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The massively parallel architecture of the BlueGene/L supercomputer poses a challenge to the
efficiency of parallel applications in scientific computing. The specifics of the BlueGene/L
communication networks have a strong effect on the performance of the MPI implementation.
Various optimizations and specially adapted algorithms cause varying performance results for
communication operations. In this paper, we present performance results of various MPI oper-
ations for a BlueGene/L system using up to 4,096 nodes. We discuss their efficiency in terms of
the communication hardware and investigate influences on the performance of commonly used
point-to-point and collective operations. The results give an overview of the efficient usage of
the MPI operations and can be used to optimize the performance of parallel applications.

1 Introduction

During the last few years, one important progress in high performance computing was the
development and deployment of the IBM BlueGene/L (BG/L) supercomputer. This was an
important milestone of the ongoing effort to build a petaflop supercomputer that provides
sufficient computing power for advanced scientific computations. Beside the superior the-
oretical peak performance of about 360 teraflops, the most interesting and also challenging
properties arise from the unique architecture. The BG/L is a massively parallel distributed
memory system with several special purpose networks. Message passing programming is
supported by an MPI implementation especially adapted to the properties of the communi-
cation networks. Achieving high performance in parallel scientific applications requires an
adaption to the target environment. This involves the communication infrastructure given
through the MPI implementation. Knowledge about their efficient usage is essential for
programmers to prepare their applications to scale well up to thousands of nodes. The
properties of the BG/L system have a direct influence on the performance of MPI com-
munication operations. Due to specific optimizations, the performance of MPI operations
varies depending on their particular usage. In this paper, we present performance results of
MPI operations for a BG/L systemb using up to 4,096 nodes. We discuss their origins and
derive implications for an efficient usage.

The rest of this paper is organized as follows. In the following, we introduce the BG/L
system and list related work. Section 4 presents performance results of MPI point-to-
point communication operations and Section 5 shows results of collective MPI operations.
Sections 6 presents results for communication schemes like overlapping communication
and nearest neighbor communication. We conclude in Section 7.

aSupported by Deutsche Forschungsgemeinschaft (DFG)
bMeasurements are performed on the BlueGene/L system at the John von Neumann Institute for Computing,
Jülich, Germany. http://www.fz-juelich.de/zam/ibm-bgl
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2 BlueGene/L System

The BlueGene/L supercomputer consists of up to 65,536 (64Kic) dual-processor compute
nodes with 700 MHz PowerPC based processors and either 512 MiB or 1 GiB main mem-
ory. Two operation modes are available for utilizing the dual-processors nodes: In co-
processor mode (CO) each node runs only one process and allows the second processor
to be used as a communication or computation coprocessor. In virtual node mode (VN)
two separate processes run on every node with evenly divided resources. (The following
investigations use CO mode unless otherwise stated.) The system features several com-
munication networks, three of those available for message passing communication. The
global interrupt network can be used to perform a barrier synchronization on a full system
in 1.5µs. The collective network is a tree with fixed point arithmetic support in every
node and can be used to perform broadcast and reduction operations. For reduction op-
erations with floating-point data, a two-phase algorithm consisting of multiple fixed point
reduction operations was introduced1. The collective network has a payload bandwidth
of about 337 MB/sc and a latency of 2.5µs on a 64Ki nodes system. For point-to-point
communication, a three dimensional torus network connects every node to six neighbors
through bi-directional links. Data is sent packet-wise with packet sizes up to 256 bytes
and the maximum payload bandwidth per link and direction is about 154 MB/s (we refer
to this as the single link bandwidth). The deposit bit feature of the torus network sup-
ports fast broadcasting of packets to a line of nodes. A 64Ki nodes system is connected
by a 64x32x32 torus network and can be split into multiple independent partitions. The
BG/L MPI implementation2 is based on MPICH2 and especially adapted to make use of
the different communication networks.

3 Related work and motivation

The BlueGene/L has been introduced in detail3 and a lot of information about application
development and tuning is available4. Details about the BG/L MPI implementation2 in-
clude information about different communication layers as well as performance results of
single MPI operations and parallel application benchmarks. The collective MPI operations
have been extensively optimized1 to make use of the specialties of the communication net-
works. Separate algorithms for short and long message communication are introduced and
performance results for varying message sizes are shown. The implementation of a one-
sided communication interface5 enables the usage of global address space programming
models and one-sided operations of MPI-2 and presents additional efforts for bandwidth
and latency optimizations. The topology functions of MPI have also been optimized6 to
improve the mapping of virtual (application specific) topologies to the physical topology
of the torus network. MPI performance analysis tools were ported to the BG/L system and
have been tested using a number of scientific applications7.

