
A Data Management and Communication Layer

for Adaptive, Hexahedral FEM

Judith Hippold⋆ and Gudula Rünger

Chemnitz University of Technology, Department of Computer Science
09107 Chemnitz, Germany

{juh,ruenger}@informatik.tu-chemnitz.de

Abstract. The parallel realization of adaptive finite element methods
(FEM) has to deal with several irregular and dynamic algorithmic prop-
erties caused by adaptive mesh refinement (AMR). For an implementa-
tion on distributed memory machines irregular communication behavior
results from dynamically growing data structures and statically unknown
communication partners. An efficient parallel implementation has to pro-
vide appropriate mechanisms to cope with the flexibility of the adaptive
finite element approach at runtime. We have implemented a data man-
agement and communication layer for an adaptive, 3-dimensional, hex-
ahedral FEM on distributed memory machines and use it to parallelize
an existing sequential code. The data management and communication
layer realizes duplicated data structures for boundaries of distributed
data, additional hierarchical data structures to deal with uneven refine-
ment, and coherence protocols to guarantee correctness of communica-
tion partners and messages. An easy to use interface provides access to
the functionality of the layer.

1 Introduction

The discretization of the physical domain into a mesh of finite elements and the
approximation of the unknown solution function by a set of shape functions on
those elements makes the finite element method flexible and applicable for a wide
range of different applications. For the simulation of large problems adaptive
mesh refinement and parallel execution can help to reduce runtime. Especially
for 3-dimensional problems, an efficient parallel realization is difficult to achieve
and mostly interferes with the algorithmic structure. Parallelization modules
accessible by interface functions can provide easy to use parallel functionality
for application programmers, maintain the algorithmic structure, and offer re-
usability for a wide range of different finite element implementations.

Adaptive FEM belongs to the class of irregular algorithms. Irregularity is
caused by AMR and hanging nodes: The adaptive refinement process with com-
putations on different refinement levels creates hierarchies of data structures and
requires the explicit storage of these structures including their relations. Hang-
ing nodes can result from different refinement levels and are mid-nodes of faces

⋆ Supported by DFG, SFB393 Numerical Simulation on Massively Parallel Computers



or edges which are vertices of finite elements at the same time. Such nodes re-
quire projections on nodes of other refinement levels during the solution process.
Both characteristics lead to irregular communication behavior. Thus the efficient
parallel implementation is difficult, especially for distributed memory.

The contribution of this paper is the design and realization of a data man-
agement and communication layer for parallel, adaptive FEM with emphasis on
hexahedral finite elements. Our layer encapsulates communication and the man-
agement of distributed data which allows easy extensibility and does not require
modifications in the algorithmic structure of the existing sequential FEM code.
The data management concept provides duplicated data storage with fast access
and modification functions and also supports hanging nodes. A special com-
munication mechanism reduces the number of messages considerably, decreases
the overhead for managing asynchronous communication behavior, and allows
SPMD programming style despite of irregular characteristics. Furthermore it of-
fers wide facilities for optimization like additional overlapping of communication
and computation phases, software caching, and monitoring of program behavior.
We have incorporated the data management and communication layer into an
existing sequential, adaptive, 3-dimensional, hexahedral FEM program package
which was developed and implemented at the SFB 393: Numerical Simulation
on Massively Parallel Computers at the Chemnitz University of Technology.
However, the module is designed to be integrated into further FEM packages.

The paper is organized as follows: Section 2 summarizes the given adaptive
FEM implementation. The concepts of our data management and communica-
tion layer are introduced in Section 3. Section 4 presents experimental results
and Section 5 concludes.

2 The FEM Implementation

SPC-PM3AdH [1] is a 3-dimensional, adaptive finite element software package
suitable to solve 2nd order elliptic partial differential problems like the Poisson
equation or the Lamé system of linear elasticity. [2–4] present FE-software which
differ from SPC-PM3AdH, e. g. in finite elements or solvers implemented or
parallel realization. SPC-PM3AdH implements hexahedral elements with linear
and quadratic shape functions as shown in Figure 1.

triquadratic elementlinear element serendipity element

Fig. 1. Finite elements implemented in SPC-PM3AdH.

Each hexahedron has the maximum number of 27 nodes. If only linear or
serendipity elements with 20 nodes are used, the remaining nodes actually exist



but have no associated shape functions. A finite element is implemented through
a hierarchy of data structures: Volumes are the most coarse-grained structure
and represent the finite elements. Volumes are composed of faces and each face
consists of four edges. The smallest unit is the node. Nodes have three coordinates
and, when they are associated with a shape function, a solution vector. Nodes
can be vertices or mid-nodes of volumes, faces, and edges.

