
MPI Reduction Operations for Sparse
Floating-Point Data

Michael Hofmann? and Gudula Rünger

Department of Computer Science
Chemnitz University of Technology, Germany

{mhofma,ruenger}@cs.tu-chemnitz.de

Abstract This paper presents a pipeline algorithm for MPI Reduce that
uses a Run Length Encoding (RLE) scheme to improve the global reduc-
tion of sparse floating-point data. The RLE scheme is directly incorpo-
rated into the reduction process and causes only low overheads in the
worst case. The high throughput of the RLE scheme allows performance
improvements when using high performance interconnects, too. Random
sample data and sparse vector data from a parallel FEM application is
used to demonstrate the performance of the new reduction algorithm for
an HPC Cluster with InfiniBand interconnects.

Keywords: MPI, performance optimization, pipelining, reduction operation,
run length encoding

1 Introduction

The Message Passing Interface (MPI) is the de facto standard for distributed
memory parallel programming in the area of scientific high performance com-
puting and the optimization of MPI libraries and communication operations is
still an active field of research. Emerging high performance interconnects such
as Quadrics, Myrinet, SCI, or InfiniBand have led to continuing efforts for im-
proving the performance of MPI implementations, too. Especially for collective
MPI operations, there exists a variety of different algorithms. Automatic tun-
ing as well as static and dynamic optimizations are used to adapt to specific
system architectures and applications by selecting appropriate algorithms or al-
gorithmic parameters [1,2]. Good overall performance of communication opera-
tions requires a transition from latency-optimal algorithms for small messages to
bandwidth-optimal algorithms for large messages. Pipelining techniques are used
for achieving high bandwidth, especially with high performance interconnects
[3,4]. Improved algorithms for global reduction operations (e.g., MPI Allreduce)
are presented in [5].

The contribution of this paper is to apply the well known Run Length Encod-
ing (RLE) to floating-point data and to incorporate it into a pipeline algorithm

? Supported by Deutsche Forschungsgemeinschaft (DFG).

Original published: M. Hofmann and G. Rünger. MPI reduction operations for sparse floating-point data. In A. Lastovetsky,
T. Kechadi, and J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface, 15th European
PVM/MPI Users Group Meeting, volume 5205 of LNCS, pages 94–101. Springer, 2008. Online available at
http://dx.doi.org/10.1007/978-3-540-87475-1_17.

http://dx.doi.org/10.1007/978-3-540-87475-1_17

for MPI Reduce. The RLE scheme reduces the amount of communication and
increases the performance, especially for sparse vector data. General purpose
compression algorithms and specific algorithms for floating-point data are used
to improve the performance of MPI communication operations on clusters with
Fast Ethernet interconnects [6,7]. However, the throughputs of these algorithms
are unstable and too small for high performance interconnects. Our target plat-
form is the HPC Cluster CHiC [8] consisting of 530 compute nodes with Infini-
Band interconnects. MPI reduction operations are used, for instance in parallel
numerical methods for implementing global error control. We use random sample
data as well as sparse vector data from a parallel FEM application to investigate
the performance of the new reduction algorithm with RLE.

The rest of this paper is organized as follows. Section 2 investigates the fea-
sibility of applying data compression for optimizing communication operations
and introduces the RLE scheme for floating-point data. Section 3 describes a
pipeline algorithm for MPI Reduce and the application of the RLE scheme. Sec-
tion 4 presents performance results and Section 5 concludes the paper.

2 Compression of Floating-Point Data

The communication time for large messages is mainly determined by the band-
width of the communication network. To achieve a benefit from transferring
compressed data instead of uncompressed data, the additional computational
time of the compression algorithm has to be lower than the time saved during
the communication. Under optimal conditions, the compression and decompres-
sion operations perfectly overlap and the message size is reduced so that the
communication time can be neglected. To benefit from the compression in that
case, the throughput of the compression/decompression operation has to be at
least as high as the bandwidth of the communication network.

