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Abstract

Task pools can be used to achieve the dynamic load bal-
ancing that is required for an efficient parallel implemen-
tation of irregular applications. However, the performance
strongly depends on a task pool implementation that is well
suited for the specific application. This paper introduces
an adaptive task pool implementation that enables a step-
wise transition between the common strategies of central
and distributed task pools. The influence of the task size on
the parallel performance is investigated and it is shown that
the adaptive implementation provides the flexibility to adapt
to different situations. Performance results from benchmark
programs and from an irregular application for anomalous
diffusion simulation are presented to demonstrate the need
for an adaptive strategy. It is shown that profiling informa-
tion about the overhead of the task pool implementation can
be used to determine an optimal task pool strategy.

Keywords: adaptive software, irregular algorithms, multi-
threading, parallel computing, profiling, task pools.

1 Introduction

The dynamic behavior of irregular algorithms poses the
challenge for parallel programming to achieve efficient par-
allel implementations. In contrast to regular applications,
where a static work distribution is often sufficient, irregu-
lar applications require a dynamic distribution of work and
data at runtime. Especially for multithreaded shared mem-
ory programming, the task pool concept can be used to im-
plement the necessary dynamic load balancing. An appli-
cation is decomposed into several tasks, that are managed
by a task pool data structure and executed in parallel by an
arbitrary set of processors. The number of working threads
can vary from only a few on small multicore systems to tens
or hundreds on large SMP systems. Due to the progress in
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multicore technology, parallel platforms with high numbers
of working threads (up to 32) become increasingly avail-
able.

Implementation details have a significant influence on
the performance of task pools and specific properties like
the task granularity or the number of working threads may
require different implementation strategies. However, these
specific properties strongly depend on the actual applica-
tion, the current problem to be solved, and the parallel plat-
form to be used. Adaptive software can provide the flexibil-
ity to adapt to the actual situation in advance or at runtime.

This article presents an adaptive task pool implementa-
tion that covers common task pool strategies and provides
the flexibility to adapt to the needs of the actual applica-
tion. The adaptivity is achieved by a flexible mapping of
task queues to threads executing the program. The strategies
of central and distributed task queues are special cases of
this flexible mapping. With this flexible strategy, the major
performance critical routine of a task pool is implemented
in a new task pool implementation. Important information
about the overhead of the task pool implementation caused
by locking mechanisms and load imbalances are monitored.

The behavior of the new task pool implementation is in-
vestigated using benchmark programs with different work-
loads and an irregular application, that uses random fractal
structures to simulate anomalous diffusion processes [3].
Performance measurements are presented using up to 32
working threads on an IBM p690+ 32-way SMP system.
The results show that an adaptive strategy can provide op-
timal performance under the varying conditions of the dif-
ferent applications. The results also show that profiling in-
formation about the task pool implementation can be used
to determine an optimal strategy with respect to the current
workload.

The rest of this article is organized as follows. Section
2 lists related work and Section 3 introduces the task pool
concept. Section 4 presents the adaptive task pool imple-
mentation, followed by performance results in Section 5.
Section 6 concludes the paper.
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2 Related Work

The concept of task pools is closely related to process-
ing schemes using work or job queues. These and similar
concepts share a lot functionality, but their specific imple-
mentations differ due to different requirements of the ap-
plication area. Furthermore, a lot of work from the broad
field of dynamic scheduling and load balancing algorithms
is applicable to task pools.

In [11] different task pool strategies are presented, to-
gether with a discussion of implementation details like
memory managers and queue organization mechanisms.
The influences of synchronization mechanisms based on
hardware support are investigated in [7]. The Carbon
technique [12]] aims to provide hardware support for fine-
grained parallelism on chip multiprocessors by introducing
additional processor instructions that implement task pool
functionalities. Work stealing concepts are used to over-
come load imbalance problems when having multiple task
queues [1]]. The work stealing algorithm of Cilk [4] makes
use of private double ended queues, where the queue owner
can operate on one side while other threads steal work from
the other side. Profiling of task-based applications based on
task pools was proposed to detect performance critical pro-
gram behavior and for estimating parallel execution times
[8]]. Task pool concepts were also used for implementing ir-
regular algorithms with OpenMP [14}[16]]. Additionally, the
task construct is one of the biggest additions to the upcom-
ing OpenMP 3.0 specification [13] and enables the creation
of explicit tasks that can be executed in parallel.