Most of the work about the BG/L MPI focuses on implementation details for certain
MPI operations and optimized algorithms for these implementations. In contrast, this arti-
cle concentrates on the performance of MPI operations when used within a parallel appli-

cPrefixes Ki, Mi, and Gi are used to denote the base-1024 versions of Kilo, Mega, and Giga. Prefixes K, M, and
G represent the base-1000 versions.
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Figure 1. Latencies and bandwidths of point-to-point communication depending on the message size (left) and
on the distance to the target node (right).

cation. The detailed measurements show how specific implementations of an MPI opera-
tion have an effect on the application program. Various influences on the performance of
MPI operations are investigated and it is shown how certain communication schemes of an
application program can be implemented best using the underlying MPI library.

4 MPI point-to-point communication

All MPI point-to-point communication uses the torus network with either deterministic
routing (packets use fixed paths) or adaptive routing (path depends on the current load).
Depending on the size of the message to be sent, one of three protocols is chosen. The
eager protocol is optimized for latency and used for medium size messages. The sender
immediately starts sending the packets assuming that the receiver is able to handle them.
The short (or one packet) protocol is used for messages that can be sent with one packet
and causes a very low overhead. Both protocols use deterministic routing. The rendezvous
protocol is a bandwidth optimized protocol for large messages. It uses a handshake mecha-
nism between sender and receiver to establish a message context. Adaptive routing is used
to maintain a balanced network load. The usage of the eager or the rendezvous protocol
can be controlled with the BGLMPI_EAGER variable.

Figure 1 (left) shows the latencies and the bandwidths for sending 1 MB data with
MPI_Send and varying message sizes to a neighboring node. The usage of the eager and
the rendezvous protocol is forced using the BGLMPI_EAGER variable. Up to a message
size of about 120 bytes the short protocol is used. In this case, with an increasing message
size the total number of packets decreases resulting in constantly decreasing latencies. For
message sizes of about 120-130 bytes the switch to the eager or the rendezvous protocol
occurs. There is a clear difference between the two protocols with the eager protocol
being about two times faster. For both protocols, there is a zigzag scheme visible for
message sizes up to 1000 bytes. The peaks occur when an additional packet is required
to send messages of the particular size. With increasing message sizes, the differences
between the two protocols vanish and their latencies become fairly equal and constant for
messages sizes above 10000 bytes. The short protocol achieves about 38 % of the single
link bandwidth, while the eager and the rendezvouz protocol reach about 99 %.
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Figure 1 (right) shows the bandwidths for sending a message of size 1 MB to nodes
at different distances in a 16x16x16 partition. It can be observed that the distance has no
effect on the achievable bandwidth, because distances (1,0,0) and (8,0,0) show the same
results. A slight increase occurs if sender and receiver nodes are not located on the same
axis. However, the results indicate that only one link is used for a point-to-point operation
at a time, since the bandwidth does not clearly exceed the single link bandwidth. Com-
munication between processes on the same node in VN mode is done with memory copies
and achieves a bandwidth of about 1670 MB/s. Apart from that, the operation mode has no
effect on the results presented above.

The results confirm that the performance of the point-to-point operations strongly de-
pends on the message size and the communication protocol used. The eager protocol shows
generally the best performance and has significant performance peaks for certain message
sizes. Comparable performance with the rendezvous protocol requires message sizes of at
least 10000 bytes. However, with a higher network load, the rendezvous protocol can be-
come more important. The distance between sender and receiver has no significant effect
on the bandwidth of single communication operations and efforts for improving the locality
are unnecessary in this case. The bandwidth of a single point-to-point operation is limited
to the bandwidth of a single torus link and multiple link performance as demonstrated for
one-sided communication5 is currently not achievable.

5 MPI collective communication

For efficient implementations of MPI collective communication the BG/L system has two
special purpose networks, the global interrupt network and the collective network. How-
ever, the usage of these networks is limited to operations on MPI_COMM_WORLD. Other-
wise, the torus network is used with a number of optimized algorithms1. Especially for
rectangular subsets of nodes optimizations based on the deposit bit feature are used.