A general purpose data compression library like zlib [9] achieves throughputs
of 0.5-22 MB/s (depending on the specified compression level) using a 2.6 GHz
AMD Opteron processor. The algorithm of Ratanaworabhan et al. for compress-
ing scientific floating-point data achieves throughputs of about 22-47 MB/s using
a 3.0 GHz Pentium 4 processor [10]. When using high performance interconnects
such as InfiniBand, the performance of these algorithms is insufficient. The HPC
cluster CHiC reaches bandwidths of about 970 MB/s for unidirectional point-to-
point communication with MPI Send/MPI Recv.

This estimation about the required throughput assumes that compression
and decompression occur as additional tasks before and after the data transmis-
sion. Nevertheless, it is also possible to incorporate the compression algorithm
into operations that are already existing. For example, the compression can be
done when the message is copied to communication buffers or when the reduction
operation of MPI Reduce is applied. In that case, a compression/decompression
throughput equal to the bandwidth of the communication network helps to pre-
vent a loss of performance even if the size of the message can not be reduced.

2.1 Run Length Encoding for Floating-Point Data

Run Length Encoding is a well known compression scheme that works by re-
placing repetitions of equal values with the information about the number of
repetitions. Non-repeating values remain unchanged. The RLE scheme is useful
for data that contains long sequences of equal values, e.g. sparse vector data
with many zero values. The encoded repetition of a value requires a marker that
is distinguishable from the not-encoded values. We use Not a Number (NaN)
values in the IEEE 754 representation of floating point numbers as markers.
Considering 64-Bit floating-point numbers, NaN values have an arbitrary sign
bit, all 11 bits of the exponent set to one and a non-zero mantissa (52 bits). We
use the non-zero mantissa to save the number of repetitions as a 52-Bit integer.

This RLE scheme for floating-point data can be adapted to different use
cases. If only repetitions of one fixed value (e.g., zero) are considered, then every
NaN in the encoded data represents a sequence of at least two of these values.
If repetitions of arbitrary values are considered, then the specific value that is
repeated has to be saved together with the NaN. In this case, it is appropriate
to skip the encoding of sequences of size two, since their encoded size is the same
as their original size. This RLE scheme does not increase the size of the encoded
data. If NaN values are included in the original data, a distinction between
original and encoded NaNs is required. To preserves most of the information of
the original NaN, the arbitrary sign bit can be used for this distinction.

2.2 Throughputs of RLE for Sparse Floating-Point Data

The throughput of the RLE scheme is evaluated using an implementation for
repetitions of zeros. Compressible random sample data is used that consists
of floating-point vectors with randomly placed non-zero values. All operations
are written in C and compiled with the PathScale 3.1 compiler (optimization
-O3). The throughput values are calculated according to the size of one vector.
Throughputs with respect to the total amount of data read and written by the
operations (without RLE) can be obtained, by applying a factor of two for the
copy operation and a factor of three for the vector addition operations.

Figure 1 (left) shows throughputs of the compression and decompression op-
eration depending on the amount of non-zero values in the input data. The
throughputs of both operations strongly depend on the amount of non-zero val-
ues. The compression operation shows a significant loss of performance when
having more than 20 % non-zero values. With 100 % non-zero values the perfor-
mance of both operations is comparable to the copy operation.

Figure 1 (right) shows throughputs of vector addition operations with and
without RLE depending on the amount of non-zero values in the input data.
Operations aC+b→ aC and aC+b→ cC represent the addition of a compressed
vector aC and an uncompressed vector b where the result (in aC or cC) is
compressed, too. The compressed version using only two vector arrays (a and b)
reaches about 70-95 % of the performance of the uncompressed version. Similar to

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0.1 1 10 100

T
h
ro

u
g
h
p
u
t
in

 M
B

/s

Non-zero values in %

Performance of RLE compression and decompression

copy
compress
decompress

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0.1 1 10 100

T
h
ro

u
g
h
p
u
t
in

 M
B

/s

Non-zero values in %

Performance of vector addition operations

a + b -> a
ac + b -> ac
a + b -> c
ac + b -> cc

Figure 1. Throughputs of RLE compression and decompression operations (left) and
vector addition operations with and without RLE (right).

the compression operation, the results show a loss of performance if the amount
of non-zero values increases, but still good results with 100 % non-zero values.

