cd”, “rm”, and “ls”. In contrast, the hook data provider supports arbitrary
command names and passes them to the given hook function. After finishing
the work with a dataset, the dataset_close function is used to close it.390
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Figure 4: Bandwidth and latency results achieved with direct function calls (scdc), Unix
Domain Sockets (scdc+uds), TCP sockets (scdc+tcp), and message-passing with MPI
(scdc+mpi).

The input data for a command is represented by a dataset_input object
which contains a memory buffer and a format identifier that can be freely cho-
sen. Additionally, the object contains a reference to a function that can be
specified by the programmer to supply a continuous stream of input data. This
function is called inside the dataset_cmd function when new input data can be395

processed. The same functionality is provided for the output data of a command
represented by a dataset_output object. In this case, the dataset_cmd func-
tion returns a reference to a function that can be used by the programmer to
process a continuous stream of output data. This stream-oriented data handling
supports input and output data without limitations of their size.400

3.3. Performance results for data exchanges
A benchmark program consisting of two components implemented in Python

was used to compare the performance of the different data access methods sup-
ported by the SCDC library. The service component uses a predefined bench-
mark data provider that supports the generation of arbitrarily large zero out-405

put data with the “get” command. The client component accesses this service
to retrieve 109 bytes output for bandwidth measurements and 1000 times 1
byte output for latency measurements. Two compute nodes connect with an
1 Gigabit Ethernet and a 10 Gigabit InfiniBand connection are used. Data
exchanges within a node through direct function calls are achieved by integrat-410

ing the benchmark data provider into the client component. TCP and MPI
communication within a node are performed through shared memory by the
operating system and the MPI implementation. Communication between two
nodes uses the Ethernet connection for TCP and the InfiniBand connection for
MPI. Switching the data access methods is achieved through the URI address415

used by the client component without additional programming efforts.
Fig. 4 shows bandwidth and latency results for data exchanges within a node

and between two nodes using the different data access methods described in the
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previous subsection. Average results of 10 measurements are shown, whereas the
relative standard deviation was less than 4%. The bandwidth achieved with di-420

rect function calls corresponds to about 86% of the performance achieved for
generating zeros with the memset operation. The UDS method is faster than
TCP and MPI, thus showing the advantages of supporting a method dedicated
to inter-process communication within a single node. The bandwidth between
two nodes with TCP corresponds to about 94% of the maximum bandwidth of 1425

Gigabit. In contrast, MPI achieves only about 315 MB/s while a dedicated MPI
benchmark program could achieved about 845MB/s. However, since the imple-
mentation of the SCDC library has not yet been optimized for performance,
there might be still opportunities for performance improvements left.

Using direct function calls leads to the lowest latency results and represents430

the minimum overhead introduced by the SCDC library. The latency with MPI
is lower than with UDS and TCP, thus benefiting from its HPC optimization.
While the latency with MPI is about the same within a node and between two
nodes, the latency with TCP increases by a factor of about 2.4. In general, the
results demonstrate the individual advantages of the different methods currently435

supported. Even though supporting only TCP as a general method for all
data accesses would be functionally sufficient, dedicated methods such as direct
function calls and MPI might be strongly required for HPC applications.

3.4. Discussion of the properties of the SCDC library
The SCDC library follows an application-independent approach without any440

domain-specific data types or tools. The underlying generic data model consists
of data providers, datasets, and plain input and output data with a free for-
mat identifier. By defining the data objects and functionalities represented by
datasets, the application programmer can flexibly adapt this model to its appli-
cation area. Existing tools and libraries for domain-specific tasks, such as data445

interpolation or domain decomposition, have to be integrated individually with
hook data providers. Nevertheless, it is also possible to extend the C++-based
implementation of the SCDC library with new predefined data providers.