MPI Bcast / MPI Allreduce

The following results of broadcast and reduction operations are obtained using a
fixed message size of 1 MB. Figure 2 (top) shows latencies of MPI_Bcast and
MPI_Allreduce (with MPI_SUM) for varying numbers of nodes using the CO mode.
For MPI_COMM_WORLD the broadcast and the reduction operation with integer data have
almost identical results independent from the number of nodes. The latency of about
2.98ms for 1 MB data corresponds to a bandwidth of about 336 MB/s which is close
to the payload bandwidth of the collective network. The latencies for floating-point data
reductions are about 3-4 times higher, because of the missing arithmetic support in the col-
lective network. With subsets of nodes, the torus network is used and optimized algorithms
based on the deposit bit feature of the torus network are applied for rectangular subsets.
With a 16x16x16 partition the broadcast operation achieves full single link bandwidth for
broadcasting in an incomplete line (2-15 nodes), full double link bandwidth for broadcast-
ing in a full line (16x1x1) or incomplete plane (16x2x1, . . . , 16x15x1), and exceeds the
maximum bandwidth of the collective network for broadcasting in a full plane (16x16x1)
or cubic subset (16x16x2, . . . , 16x16x16). The results of MPI_Allreduce show simi-
lar optimizations for rectangular subsets, but without achieving maximum bandwidths and

4



 0.001

 0.01

 0.1

2
(2x1x1)

4
(4x1x1)

8
(8x1x1)

16
(16x1x1)

32
(16x2x1)

64
(16x4x1)

128
(16x8x1)

256
(16x16x1)

512
(16x16x2)

1024
(16x16x4)

2048
(16x16x8)

4096
(16x16x16)

double
link bw.

single
link bw.

1/2 single
link bw.

1/4 single
link bw.

L
a

te
n

c
y
 i
n

 s
e

c
o

n
d

s

Number of nodes

Latencies of MPI_Bcast and MPI_Allreduce

MPI_COMM_WORLD MPI_Bcast/MPI_Allreduce(int)
MPI_COMM_WORLD MPI_Allreduce(double)
rectangular MPI_Bcast
rectangular MPI_Allreduce(int)
rectangular MPI_Allreduce(double)
non-rectangular MPI_Bcast
non-rectangular MPI_Allreduce(int)
non-rectangular MPI_Allreduce(double)

 0.001

 0.01

 0.1

2
(2x1x1)

4
(4x1x1)

8
(8x1x1)

16
(16x1x1)

32
(16x2x1)

64
(16x4x1)

128
(16x8x1)

256
(16x16x1)

512
(16x16x2)

1024
(16x16x4)

2048
(16x16x8)

4096
(16x16x16)

double
link bw.

single
link bw.

1/2 single
link bw.

1/4 single
link bw.

L
a

te
n

c
y
 i
n

 s
e

c
o

n
d

s

Number of nodes

rectangular MPI_Bcast
rectangular MPI_Allreduce(int)
rectangular MPI_Allreduce(double)
non-rectangular MPI_Bcast
non-rectangular MPI_Allreduce(int)
non-rectangular MPI_Allreduce(double)

Figure 2. Latencies of MPI broadcast and reduction operations depending on the number of participating nodes
and the shape (rectangular or non-rectangular) of the subset of nodes in CO (top) and VN (bottom) mode.

independent from the number of utilized links. With non-rectangular subsets of nodes
the latencies are at least 3-4 times higher. Figure 2 (bottom) shows results using the VN
mode. The improvements due to the optimizations for rectangular subsets of nodes have
almost disappeared. Only for certain rectangular subsets of nodes there is a small decrease
in latency for the reduction operation. For the broadcast operation there is no difference
between rectangular and non-rectangular subsets.

Figure 3 (left) shows latencies of MPI_Allreduce depending on the reduction oper-
ation and the data type in three different situations (MPI_COMM_WORLD, rectangular and
non-rectangular subsets). A user-defined reduction operation (summation) disables the op-
timizations and achieves almost equal results in all three situations. The results for the
non-rectangular subset are independent from the pre-defined reduction operation and the
data type. For MPI_COMM_WORLD the collective network can be used, but the maximum
performance is only achieved with integer data and MPI_SUM. With MPI_PROD the la-
tency increases by an order of magnitude. The results with floating-point data are the same
for the pre-defined reduction operations and fairly independent from the number of nodes.

The results show that the performance of the collective operations strongly depend on
the optimizations due to the BG/L communication hardware. The actual number of partic-
ipating nodes has only a small influence, thus indicating good scalability of the collective
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Figure 3. Latencies of MPI Allreduce with different reduction operations and data types. (left) Latencies for
overlapping point-to-point and collective MPI operations (MPI Bcast). (right)

operations. Non-rectangular subsets of nodes prevent the usage of optimized algorithms,
resulting in a significant performance loss. Therefore, it is almost better to increase the
number of nodes participating in a collective operation to gain a rectangular shape. Addi-
tionally, it is recommend to spread subsets of nodes at least across two dimensions of the
torus network to benefit from the usage of multiple torus links.