The Task Pool Teams approach [5] extends a library
based task pool implementation to distributed address space
programming by introducing special communication opera-
tions and separate communication threads. Various other
parallel environments for shared and distributed memory
programming make use of concepts similar to that of task
pools. In [10] a hierarchical framework with language and
runtime support is introduced to provide independent load
balancing policies for subsets of threads. This approach can
be used to apply different load balancing strategies to differ-
ent computational tasks. The LilyTask system [15] is based
on a distributed task pool and introduces task groups and
task relations to allow an easy mapping of computational
problems to tasks. The PMESC library [2] is designed for
implementing task-parallel programs on distributed mem-
ory systems. Processors use local queues to manage tasks
and dynamic load balancing is achieved by redistributing
tasks on request. The C++ based parallel programming lan-
guage Charm++ [9] represents an object oriented approach
with a message driven execution model and user selectable
load balancing strategies.

3 Task Pools

The concept of task pools can be used to achieve dy-
namic load balancing in parallel programming, especially
for multithreaded shared memory systems. The compu-
tational work is divided into tasks which are inserted and
stored in a task pool data structure. A fixed number of
threads is responsible for extracting and executing the tasks.
During the execution, new tasks can be created and inserted
into the task pool. Dependencies between tasks are usually
handled by inserting a task not until all its dependencies are
fulfilled. The task pool approach is especially appropriate
for implementing irregular algorithms and applications, in
which computational work is dynamically created at run-
time and strongly depends on the input data.

3.1 A General Task Pool API

An application programming interface (API) for a library
based task pool implementation includes the following op-
erations:

e tpool_init: initialize the task pool
e tpool_destroy: destroy the task pool
e tpool_put: insert a task into the task pool

e tpool_get: extract a task from the task pool

Independent from the actual implementation of the task
pool, this API is capable of being used directly with POSIX-
threads as well as with OpenMP parallel directives. Listing
[[] shows pseudocode for implementing a parallel computa-
tion using task pools.

Listing 1. Using the task pool API with
OpenMP

tpool *tp = tpool_init(...);

tpool_put(tp, ...); /* insert initial task(s) */

{
tpool_task tpt;

1
2

3

4

5 #pragma omp parallel shared(tp)

6

7

8 int th_id = omp_get_thread_num(Q);

10 while (tpool_get(tp, th_id, &tpt) != TPOOL_EMPTY)
11 tpt.task_routine(tpt.argument);
12 }

14 tpool_destroy(tp);

In conjunction with thread libraries like POSIX-threads,
lines 5-12 have to be replaced with appropriate thread cre-
ation and termination mechanisms (e.g.: pthread_create
and pthread_join). The tpool_get routine is repeatedly



called by all working threads in parallel (line 10). If tasks
are available, the routine extracts a task from the pool and
the task is executed (line 11). Otherwise, the calling thread
is blocked until a task is available for extraction. The task
pool is empty, when all threads are waiting in tpool_get.
In this case, all threads are unblocked (tpool_get returns
TPOOL_EMPTY) and the parallel computation is finished.

3.2 Task Pool Strategies

Several strategies for implementing task pools are avail-
able [4,11,[16]. Depending on the organization of the tasks
in queues, one can coarsely distinguish between central and
distributed task pools. A central task pool stores all tasks in
one public queue to which all threads have access. This re-
sults in almost perfect load balancing, since idle times for
threads can only occur if the public queue runs out of tasks.
The major disadvantages are waiting times that occur during
extract and insert operations, because access to the queue is
synchronized to prevent access conflicts. The opposite strat-
egy is the distributed task pool, where every thread owns a
private task queue. This enables concurrent accesses to the
different queues and reduces the waiting times, e.g. for ex-
tract operations. However, having many queues naturally
leads to load imbalances and introduces the problem of se-
lecting appropriate queues for the insert operations.

Choosing an optimal strategy strongly depends on the
actual situation. Large numbers of short tasks and high
numbers of threads can lead to increased serialization due
to the synchronized queue access. Load imbalances may
occur, e.g. when having only a few number of tasks or vary-
ing task sizes. Fixed task sizes or additional information
about the tasks can help to achieve a balanced distribution
of tasks to queues. Solutions proposed for the problem of
imbalanced workloads include combinations of central and
distributed task pools as well as support for dynamic task
stealing [} [11].

4 An Adaptive Task Pool Implementation

In addition to the task pool strategies mentioned above,
we propose a general implementation that is able to cover
strategies like central and distributed task pools and pro-
vides the flexibility to adapt to the needs of the actual situa-
tion.