In comparison to these results, the memcpy operation of the PathScale com-
piler achieved throughputs of about about 3 GB/s and the vector addition op-
eration (daxpy) of the AMD Core Math Library achieved throughputs of about
2 GB/s. The performance of these highly optimized operations shows, that there
is still room for improving the compiler optimized implementations. The addition
operation in conjunction with repetitions of zeros provides several characteristics
that ease the implementation of the corresponding vector operations. Neverthe-
less, the RLE scheme is not limited to repetitions of zeros (see Section 2.1) and
applicable to other operations, too. A general vector operation with RLE can
be achieved, by incorporating the corresponding compression operation into the
process of writing the resulting vector.

3 MPI Reduce with Run Length Encoding

As shown in Section 2, the throughput of data compression algorithms is insuffi-
cient in comparison to the bandwidth of high speed interconnects like InfiniBand.
Therefore, we incorporate the RLE scheme into the already existing process of
applying the reduction operation of MPI Reduce. We start with a pipeline algo-
rithm for MPI Reduce that is appropriate to achieve high bandwidths for large
messages. Each process Pi sends data only to process Pi+1. The last process Pp

is the root process of MPI Reduce. Process Pi performs operation a ⊗ bi → a
to apply the reduction operation ⊗ to the incoming data a and its local data
bi. The result is placed in a and send to process Pi+1. The data is divided
into equal blocks and the sending and receiving of blocks is overlapped using
MPI Sendrecv.

We incorporate the compression and the decompression with the RLE scheme
into the process of performing the reduction operation for floating-point data.

The regular operation a ⊗ bi → a is replaced by the compressed version aC ⊗
bi → aC . The reduction operation ⊗ is applied to the compressed incoming data
aC and the uncompressed data bi of process Pi. The compressed result is placed
in aC and is sent to process Pi+1. The first process P1 has no incoming data
and therefore no reduction operation to perform. We avoid the overhead of an
additional compression operation by sending uncompressed data from P1 to P2.
The compression is initiated by process P2 using operation a ⊗ bi → aC . The
root process Pp uses the operation aC ⊗ bp → a to obtain the uncompressed
final result. The RLE scheme can be used together with predefined and user-
defined reduction operations. The entire compression and decompression process
is hidden in the MPI Reduce operation and requires no changes to the application.

4 Performance Results

Performance results are obtained using the HPC Cluster CHiC consisting of
530 compute nodes each with two 2.6 GHz Dual-Core AMD Opteron processors,
4 GiB main memory and InfiniBand interconnect. One process is used per node.

 4
 8
 16
 32

 64
 128

 4 16 64 256 1024 4096 16384

1.0

1.5

2.0

2.5

3.0

Performance improvement of the pipeline reduce

Number of
processes

Message size in KiB

Improvement factor

 4
 8
 16
 32

 64
 128

 4 16 64 256 1024 4096 16384

1

4

16

64

256

1024

Optimal block size of the pipeline reduce

Number of
processes

Message size in KiB

Block size in KiB

Figure 2. Performance improvement of the pipeline reduce algorithm in comparison
to the native MPI Reduce (left) and optimal block size (right).

The impact of the pipeline reduce algorithm is demonstrated first. Figure 2
(left) shows the relative improvement of the pipeline reduce algorithm in com-
parison to the native MPI Reduce of OpenMPI (version 1.2.4) depending on the
number of processes and the message size. The results show a decrease in per-
formance for message sizes up to 8 KiB in general and up to 256 KiB for large
numbers of processes. For large message sizes, the pipeline reduce algorithm
achieves improvements up to a factor of about 1.8 (single peaks show improve-
ments up to about 2.9). Figure 2 (right) shows the corresponding block sizes of
the pipeline algorithm that achieve the best performance. The results show that
the block size increases with increasing message sizes and decreasing numbers of
processes.