The SCDC library integrates a diverse set of data access methods, from
direct function calls and memory accesses to network-based communication.450

However, switching between different access methods does not require addi-
tional programming efforts, thus supporting a flexibly distributed execution of
the software components. The results shown in Sect. 3.3 demonstrate the in-
dividual performance of the different access methods with the SCDC library.
Furthermore, the predefined relay data provider (see Sect. 3.2.2) can be used as455

a bridge between any of the supported access methods.
The API of the SCDC library uses configuration strings and functions with

variable arguments to integrate a diverse set of methods and techniques behind
a common interface. Only a small number of functions is used while at the
same time, the library can be flexibly extended with new data access methods460

and data providers without breaking the existing interface. Neither a static
nor any other kind of global configuration is required to set up and perform
data exchanges between different software components. Instead, each software
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component can set up and modify its data access methods and data providers
dynamically at runtime. Furthermore, by accessing the configuration parame-465

ters of data providers as special datasets, each component can also be modified
remotely by other components. This allows, for example, to switch the execu-
tion of simulation jobs with a jobrun data provider transparently from a local
compute node to multiple worker nodes behind a jobrun_relay data provider
and to let these worker nodes register themselves autonomously at the relay.470

The proposed method for building complex simulations with the SCDC li-
brary aims to improve the sustainability of the application development process.
Usually, this is achieved by introducing a fixed programming interface to increase
the reusability of autonomously developed software components. Our approach
focuses instead on the development of applications that are better maintainable475

and modifiable, for example, by flexibly replacing single software components
or executing them on distributed computing resources. These goals are further
supported by the lightweight library approach that is less invasive to exist-
ing application codes and does not involve extensive runtime environments or
mandatory dependencies to other software packages. Each data access method480

and each predefined data provider can be individually disabled if prerequisites
(e. g., support for MPI or MySQL) are missing. An optional tracing of output
about the behavior of each software component is provided for debugging.

The presented approach is suitable for scientific simulations in many aspects:
It provides the flexibility of a service-oriented approach, but omits the usage of485

complex development frameworks or middlewares that introduce performance
overheads or rely on programming languages and software platforms that are
not appropriate for scientific simulations. Instead, a programming library is
provided which easily coexists with other programming libraries common in sci-
entific HPC applications. The efficient transfer of large data sets is supported490

based on an inherent stream-oriented processing of unlimited-size data that is
not restricted by intermediate buffers. The SCDC library can be used for vari-
ous kinds of scientific simulation components, e. g. sequential and parallel codes,
interactive user programs and non-interactive compute programs, for the wrap-
ping of closed-source applications and directly in application codes. Finally, the495

Python interface provides programming support for a scripting language that is
widely used in scientific computing and the jobrun data provider is specifically
designed to ease the distributed execution of compute-intensive simulations.

4. Mechanical engineering application example

The simulation and optimization of lightweight structures is used as an ap-500

plication example for a complex simulation program consisting of different ap-
plication codes. Furthermore, the variety of the applications codes and the
high computational demands of the simulations require an efficient utilization
of distributed computing platforms. In the following, the optimization process
and its software components are described. The necessary development steps505

for building the overall simulation program are demonstrated and performance
results for a distributed execution with different computing resources are shown.
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Figure 5: Overview of the optimization process.

4.1. Simulation and optimization of lightweight structures
The goal of the considered simulation program is the optimization of man-

ufacturing parameters for lightweight structures. Figure 5 gives an overview of510

the optimization process. Each optimization run starts with an optimization
problem that specifies the geometry of the structure, the objective function and
constraints for the optimization, and parameters, for example, about the materi-
als, the manufacturing process, and the operating load cases. The optimization
method is implemented within a separate software component that executes an515

optimization loop. In each iteration, the optimization method selects specific
values for the parameters to be optimized, starts the simulations, and evaluates
the objective function to decide whether the optimization is finished or not.

The manufacturing by injection molding is simulated with a computational
fluid dynamics (CFD) application. The application simulates the injection of520

molten plastic into a mold and determines the distribution of fillers, such as
glass and carbon fibers, that are mixed in to improve the mechanical properties.
We employ a customized open-source CFD application based on OpenFOAM, a
C++ library implementing the finite volume method [1]. However, our general
optimization process will also be capable of employing alternative simulations,525

for example, with specialized closed-source applications [2]. Input data of the
simulation are the structure geometry, the material properties, and the parame-
ters of the injection molding process. Simulation results are the fiber orientation
and the temperature distribution within the structure.