The program structure of SPC-PM3AdH consists of
five phases as illustrated on the right:

I First the initial mesh is created from an input
file.

II Volumes are subdivided into 8 children accord-
ing to the estimated error and geometrical con-
ditions like hanging nodes. The difference of re-
finement levels between two neighboring volumes
is restricted to one.

III Each volume is associated with an element stiff-
ness matrix. The matrices for new volumes, the
right hand side vectors, and the global main di-
agonal are assembled in the third phase.

I. Creation of the

II. Iterative mesh

III. Assembling of element

IV. Solve the system 

V. Error estimation

of equation

stiffness matrices

refinement

initial mesh

IV The system of equations is solved with the preconditioned conjugate gradient
method. A Jacobi, Yserentant [5], or BPX [6] preconditioner can be selected
for preconditioning.

V The error is estimated with a residual based error estimator [7]. Volumes are
labeled for refinement if their estimated error is close to the maximum error.

3 The Data Management and Communication Layer

The basis of the data management and communication layer is a specific ap-
proach for distributed data storage and administrational data structures contain-
ing distribution information. The entire information concerning the distribution
of data is hidden to the user but can be accessed and modified by functions
supplied by the layer. The layer encapsulates the actual data exchange via MPI
and communication optimizations.

3.1 Distribution of data structures

The parallel implementation assigns volumes to processors which leads to a par-
titioning of the stiffness matrix represented by local element stiffness matrices.
The faces, edges, and nodes shared between neighboring volumes in different
address spaces exist duplicated within the memory of each owning processor.
This allows fast computations for each volume with minimal communication.
Processors sharing duplicates are called owners of duplicates. The approach in-
duces that the solution and auxiliary vectors are spread over the address spaces
of the different processors. The entries for duplicated nodes exist redundantly



and contain only subtotals which have to be accumulated to yield the total re-
sult. For duplicated hanging nodes worker processors can be selected which are
allowed to perform the necessary projections exclusively. This avoids multiple
accumulations.

Refinement of distributed data The adaptive refinement process creates
a hierarchy of faces and edges. Due to hanging nodes processors may perform
computations on different refinement levels of the same edge or face. To gain fast
access on the different levels faces are organized in a quadtree data structure and
edges as binary trees. Refinement on duplicated faces and edges subdivides data
structures only in local memory. Thus the remote hierarchy trees have to be kept
consistently by a two-phase iterative refinement cycle:

The first phase iteratively subdivides local volumes according to the esti-
mated error and geometrical demands, like unacceptable hanging nodes. In the
second phase the remote refinement of subdivided duplicated faces and edges is
done. A synchronization step ensures that the entire process is performed until
no further subdivision of volumes is done on any processor.

Coherence lists To keep data consistent and to support remote refinement the
fast identification and localization of duplicates is necessary. For that reason the
tuple Tup(identifier, processor) is introduced. Identifier denotes a data structure
of type face, edge, or node and serves for local identification. The parameter
processor allows global identification of a duplicate. This parameter is assigned
after distributing a data structure and is the number of the processor where
the duplicate is situated. The combination of both parameters allows unique
identification.

The tuple Tup is used to implement coherence lists. Each duplicated data
structure is tagged with a coherence list which contains information about the
remote identifiers and the location of all existing duplicates. Figure 2 illustrates
such lists for the edges e1 and e2 in the address space of processor P2. To

P1

P1

P0

P0

P2

P0

e2
e1

P1e1
e2 e2

e1

coherence list of e1

coherence list of e2

Fig. 2. Illustration of the coherence lists for the edges e1 and e2 in the address space
of processor P2 and illustration of remote refinement necessary for processors P0 and
P2 after local refinement on P1.



access remote duplicates the owners and the corresponding remote identifiers
can be extracted and used to send a message. A receiving processor is able to
determine a local structure by the received identifier and to perform actions
like remote refinement. Coherence lists are built up and updated within the
data management layer. The local identifier of a data structure serves as input
parameter to find the corresponding list. Data structures without duplicates in
remote address spaces have no lists associated.