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

L
a

te
n

c
y
 i
n

 m
s

Non-zero values in %

Latencies of different reduce algorithms

MPI_Reduce
pipeline reduce
RLE pipeline reduce, identical distributions
RLE pipeline reduce, non-identical distributions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P32
(root)

P24P16P8P1

 300

 350

 400

 450

 500

 550

 600

B
y
te

s
 s

e
n

t
in

 %
 o

f
th

e
 o

ri
g

in
a

l
m

e
s
s
a

g
e

 s
iz

e

B
a

n
d

w
id

th
 i
n

 M
B

/s

Processes

Communication amount and bandwidth of pipeline reduce

bytes sent with RLE pipeline reduce, 10% non-zero values
bytes sent with RLE pipeline reduce, 1% non-zero values
bandwidth of pipeline reduce
bandwidth of RLE pipeline reduce, 10% non-zero values
bandwidth of RLE pipeline reduce, 1% non-zero values

Figure 3. Latency of the native MPI Reduce and the pipeline reduce with and without
RLE using different distributions of non-zero values (left). Communication amount and
bandwidth of the different processes participating in the pipeline reduce (right).

Figure 3 (left) shows latency results for MPI Reduce and the pipeline reduce
with and without RLE depending on the amount of non-zero values in the input
data with 16 MiB messages, and 128 processes. The RLE scheme is incorporated
into the vector addition operation to compress repetitions of zero values. Results
are shown for identical and non-identical random distributions of non-zero values
in the different messages of the processes. In contrast to the constant performance
of MPI Reduce and the pipeline reduce, RLE pipeline reduce shows a dependence
on the amount of non-zero values. With 0.1 % non-zero values the latency of RLE
pipeline reduce falls below 40 ms. With 100 % non-zero values, using the RLE
scheme causes no overhead and is as fast as pipeline reduce without RLE (about
65 ms). The distribution of the non-zero values has a significant influence on
the performance of RLE pipeline reduce, too. With identical distributions on
all processes, improvements are achieved with up to 50 % non-zero values while
with non-identical distributions the improvements vanish when using more than
10 % non-zero values.

Figure 3 (right) shows the amount of data sent by the individual processes
using 1 % and 10 % non-identically distributed non-zero values, 16 MiB messages,
and 32 processes. Bandwidths calculated from the latencies of the individual
processes are also shown. Since process P1 sends uncompressed data to P2, a
decreased amount of transferred data is first observed for P2. Because of the
non-identical distributions of the non-zero values, the number of non-zero values
increases when the data approaches the root process. This reduces the efficiency
of the RLE scheme and increases the amount of data transferred by the latter
processes in the pipeline. With 10 % non-zero values, starting at process P11 over
90 % of the original data is transferred. With 1 % non-zero values, the amount
of transferred data increases more slowly resulting in a higher improvement.

Next, we use data from a parallel adaptive FEM application. The elements
of the floating-point vectors correspond to the nodes of the mesh used by the
FEM application. Adaptive mesh refinement increases the number of mesh nodes

and therefore the size of the vectors, too. According to the distribution of the
mesh nodes to the different processes, each process contributes only to a subset
of elements of the solution vector. The complete solution vector is obtained by
a summation of all local contributions using MPI Reduce. Figure 4 (left) shows
an example for the sparse structure of the vectors supplied to MPI Reduce. The
vectors consist of 564 elements with about 6-11 % non-identically distributed
non-zero values.

P32

P24

P16

P8

P1

P
ro

c
e
s
s
e
s

Zero (bottom) and non-zero (raised) elements

Structure of the vectors from the FEM application

 0

 50

 100

 150

 200

 250

 300

2 4 6 8 10 12 14 16
 1

 4

 16

 64

 256

 1024

 4096

B
a
n
d
w

id
th

 i
n
 M

B
/s

M
e
s
s
a
g
e
 s

iz
e
 i
n
 K

iB

Adaptive refinement steps

Bandwidth of different reduce algorithms with FEM data

32 processes, MPI_Reduce
32 processes, pipeline reduce
128 processes, MPI_Reduce
128 processes, pipeline reduce
improvement with RLE
message size

Figure 4. Zero and non-zero elements of vectors from the FEM application (left).
Bandwidth of the native MPI Reduce and the pipeline reduce with and without RLE
using data of the FEM application (right).