4.1 Adaptive Functionalities

The adaptive task pool implementation consists of a set
of queues and a set of threads and uses a mapping that
assigns threads to queues. This results in a variable rela-
tion between threads and queues; central and distributed
task pools are included as special cases. The number of

queues can be changed and threads can be reassigned to
other queues. Together with the ability to transfer tasks
from one queue to another, the implementation provides the
functionality to adapt the task pool strategy to the actual
situation. Profiling is used to gather information about the
behavior of the task pool at runtime and helps to detect the
actual times spent in locks for queue accesses or waiting
times due to empty queues.

4.2 Implementation Details

The task pool implementation is based on POSIX-
threads and uses mutex and condition variables to imple-
ment locks and barriers. Besides the necessary data struc-
tures, one of the most important parts of a task pool imple-
mentation is the tpool_get routine. This routine is called
frequently (at least once for every task) and therefore it is
critical to performance when there is a large number of
tasks. Also, this routine is responsible for implementing
the task pool strategy and for taking control of the over-
all processing of the task pool (e.g. exit if the task pool is
empty, handle empty queues, etc.). The pseudocode in List-
ing [2] outlines the general functionality of the tpool_get
routine.

Listing 2. General
tpool_get routine.

functionality of the

int tpool_get(tpool *tp, int th_id, tpool_task *tpt)

1

2 {

3 lock_queue(...);

4

5 while (queue_is_empty)

6

7 if (all_queues_empty) perform_task_pool_exit();
8

9 if (switch_queue) restart_tpool_get();

10
11 conditional_wait_with_timeout();

12 }

13

14 *tpt = ... /% extract task from the queue */
15

16 unlock_queue(...);

17}

Access to the queue is protected by using a locking
mechanism (line 3 and 16). While the actual queue is empty,
the processing of tpool_get is blocked until the whole
task pool is empty (line 7) or a queue switch is requested
(line 9). By using a waiting mechanism with timeout (e.g.,
pthread_cond_timedwait), the calling thread is repeat-
edly activated while waiting for new tasks. This enables a
monitoring of the times spent waiting on an empty queue
(line 11) and provides the ability to react on increased wait-
ing times (e.g. perform a queue switch). The times spent on
acquiring access to a queue (line 3) can also be monitored



(across consecutive calls to tpool_get) and provide use-
ful information about serialization effects due to queue ac-
cesses. Similar information about times spent on acquiring
access to a queue can be gathered in the tpool_put routine.
Furthermore, special strategies for choosing a queue for in-
serting new tasks can also be implemented in tpool_put.

5 Performance Results

To investigate the influences on the performance of the
task pool implementation, we use benchmarks that allow us
to control properties like the size of the tasks and the num-
ber of tasks. A basic task of the benchmark computes the
value of the number Pi up to a fixed precision. The size of
the task is adjusted by repeating this computation several
times. Additionally, results are shown for an irregular ap-
plication, that uses random fractal structures for simulating
diffusion processes. Performance measurements are per-
formed on a single 32-way SMP node with 32 Power4+ pro-
cessors and 128 GB main memory. Every working thread is
executed by a single dedicated processor.

5.1 Static Workload

For measurements with a static workload, a certain num-
ber of tasks (with fixed task size) is inserted into the task
pool before the execution starts. To achieve a balanced
workload, the total number of tasks is always chosen to be
a multiple of the number of threads and at least 10 tasks per
thread are provided.

Figure[I] shows speedups depending on the task size for
different numbers of threads extracting and executing tasks
from a central task pool (one queue). For task sizes down
to a value of 800 (number of times Pi is computed per task)
the achieved speedup corresponds to the number of utilized
threads. Only for the case with 32 threads, the speedup re-
mains slightly below the ideal value of 32. A further de-
crease of the task size leads to a constant decrease of the
speedup values. This effect is most significant when the
number of threads is large. For very small task sizes (< 10),
all speedups fall below a value of 2. The inefficiency of
this case is caused by synchronized accesses to the public
queue and illustrates the main disadvantage of the central
task pool.