Data consistency of refined volumes Adaptive refinement on volumes dis-
tributed over different address spaces requires to maintain consistency for correct
program behavior. This includes the remote refinement of duplicated faces and
edges and the creation or update of coherence lists for new data structures. Fig-
ure 2 also illustrates remote refinement: The subdivision of the volume in the
address space of processor P1 requires the refinement of one face and of four
edges located at P0 and of one edge located at P2. The entire process can be
generalized and structured into four steps. We refer to the data structures on
higher levels of the hierarchy trees as parents and to the corresponding new
structures arising from subdivision as children.
(1) To identify data structures which have to be remotely subdivided each parent
volume is investigated for duplicated faces and edges. For each found duplicate,
a data package has to be sent. It contains the remote identifier of the duplicate
for identification and the local identifiers of the newly created data structures
(e. g. nodes, children) for updating the coherence lists.
(2) The receiving owners refine the parent data structure identified by the re-
ceived package and create and update the coherence lists of the new structures
with the information of the message package. If the parent data structure is al-
ready subdivided, only the update of coherence lists is necessary.
(3) To update the lists of the remotely created, new structures in the address
spaces of the remaining owners the identifiers of the new duplicates have to be
sent back according to the package structure described in item (1).
(4) The other owners receive the messages and update their coherence lists.

3.2 Communication approach

During a program run different situations of communication occur. They can be
classified into three types:

Synchronization and exchange of results: Communication is necessary
to synchronize the refinement process and to determine the maximum error. This
communication takes place globally between all processors.

Accumulation of subtotals: For duplicated nodes only subtotals are com-
puted by the different owners. To yield the total result data exchange is necessary.

Exchange of administrational information: In order to keep data consis-
tent administrational information has to be exchanged in each program iteration
step. This comprises for example global procedures like remote subdivision, the
generation and update of coherence lists, and the identification of hanging nodes.



The last two communication situations have irregular characteristics. That
means the communication partners, the number of messages, and the message
sizes vary and depend on the specific program run. Furthermore the exact com-
munication time is not known in advance. [8, 9] present a communication concept
for irregular algorithms. However, the communication requirements for adaptive
FEM are slightly different and suggest the following realization:

Communication protocol Due to the special duplicated data storage of the
data management layer and the program structure of SPC-PM3AdH the ex-
change of data within a computational phase can be delayed. This allows to dis-
place the communication at the end of a computational phase and to separate
computation from communication. The resulting communication mechanism can
be described as follows:
(A) During computation each processor collects information about necessary
data exchanges with different collect functions. These functions can be chosen
adapted to the algorithmic needs and detect duplicates for a given local data
structure. If there are duplicates, the remote identifiers and additional infor-
mation are stored in send buffers for later exchange. During the computational
phase a collect function can be called several times.
(B) After the local computations the gathered values are sent to the correspond-
ing processors extracted from the coherence lists. This process is initialized by
the first call of a get function. The application programmer uses get functions to
obtain data from the receive buffer. Each function call returns an identifier of a
local data structure and the received additional information for this structure.
(C) Afterwards specific actions can be performed. The return of an invalid iden-
tifier denotes an empty receive buffer.

The usage of the described collect&get communication mechanism is illus-
trated by the following pseudo-code for the parallel labeling of edges with hang-
ing nodes.

for each local volume V { for each edge E of V {

if(E is subdivided) {

label children S1 and S2 of E as hanging;

collect(S1, S2); /* (A) */

} } }

while(get(&id)) /* (B) */ { label the edge identified by id; /* (C) */ }

4 Experiments

This section shows some measurement results demonstrating the usability of
the layer within the program SPC-PM3AdH. To gain experimental results two
platforms are used: XEON, a 16x2 SMP cluster of 16 PCs with 2.0 GHz Intel
Xeon processors running Linux and SB1000, a 4x2 SMP cluster of 4 SunBlade
1000 with 750 MHz UltraSPARC3 processors running Solaris. The MPI imple-
mentation is ScaMPI using an SCI network. We consider three examples: layer3



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

T
im

e 
in

 s
ec

on
ds

Phases 2-5 on different refinement levels

Comparison of seq. & par. runtimes for ct01 on SB1000

"sequential"
"parallel (2 processors)"

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

Adaptive refinement steps

S
pe

ed
up

Speedups on 2 processors for example ct01

SB1000
XEON

Fig. 3. Left: Execution times for the different algorithmic phases on different refinement
levels for example ct01 on SB1000 (2: AMR, 3: assembling element stiffness matrices,
4: solving the system of equations, 5: error estimation). Right: Speedups for example
ct01 on 2 processors.

a boundary layer for the convection-diffusion equation, ct01 solving the Lamé
equation, and torte4d a layer near a non-convex edge [1]. For parallel and sequen-
tial measurements linear finite elements and the Jacobi preconditioner are used.
Small numbers of processors are sufficient to achieve efficiency for the available
examples.