The cooling of the structure and the operating load cases are simulated with a530

finite element method (FEM) application. The cooling leads to residual stresses
within the material and to a shrinking of the structure. The load case simu-
lation results in displacements and stresses of the structure. Both simulations
are performed with an in-house adaptive 3D FEM application [3]. However, our
general optimization process will also be capable of employing alternative sim-535

ulations with commercial closed-source FEM applications, such as ANSYS or
Abaqus. Input data of the simulation are the structure geometry, the material
properties, and the load case to simulate. Additionally, the fiber orientation
and the temperature distribution calculated by the CFD simulation are used.
Simulation results are the displacement field and the resulting stresses, which540

will be used for evaluating the objective function of the optimization process.
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4.2. Building the complex simulation program
Based on the programming model presented in Sect. 2 and on the SCDC

library presented in Sect. 3, the complex simulation program is built in several
development steps. The development starts with a given simulation process545

describing the basic tasks that have to be performed consecutively or concur-
rently. The granularity of the tasks has to be chosen such that each task will
finally represent a separate software component. For the application example,
the given simulation process is shown in Fig. 5.

Definition of the data flow between the components:. Each potential data ex-550

change between two components has to be represented by an edge within the
data flow graph. For the application example, the resulting data flow corre-
sponds to the graph shown in Fig. 2 with the components L, A, B, and E rep-
resenting the optimization method, the CFD application, the FEM application,
and the objective function evaluation, respectively.555

Specification of control structures for each component:. Within the application
example, the optimization method is an active client component while all other
components will be mainly passive server components that react only to re-
quests. This corresponds to the pseudocode shown in Fig. 3, but with the while
loop of the component L replaced by the loop of the optimization method.560

Assignment of client-server roles for each data flow edge:. This step defines the
control flow within the simulation program and corresponds to the selection
of push- or pull-based implementations as described in Sect. 2.4. For the ap-
plication example, the roles are chosen in the same way as for the example in
Sect. 2.4. The optimization method pushes the input data to the CFD and FEM565

applications to start their computations as asynchronous jobs. The FEM appli-
cation, the objective function evaluation, and the optimization method pull the
results from their predecessors and thus are blocked until this data is received.

Implementation with the SCDC library:. The behavior derived for each com-
ponent is implemented in Python using the SCDC library. The optimization570

method uses only client functions for accessing the datasets provided by other
components. Each of the other three components is implemented as a service
with a data provider of type “jobrun”. This implementation requires less pro-
gramming effort, because the simulation applications still use the same file-based
data input and output as if they were executed manually. However, transferring575

the input and output data as well as executing the applications is performed
automatically by the SCDC library. The library provides auxiliary functions for
the efficient reading and writing of files and directories during a transfer. As the
Python interface of the SCDC library is only a wrapper around its C interface,
there are no significant performance differences expected. In future works, it580

is planned to redirect the file I/O of commercial closed-source applications by
intercepting system calls or with a dedicated (e. g., FUSE-based) file system.

Figure 6 shows the Python code for implementing the component A using
the SCDC library. In line 2, a jobrun data provider is set up for the base
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1 import * from scdc
2 dp = dataprov_open("A", "jobrun", "do_cfd.sh", "<workdir >")
3 dataset_cmd(DATASET_NULL ,
4 "scdc :///A/CONFIG put max_parallel_jobs 4", None , None)
5 np = nodeport_open("tcp")
6 nodeport_start(np , NODEPORT_START_ASYNC_UNTIL_CANCEL)
7 raw_input("Press <ENTER > to quit\n")
8 nodeport_stop(np)
9 nodeport_close(np)

10 dataprov_close(dp)

Figure 6: Python code for setting up and running the component A.

path “A”. For each submitted job, the do_cfd.sh script is used to execute the585

CFD application within a subdirectory of <workdir>. Separate processes for
executing the script are created to run several jobs in parallel. The maximum
number of parallel jobs is set in line 3 by accessing the special dataset of the
configuration parameters. The dataset DATASET_NULL represents a shortcut that
omits the opening of a dataset by using the URI address from the start of the590

command string. In lines 5–6, access through network communication with
TCP sockets is set up and the corresponding TCP server is started in a non-
blocking way. Thus, it is necessary to keep the component running (line 7).
Finally, the TCP server and the data provider are disabled (lines 8–10). The
Python code will be running during the whole execution together with a separate595

thread created by the jobrun data provider inside the SCDC library. This
thread dynamically launches the CFD application with the do_cfd.sh script
whenever a new simulation job can be executed. Alternatively, it is also possible
to implement the do_cfd.sh script as a Python function or to implement the
component in C to omit the use of scripts.600