Figure |2 shows speedup values depending on the task
size with 32 threads and for different numbers of queues.
Using one queue corresponds to a central task pool, while
32 queues represent a distributed task pool with a separate
queue for each thread. Other numbers of queues repre-
sent a stepwise transition between these two strategies. The
results clearly show that the strong dependency between
performance and task size can be eliminated by increas-
ing the number of queues. Almost constant performance
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is achieved when using at least 16 queues. But, for big task
sizes and a high number of queues the performance is not
optimal. Using low numbers of queues (up to 8) leads to
better speedup values for big task sizes, but results in a sig-
nificant loss of performance when the task size becomes too
small. The measurements show that a fixed strategy will not
provide an optimal solution for the different situations and
an adaption to the actual conditions is needed.

5.2 Dynamic Workload

For investigating the behavior of our task pool imple-
mentation with dynamic workload, we use the synthetic
benchmark proposed in [11]. The work structure of a task
is illustrated with pseudocode in Listing 3]

Listing 3. Task routine of the synthetic bench-
mark.

void synthetic_task(int i)

1
2 {

3 if (i > 0)

4 {

5 compute_Pi (10 * f£);

6 tpool_put(synthetic_task, i - 2);
7 compute_Pi (50 * f);

8 tpool_put(synthetic_task, i - 1);

9 compute_Pi (100 * £);

10

11 } else compute_Pi (100 * f);
2}

Depending on the parameter i, a task either performs a
number of computations and creates two additional tasks
or performs only computations. The computational parts
of the task are represented by the compute_Pi routine and
consist of repeated computations of the value of Pi. The
parameter of the compute_Pi routine specifies the number
of times Pi is computed per call. The parameter f is used
to control the amount of computations and determines the
size of the task. Initially, a number of k = 12 tasks with pa-
rameters i = k — 1 ...0 are inserted into the task pool. With
k = 12, the synthetic benchmark creates a total number of
1204 tasks.

Figure [3] shows speedup values depending on the task
size factor f and the number of queues, using 32 threads.
The results show the influences of a dynamic workload
on the parallel performance. Similar effects of dynamic
workload are typical for irregular applications. The overall
speedup values vary in the range of 2 to 32. But, consider-
ing only the optimal number of queues for a given task size,
the speedup increases to about 19 in the worst case (small
task sizes).

In Figure[d]the amount of time spent in acquiring the lock
for queue accesses is shown. Figure [5] shows the amount
of waiting time while a queue is empty. The values repre-
sent average times of all threads measured in tpool_get as
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Figure 3. Speedups depending on the task
size factor f and the number of queues, us-
ing a dynamic workload and 32 threads. The
symbol ¢+ denotes the best speedup for a spe-
cific task size factor f.
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Figure 5. Amount of time (percentage of total
time) spent waiting while a queue is empty
depending on the task size factor / and the
number of queues, using a dynamic workload
and 32 threads.

shown in Listing[2] The overhead caused by locks increases
when having small tasks (f < 10) and few queues (< 8).
Otherwise, this overhead is negligible. The time spent wait-
ing while queues are empty increases when using higher
numbers of queues. A decision for an optimal number of
queues has to pay attention to both effects.

In Figure [6] the total overhead together with the lowest
result for each task size is shown. The number of queues
that leads to a minimum overhead decreases from 8 to 1 for
an increasing task size. This corresponds to the results of
the best speedup values as shown in Figure [3| The infor-
mation about the time spent in locks or waiting at empty
queues can be used to adapt the strategy of a task pool im-
plementation to the actual situation. The resulting adap-
tive task pool implementation provides more flexibility than
other fixed strategies and releases the user from choosing a
suitable strategy in advance. Furthermore, there exists the
possibility to adapt to changing conditions even at runtime.

5.3 Master Equation Application

As an example for an irregular application, an implemen-
tation of the master equation approach for random Sierpin-
ski carpets is used. The application simulates diffusion pro-
cesses and uses random fractal structures to model the struc-
tural properties of real materials such as aerogels, porous
rocks, or cements. The master equation approach calculates
the probability distribution for the location of a test parti-
cle (random walker) on a two-dimensional random fractal
structure (random Sierpinski carpet) at different time steps.
The carpet consists of basic work units called iterator. An
iterator is recursively constructed using a set of predefined
generator patterns. The iterator level specifies the number

lowest overhead
best speedup

O

Overhead (%)

70
60
50
40
30
20

Figure 6. Total amount of time (percentage
of total time) spent in acquiring locks and
waiting while a queue is empty depending
on the task size and the number of queues,
using a dynamic workload and 32 threads.
The symbols ¢ and ¢ denote the number
of queues with the lowest overhead and the
best speedup for a specific task size factor f.

of recursion steps used for the construction and determines
the size of the iterator. Figure [/| shows an example with
three different generators of size 3 X 3 (left) and a randomly
created iterator of level 2 (middle). The black tiles of the
iterator represent valid locations for the walker.