6 Communication schemes

Overlapping communication

The non-blocking communication operations of MPI can be used to overlap communica-
tion and computation. This is a common technique for hiding latencies of communication
operations. However, with the current BG/L MPI version this kind of processing has no
benefit. Overlapping point-to-point communication with a single matrix multiplication
task produces exactly the same latency results as if they were performed one after another.
This behavior was the same using CO and VN mode. Figure 3 (right) shows measurements
for overlapping point-to-point communication with a collective operation. Pairs of nodes
exchange 1 MB messages with non-blocking operations while they are participating in a
broadcast of a 1 MB message. Results are shown for three situations (MPI_COMM_WORLD,
rectangular and non-rectangular subsets) with different broadcast implementations in use.
Overlapping the two communication operations leads to a decrease of the latencies of about
15 % to 25 %. Significant differences between CO and VN mode occur only with the rect-
angular subset of nodes. In this case, the VN mode leads to an increased latency of the
broadcast operation (as already show in Section 5). However, the improvements due to the
overlapping are the same using CO and VN mode.

Nearest neighbor communication

Figure 4 (left) shows the bandwidths of concurrent communication of one node with its
six direct neighboring nodes. Results are shown for receiving, sending, and exchang-
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Figure 4. Bandwidths of one node communicating with its six neighboring nodes in the torus network using
different MPI operations. (left) Per node bandwidths if all nodes communicate with their neighbors in a 16x16x16
torus network using different MPI operations. (right)

ing (concurrent send and receive) messages of size 1 MB with each neighbor using dif-
ferent communication operations (collective, blocking, and non-blocking point-to-point).
When only sending or receiving, the differences between collective (MPI_Gatherv or
MPI_Scatterv) and blocking point-to-point communication are rather small. Send-
ing data to the neighbors achieves single link bandwidth, while data from the neighbors
is received with about double link bandwidth. Higher rates are achieved when perform-
ing all communication at once with non-blocking operations. For exchanging data, the
bandwidth of the collective operation (MPI_Alltoallv) is much better than with con-
secutive blocking point-to-point operations. The usage of MPI_Sendrecv achieves only
about 80 % of the maximum bi-directional performance. With the CO mode, the usage of
non-blocking operations achieves the best results, while with the VN mode the collective
operation performs best. In general, the bandwidths of the non-blocking operations with
the CO mode are about 30 % higher in comparison to the VN mode. The benefits for the
collective and the blocking operations are rather small.

Figure 4 (right) shows the bandwidths per node if all nodes communicate with their
neighbors. With a 16x16x16 partition, equal message sizes (1 MB) and an optimal
mapping (communication with direct neighbors in the torus network only) the usage of
MPI_Alltoallv achieves the best result of about 400 MB/s. The bandwidth with non-
blocking point-to-point operations is only slightly lower and MPI_Sendrecv achieves
again only about 80 % of the maximum bi-directional bandwidth. With a smaller parti-
ton (8x8x16) the bandwidths for all communication operations remain fairly unchanged.
Using messages with varying sizes (0.5-1.5 MB) leads to a decrease of the bandwidths of
about 30-40 %. A random mapping of the nodes in the torus network decreases the local-
ity of the communication significantly. Therefore, the bandwidths for all communication
operations fall below the single link bandwidth and the non-blocking operations become
the worst. Using the CO mode improves the performance of collective and non-blocking
operations, but only under optimal conditions (equal message sizes, optimal mapping).
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Even though the non-blocking operations of the BG/L MPI cannot be used to overlap
communication and computation, they still can be used to perform multiple communication
operations at once. Performance benefits can be achieved from the concurrent usage of the
collective and the torus network as well as from the utilization of multiple torus links. The
usage of all-to-all operations for data exchange with neighbors in a grid achieves similar
good performance like a direct implementation with point-to-point operations. With non-
optimal conditions like varying message sizes or decreased locality of the communication,
the usage of all-to-all communication performs best. Using the CO mode increases the
performance, especially for performing multiple non-blocking operations at once.

7 Conclusion

The measurements have shown that the specifics of the BG/L communication hardware
have significant effects on the performance of single MPI operations. Optimized algo-
rithms make of use the different communication networks and improve the performance
of collective MPI operations. However, their usage is subject to a number of restrictions.
Maximum performance in terms of hardware and software limitations is achieved for sev-
eral communication operations and enables the prediction of latency values. Non-blocking
operations have shown to be useful to communicate with various nodes at once and to uti-
lize multiple links of the torus network. The all-to-all communication operation provided
with the BG/L MPI turns out to be a good choice for exchanging data, especially under
non-optimal conditions. In general, the experiments have shown that good scalability of
communication operations can be achieved even for up to thousands of nodes.
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