Distributed execution:. Executing the complex simulation program on a dis-
tributed computing system requires to start the components once on their re-
spective computing resources interactively by the user and to chose the corre-
sponding URI addresses for accessing the datasets of the distributed compo-
nents. The software components have to be deployed manually and all involved605

applications codes, such as the CFD application started by the do_cfd.sh script,
have to be installed. To distribute the execution of the simulation applications
among different computing resources, the components A and B are set up and
started on several compute nodes. In this case, the component L can select the
compute node for the execution of each simulation job through the URI address.610

4.3. Performance results for local and distributed executions
We have implemented the application example as described in the previous

subsection based on the SCDC library. The implementation is simplified in such
a way, that both the optimization method and the objective function evaluation
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Figure 7: Runtime per simulation job for the local and distributed execution of CFD and
FEM simulations on the desktop PC and up to four compute nodes.

are integrated in a single loop component L. This component creates a num-615

ber of simulation jobs, executes these jobs on the available compute resources,
and gathers the simulation results. Each job consists of an OpenFOAM CFD
simulation performed by a component A and an adaptive 3D FEM simulation
performed by a component B. Since the FEM simulation uses the results of the
CFD simulation, the component B retrieves the data from the component A be-620

fore it starts the CFD simulation. All simulation jobs are independent from each
other and thus can be executed in parallel. This represents use cases where large
numbers of independent simulations are performed with different parameters,
for example, for parameter studies or complex optimization problems.

The loop component L represents an SCDC client that is executed on a desk-625

top PC with a 4-core Intel Core i7-3770 processor with 3.40 GHz and 8 GiB
main memory. The components A and B represent SCDC services that are exe-
cuted either on the desktop PC or on up to four dedicated compute nodes. Each
compute node has two 6-core Intel Xeon X5650 processors with 2.67 GHz and
12 GiB main memory. Executing the CFD simulation and the FEM simulation630

is provided by data providers of type jobrun that are available on the desktop
PC as well as on all compute nodes. The desktop PC executes all simulations
sequentially while each compute node executes up to six CFD simulations and
six FEM simulations at the same time. Furthermore, the simulations were per-
formed with their sequential program variants, thus using only one core per635

program execution. If only the desktop PC is used, then all components are
implemented within a single program and all accesses between clients and ser-
vices within the SCDC library are mapped to direct function calls. Otherwise,
the accesses are performed through network communication with TCP sockets.
Switching between a local or distributed execution does not involve additional640

programming efforts and is solely achieved by specifying different URI addresses
for the target services executing the simulation jobs.

Figure 7 shows runtimes per job for the local and distributed execution of the
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CFD and FEM simulations on the desktop PC and up to four compute nodes. A
total number of four simulation jobs was used for the sequential executions and645

four jobs per available core were used for the parallel execution (i. e., 48 jobs for
one compute node with 12 cores). For the sequential execution, the desktop PC
achieves a smaller runtime than the compute node due to its higher processor
speed. The major differences in runtime (i. e., about 26 seconds) are caused by
CFD simulation while the differences for the FEM simulation are significantly650

smaller (i. e., about 2 seconds). Performing the simulations in parallel with
one compute node decreases the runtime only by about a factor of seven. This
can attributed to the fairly low number of simulation jobs per core and to the
sharing of limited resources, such as memory and I/O bandwidths, by all cores.
Furthermore, the dependencies between the CFD and FEM simulation jobs lead655

to significant waiting times until the first FEM simulation can be performed.
Reducing these waiting times could be achieved with an improved job scheduling
and will be considered within the next development steps towards a performance
optimization. The usage of additional compute nodes leads to an almost perfect
scaling in comparison to the parallel execution with one compute node, i. e. using660

four compute nodes decreases the runtime by about a factor of four. Potential
waiting times due to the sequential starting of a large number of simulation jobs
by the loop component L are reduced by using a round-robin scheme for the
distribution of jobs to compute nodes.