Figure 4 (right) shows bandwidths of the root process for MPI Reduce and
the pipeline reduce with and without RLE using the data of the FEM appli-
cation after different adaptive refinement steps. As previously seen in Figure 2,
pipeline reduce achieves performance improvements only for large messages while
the native MPI Reduce is better for small messages. With 32 processes, improve-
ments are achieved after more than six refinement steps (≈ 42 KiB messages) and
with 128 processes after more than eight refinement steps (≈ 72 KiB messages).
Pipeline reduce with RLE has always a higher performance than without RLE.
However, the improvements are most significant for large messages. In compari-
son to the native MPI Reduce, the bandwidth of RLE pipeline reduce increases
up to 228 % with 32 processes and up to 182 % with 128 processes.

Instead of integrating this kind of optimization into the MPI operations, it
is also possible to utilize an appropriate sparse vector format inside the appli-
cation. However, these unconventional formats prevent the usage of operations
like MPI Reduce and require that optimized communication algorithms are im-
plemented on the application level, too. The RLE scheme is rather simple and
the high throughputs of the RLE operations prevent a loss of performance when
using incompressible input data. Integrated into an MPI library, the RLE com-
pression scheme could be enabled by default or optionally used with a new special
MPI datatype.

5 Conclusion

In this paper, we have shown that a fast RLE scheme can be used to improve
the performance of MPI Reduce even with high performance interconnects such
as InfiniBand. We have introduced an RLE scheme for floating-point data and
incorporated the compression and decompression process into the reduction op-
eration of MPI Reduce. Performance results show that the pipeline reduce al-
gorithm and the RLE scheme lead to significant performance improvements for
large messages. The improvements due to the RLE scheme strongly depend on
the input data. However, the marginal overhead of the RLE scheme prevents
a decrease in performance when using incompressible input data. Results with
sparse floating-point data from a parallel FEM application show improvements
in bandwidth up to a factor of two.

Acknowledgment

We thank Arnd Meyer and his group from the Department of Mathematics,
Chemnitz University of Technology, for providing the data of the parallel FEM
application.

References

1. Faraj, A., Yuan, X., Lowenthal, D.: STAR-MPI: Self Tuned Adaptive Routines
for MPI Collective Operations. In: ICS ’06: Proc. of the 20th annual international
conference on Supercomputing, ACM (2006) 199–208

2. Pješivac-Grbović, J., Bosilca, G., Fagg, G.E., Angskun, T., Dongarra, J.J.: MPI
collective algorithm selection and quadtree encoding. Parallel Computing 33(9)
(2007) 613–623

3. Worringen, J.: Pipelining and Overlapping for MPI Collective Operations. In: LCN
’03: Proc. of the 28th Annual IEEE International Conference on Local Computer
Networks, IEEE CS (2003) 548–557

4. Almási, G., et al.: Optimization of MPI Collective Communication on BlueGene/L
Systems. In: ICS ’05: Proc. of the 19th annual international conference on Super-
computing. (2005) 253–262

5. Rabenseifner, R., Träff, J.L.: More Efficient Reduction Algorithms for Non-Power-
of-Two Number of Processors in Message-Passing Parallel Systems. In: Proc. of
the 11th EuroPVM/MPI. Volume 3241 of LNCS., Springer (2004) 36–46

6. Calderón, A., Garćıa, F., Carretero, J., Fernández, J., Pérez, O.: New Techniques
for Collective Communications in Clusters: A Case Study with MPI. In: ICPP ’01:
Proc. of the Int. Conf. on Parallel Processing, IEEE CS (2001) 185–194

7. Ke, J., Burtscher, M., Speight, E.: Runtime Compression of MPI Messages to
Improve the Performance and Scalability of Parallel Applications. In: SC ’04:
Proc. of the ACM/IEEE Conf. on Supercomputing, IEEE CS (2004) 59

8. http://www.tu-chemnitz.de/chic/
9. http://www.zlib.net/

10. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast Lossless Compression of Sci-
entific Floating-Point Data. In: DCC ’06: Proceedings of the Data Compression
Conference, IEEE CS (2006) 133–142

http://www.tu-chemnitz.de/chic/
http://www.zlib.net/

	MPI Reduction Operations for Sparse Floating-Point Data