In every time step, the walker is allowed to move from
one tile to a neighboring tile. The probability distribution
over all valid tiles at time step ¢ is calculated from the prob-
ability distribution at the previous time step ¢ — 1 using the
following master equation:

pi(t) = Z Gijpjt—-1)+0-L)pi(t-1)

Jje<i>

The probability p;(¢) of tile i in time step ¢ is calculated by
accounting for the gain and loss of probability caused by
the movement of the walker. The sum is over the set of
all neighbors < i > of tile i. The gain factors G;; describe
the probability for the walker to arrive at tile i coming from
tile j and L; = ;e Gji is the overall loss of tile i. The
gain and loss factors are calculated once depending on the
structural properties of the iterators and the behavior of the
walker. The simulation starts with a carpet consisting of a
single iterator and a delta distribution for the probabilities of
the location of the walker (probability 1 at the starting po-
sition and O otherwise). New iterators are appended to the
boundaries of the carpet as the simulation proceeds and the
probability distribution spreads over the carpet. A more de-
tailed introduction to the parallel application can be found
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Figure 7. Three sample generators of size 3x3
(left) and a randomly created iterator of level
2 (middle). Generator sets A and B used for
the performance measurements (right).

in [6]. The following results were obtained using a paral-
lel implementation based on shared memory programming
with Pthreads only.

In every time step, the probabilities of the tiles have to be
updated. For every iterator, the task of calculating the new
probabilities is inserted into the task pool. The tasks can be
executed in parallel by several threads; only the creation of
new iterators and the extension of the carpet requires mu-
tual exclusion. The amount of work required for updating
an iterator strongly depends on the chosen iterator level and
the set of generator patterns. The following results were ob-
tained for simulating about 8000 time steps using iterators
of level 3 and different generators of size 5 X 5. The task
pool implementation uses 16 threads for executing the tasks
and an equal distribution of tasks to queues when multiple
queues are used.

Figure[§]shows speedup values depending on the number
of queues for three different sets of generators. Sets A and
B consist of the single generators shown in Figure 7] (right).
Set C consists of nine different generators that are randomly
chosen when creating new iterators. The generators of set
C are similar to the ones of sets A and B and the average
number of valid tiles is close to the number of valid tiles
in generator B. The different generator sets have a strong
effect on the performance of the task pool implementation.
The higher numbers of valid tiles in generator sets B and
C increase the task sizes and lead to better speedup values
in comparison to generator set A. The random structure of
the iterators created with generator set C causes load imbal-
ances due to varying task sizes and achieves lower speedups
in comparison to the more regular structure with genera-
tor set B. The optimal number of queues also depends on
the chosen generators. The smaller number of valid tiles in
generator set A decreases the task size and requires a higher
number of queues. With generator sets B and C, the best
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Figure 8. Speedups of the master equa-
tion application depending on the number of
queues, using 16 threads and different sets
of generators.

speedup values are achieved using only two queues.

For generator set C, the total overhead of the task pool
implementation is shown in Figure[9] The results with the
lowest overhead and the best speedup are marked for the
different numbers of elapsed time steps. The very high
overhead of about 60 % at the beginning of the simulation
decreases during the progress of the simulation. However,
the overhead for using only one queue (central task pool)
remains significantly high (about 60 %). The random struc-
ture of the iterators leads to varying task sizes. For high
numbers of queues, this results in an increased overhead
due to load imbalances. As already shown with the bench-
mark program in Section[5.2] the number of queues with the
lowest overhead corresponds to the number of queues with
the best speedup values. After 8000 time steps, the lowest
overhead of about 20 % is achieved using two queues. The
measured overhead of about 20 % indicates that there is still
room for further optimizations of the task pool implemen-
tation.

6 Summary

In this paper, we have investigated adaptive task pool
strategies and have shown that choosing an appropriate task
pool strategy is essential for achieving good performance.
Fixed strategies like central or distributed task pools are
suitable for specific situations only. By using a variable
number of queues for managing the tasks, our task pool im-
plementation is able to adapt to a wide range of task sizes or
numbers of working threads. To ease the problem of select-
ing the appropriate number of queues we have shown that
information about the overhead of the task pool implemen-
tation (monitored by the task pool implementation itself)
can be used to determine an optimal solution.
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