5. Related work665

The development of complex simulations that capture multiple physical pro-
cesses is supported by a vast number of domain-specific and generic frame-
works [4]. Environmental research is one of the most prominent areas for the
coupling of simulation models, as it involves models from different disciplines,
such as atmospheric sciences, hydrology, geology, and ecology. The Earth Sys-670

tem Modeling Framework [5] represents a component-based coupling framework
for earth system simulations composed of separate atmosphere and surface mod-
els. Building complex simulations with these frameworks is achieved by connect-
ing components through fixed model-specific interfaces. These approaches lead
to single monolithic applications and usually require substantial modifications675

to adapt existing application codes. The OASIS framework [6] supports the cou-
pling of individual application codes with a programming interface that requires
only minor modifications to existing application codes. A separate communi-
cation library is used to encapsulate the data exchange operations. The SCDC
library shares the support for individual application codes and the encapsulation680

of data exchanges, but is independent from specific simulation models.
The MUSIC framework [7] introduces a standard API for data exchanges of

neuronal network simulators to increase their interoperability and reusability.
The C++-based programming framework distinguishes between a setup phase
that specifies the mapping and exchange of data and a runtime phase that685

advances the simulation. Glue code is provided to perform the data exchanges
with MPI. Thus, all MUSIC applications are based on MPI, have to be started at
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the same time, and are restricted to static data exchange pattern. In contrast,
the SCDC library supports data exchanges through different communication
methods, autonomously started applications, and dynamic data exchanges.690

The Model Coupling Toolkit (MCT) [8] generalizes the concept of model
coupling for applications from different areas. The Fortran-based programming
framework provides application-specific data structures and operations imple-
mented with MPI and, thus, has similar restrictions as the MUSIC framework.
MCT and other frameworks described so far provide a large set of application-695

specific tools for common tasks, such as mesh or grid data management, data
interpolation and transformation, domain decomposition, data storage, and I/O.
However, the usage of these tools is often very invasive to existing application
codes. In contrast, the SCDC library is less invasive to existing application
codes as it is limited to their data exchanges and to wrapping them as services700

executed in their preferred software and hardware environment. Furthermore,
the tools provided by the SCDC library target at application-independent tasks,
such as job execution, data storage, and plain data transfers.

The Multiscale Coupling Library and Environment (MUSCLE 2) [9] is a soft-
ware infrastructure for multiscale simulations. Within the Multiscale Modeling705

and Simulation Framework [10], MUSCLE 2 is used for the distributed exe-
cution of applications from areas, such as biomedical physics, nano materials,
and hydrology. MUSCLE 2 consists of a java-based runtime environment with
one global Simulation Manager and one or more Local Managers for starting
instances of submodels and for performing data exchanges between submodels.710

The SCDC library also targets at using distributed resources, but omits the
usage of a statically defined coupling model as well as the introduction of an
entire runtime environment. Instead, it is designed to be a lightweight library
approach that provides dynamic data exchanges between flexibly distributed
components while maintaining their autonomous execution.715

Coupling via an I/O infrastructure represents a low-level alternative to model
coupling. Specialized communication libraries, such as PSMILe from the OA-
SIS framework [6], the parallel coupler PALM [11], or the Typed Data Transfer
(TDT) library [12] provide operations for data exchanges between parallel soft-
ware components. Besides the differences described so far, our approach differs720

in several ways from the existing frameworks and libraries:

• Data exchanges within the presented approaches use a two-sided communica-
tion model, where operations, such as put/get or send/receive, have to match
each other. Our approach uses a one-sided service-oriented model, where data
exchanges are the input and output of operations invoked on a target process.725

• None of the existing approaches supports the coupling through direct function
calls. Data exchanges with PSMILe, MUSIC, and MCT are performed solely
with MPI. PALM uses MPI and has support for IP-based communication,
but only through a separate API and for the main purpose of coupling appli-
cations that use different MPI implementations. The TDT library supports730

MPI and TCP/IP, but uses different APIs to establish the connections and
does not support relaying the communication between different connections.
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MUSCLE 2 uses message-passing based on shared memory and TCP/IP and
requires dedicated proxy daemons to connect distributed resources. In con-
trast, the SCDC library is specifically designed to utilize varying communi-735

cation methods through a single interface and supports direct function calls,
Unix Domain Sockets, TCP/IP, and MPI. Relaying communication is sup-
ported by specific data providers that bridge between any of these methods.