The algorithmic phase consuming most of the sequential and parallel calcula-
tion time is to solve the system of equations (see Figure 3, left, phase 4). During
this phase also the main portion of communication takes place in the parallel
version. Figure 3 (right) shows speedup values for the example ct01 on SB1000
(black) and XEON (white) after different adaptive refinement steps. Speedups
improve with increasing refinement level because the computational effort com-
pared to the communication overhead as well as the vector size and the number
of volumes grow, e. g. for the specific example the ratio of the number of volumes
to the number of sent messages is 8/100, 742/260, and 1884/1544 after the 1st,
5th, and 9th refinement step. For examples torte4d and layer3 (Figure 4) we
get superlinear speedup after 7 refinement steps, especially on XEON. This is
mainly caused by the growing length of data structure lists and the operations
on these lists which are distributed among multiple address spaces in the parallel
version. Cache effects might have further influence.

5 Conclusion and Future Work

We have presented a data management and communication layer for adaptive,
3-dimensional, hexahedral FEM on distributed memory including a management
for duplicated data storage and a special communication mechanism. Both are
completely hidden to the user and accessible by functions of the layer. The advan-
tages of the modular structure are the easy extensibility which does not require
modifications in the algorithmic structure of the FEM code and the possibility



1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Adaptive refinement steps

S
pe

ed
up

Speedups on 3 processors for example torte4d

SB1000
XEON

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

Adaptive refinement steps

S
pe

ed
up

Speedups on 7 processors for example layer3

SB1000
XEON

Fig. 4. Speedups for varying numbers of adaptive refinement steps on SB1000 and
XEON. Left: example torte4d on 3 processors. Right: example layer3 on 7 processors.

for internal communication optimizations. First tests of the layer demonstrate
usability and deliver good speedup results.

Acknowledgement This work is supported by DFG, SFB393: Numerical
Simulation on Massively Parallel Computers. Special thanks to S. Beuchler, A.
Meyer, and M. Pester, Chemnitz University of Technology, Department of Math-
ematics, for their support and many interesting discussions.

References

1. Beuchler, S., Meyer, A.: SPC-PM3AdH v1.0, Programmer’s Manual, Technical
Report SFB393/01-08, Chemnitz University of Technology (2001)

2. Bangerth, W., Kanschat, G.: Concepts for Object-Oriented Finite Element Software
- the deal.II Library, IWR Heidelberg, SFB359 Preprint 99-43 (1999)

3. Blazy, S., Kao, O., Marquardt, O.: padfem2 - An Efficient, Comfortable Framework
for Massively Parallel FEM-Applications. In Dongarra, J., Laforenza, D., Orlando,
S., eds.: Proc. of EuroPVM/MPI, LNCS 2840. Springer (2003) 681–685

4. Diekmann, R., Dralle, U., Neugebauer, F., Roemke, T.: PadFEM: A Portable Par-
allel FEM-Tool. In Liddell, H., Colbrook, A., Hertzberger, B., Sloot, P., eds.: Proc.
of HPCN-Europe, LNCS 1067. Springer (1996) 580–585

5. Yserentant, H.: On the Multi-level-splitting of the Finite Element Spaces. Numer.
Math. 49 (1986) 379–412

6. Bramble, J., Pasciak, J., J.Xu: Parallel Multilevel Preconditioners. Math. Comp.
55 (1991) 1–22

7. Kunert, G.: A Posteriori Error Estimation for Anisotropic Tetrahedral and Trian-
gular Finite Element Meshes, PhD Thesis, TU-Chemnitz (1999)

8. Hippold, J., Rünger, G.: A Communication API for Implementing Irregular Algo-
rithms on Clusters of SMPs. In Dongarra, J., Laforenza, D., Orlando, S., eds.: Proc.
of EuroPVM/MPI, LNCS 2840. Springer (2003) 455–463

9. Hippold, J., Rünger, G.: Task Pool Teams for Implementing Irregular Algorithms
on Clusters of SMPs. In: Proc. of the 17th IPDPS, CD-ROM. (2003)