• The existing approaches use a static specification of the coupling through
XML files (PSMILe and TDT), a graphical user interface (PALM), script files740

(MUSCLE 2), or a separate setup phase of the application (MUSIC). With
the SCDC library, the setup of components and their coupling is performed at
runtime and can be dynamically changed while the applications are executed.

• Several of the existing approaches support the integration of local files as
data sinks or sources. In contrast, the SCDC library contains specific data745

providers for both file-system and database storage that can be integrated
not only locally, but through any supported communication method.

• The existing approaches are application-specific in the way that they support
the exchange and redistribution of specific data types and structures with
a limited size. The SCDC library supports only plain data with a format750

identifier that can be freely chosen while special emphasis is given to the
processing and exchange of data streams with unlimited size.

Only few service-oriented approaches exist for HPC applications. The Com-
mon Component Architecture (CCA) [13] is an effort to provide component-
based software engineering for high-performance scientific computing. Besides755

the service-oriented approach, common properties of the SCDC library and
CCA-compliant frameworks are the dynamic coupling of components at run-
time, the interaction with local components through function calls, and the
support for a seamless switch between local and remote components without
additional programming efforts. However, a significant difference is how com-760

ponents interact with each other: CCA uses Remote Method Invocation where
the method name and its parameters are fixed within the source code. With the
SCDC library, a component and functionality to be used is specified through
an URL-based address and a command string that can be changed at runtime.
Furthermore, it was reported that CCA-compliant frameworks support either765

parallel or distributed computing, thus using both in one application would re-
quire additional efforts to couple different CCA frameworks [13]. In contrast,
the SCDC library supports a variety of different communication methods as well
as relay functionalities to connect parallel and distributed components.

The Application Hosting Environment (AHE) [14] is a middleware imple-770

menting the Software as a Service paradigm of cloud computing for HPC ap-
plications. AHE supports the development of complex simulations based on
an integrated workflow engine and eases the transfer of input and output files
for applications executed on distributed computing resources. Similar to the
SCDC library, AHE uses an URI-based addressing of resources and aims at a775
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flexible utilization of different computing resources. However, AHE is a complex
java-based software infrastructure that requires to encapsulate the application
codes and their file-based data exchanges. In contrast, the SCDC library is
a lightweight programming library primarily designed to implement data ex-
changes through communication from within an application code.780

The development of parallel and scientific applications with Python is sup-
ported by dedicated programming frameworks, such as Pyro [15] for Remote
Method Invocation or Scoop [16] for distributed task-based parallel program-
ming, that could also be used to ease the implementation of our application ex-
ample from mechanical engineering. However, their usage is restricted to Python785

programs and data exchanges are performed by passing fixed-size parameters to
function calls. In contrast, the SCDC library also connects programs with differ-
ent programming languages and supports stream-oriented data exchanges with
unlimited size. Additionally, there exist Python packages, such as SciPy [17],
pyOpt [18], or OpenMDAO [19], dedicated to optimization problems. However,790

SciPy provides only optimization algorithms and pyOpt is solely based on a
parallel execution with MPI. OpenMDOA is specialized for multidisciplinary
design analysis and optimization (MDAO) and supports distributed computing
only through user-defined remote allocation manager classes. In contrast, the
SCDC library supports job executions through a predefined data provider and795

is neither limited to MDAO problems nor to the distributed execution of jobs.

6. Conclusion

In this article, we have discussed the requirements for building complex simu-
lation programs in science and engineering. To support the development of such
programs, a component-based client-server programming model was proposed800

which leads to a step-wise realization of the simulation components based on
their data dependencies. A major goal was the flexibility of the resulting simula-
tion programs, especially with regard to interchanging application codes and the
hardware platforms for their execution. The implementation of the client-server
components for distributed computing systems is supported by a software library805

providing the data exchange operations. The approach was demonstrated with a
simulation program for the optimization of lightweight structures in mechanical
engineering. We presented performance results to demonstrate the large per-
formance differences of the data access methods supported by our library. This
shows the advantages of supporting them individually. Further performance810

results demonstrated the distributed execution of simulation applications on
several compute nodes. This justifies our efforts of supporting such distributed
executions in an application-independent way. The given API descriptions and
code examples provide important insights about the usability of our library.
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