
In-place Algorithms for the Symmetric All-to-all Exchange
with MPI

Michael Hofmann∗ and Gudula Rünger
Department of Computer Science
Chemnitz University of Technology

Chemnitz, Germany
{mhofma,ruenger}@cs.tu-chemnitz.de

ABSTRACT
The article presents two efficient in-place algorithms for the
symmetric all-to-all exchange of the MPI_Alltoallv opera-
tion. The first algorithm performs a series of pairwise data
exchanges similar to the existing algorithm used by MPICH,
but with fewer consecutive communication steps and idle
processes. The second algorithm uses hierarchical sets of
processes that lead to a better locality of communication.
Exploiting additionally available memory for performance
improvements is described. Performance results for an In-
finiBand cluster and an IBM Blue Gene/Q system demon-
strate the performance benefits of the algorithms within a
generic benchmark program and an FFT application.

Keywords
symmetric all-to-all, collective communication, in-place, lim-
ited memory, MPI

1. INTRODUCTION
The main memory of a parallel computer represents a lim-

ited resource that often decides which maximum problem
size of an application can still be processed. For distributed
memory parallel programming, the utilized communication
operations of MPI can significantly increase the memory re-
quirements: Data to be sent and data to be received has
to be stored at separate locations in memory, and thus,
the data exists twice during the data exchange (i.e., on the
sender process and the receiver process). In the worst case,
these doubled memory requirements occur only during data
redistribution steps and lead to large amounts of unused
memory during all other steps of an application.

In-place communication was introduced in MPI to reduce
the memory requirements of communication operations. For
collective communication operations, such as reduce, gather,
scatter, or all-to-all, the key word MPI_IN_PLACE can be spec-
ified instead of a send buffer. In this case, the data to be

∗
Supported by the Cluster of Excellence MERGE funded by DFG.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroMPI ’13, September 15 - 18 2013, Madrid, Spain
Copyright 2013 ACM 978-1-4503-1903-4/13/09 ...$15.00.

sent is read from the given receive buffer before the incom-
ing data is stored. Using the MPI_IN_PLACE key word for
the MPI_Alltoallv operation restricts the collective data ex-
change to a so-called symmetric all-to-all exchange: Between
each pair of processes, the same amount of data is exchanged
(i.e., send and receive counts are equal) and the data is read
and written at the same locations in the given receive buffer
(i.e., send and receive displacements are equal). The sym-
metric all-to-all exchange represents a strong restriction of
the general all-to-all exchange with arbitrary counts and dis-
placements. However, the symmetric all-to-all exchange is
the only in-place communication with the MPI_Alltoallv

operation supported by the current MPI standard.
In this article, two efficient in-place algorithms for the

symmetric all-to-all exchange with the MPI_Alltoallv oper-
ation are presented. Both algorithms represent a significant
improvement over the algorithm used in MPICH [1]. With
p parallel processes, the MPICH algorithm has a complex-
ity of O(p2) and leads to communication steps with large
numbers of idle processes. The two improved algorithms
have a complexity of O(p) and fewer idle processes. The
first algorithm performs p consecutive communication steps
with at most one process being idle in each step. The second
algorithm performs at most p+dlog2 pe−2 consecutive com-
munication steps, but uses hierarchical sets of processes that
lead to a better locality of communication. Exploiting addi-
tionally available memory for performance improvements is
described. The presented algorithms are not limited to the
MPI_Alltoallv operation, but can also be used for imple-
menting the in-place communication of the MPI_Alltoall

and MPI_Alltoallw operation. All algorithms are imple-
mented and used within a generic benchmark program and
within the in-place FFT provided by the FFTW software li-
brary [6]. Performance results for an InfiniBand cluster and
an IBM Blue Gene/Q system are shown.

The rest of this article is organized as follows: Section 2
presents related work. Section 3 describes the in-place al-
gorithms for the symmetric all-to-all exchange. Section 4
shows performance results. Section 5 concludes the article.

2. RELATED WORK
The MPI specifications as well as single MPI implemen-

tations have been investigated with respect to their memory
requirements [11, 5, 7]. These analyses consider the scalabil-
ity of specific MPI functionalities, the sizes of internal data
structures, or the management of intra- and inter-node con-
nections for very high numbers of MPI processes. Improving
the memory requirements of collective communication oper-

Original published: M. Hofmann and G. Rünger. In-place algorithms for the symmetric all-to-all exchange with MPI. In J. G. Blas,
J. Carretero, and J. Dongarra, editors, Recent Advances in the Message Passing Interface: 20th European MPI Users’ Group Meeting
(EuroMPI 2013), pages 105–110. ACM, 2013. Online available at http://dx.doi.org/10.1145/2488551.2488568.

http://dx.doi.org/10.1145/2488551.2488568

ations is limited to their interfaces. Examples are the neigh-
borhood collective communication operations introduced in
MPI version 3.0 [4], the integration of data size and dis-
placement parameters into derived MPI datatypes [14], or
the specification of data redistribution patterns based on
data elements instead of MPI processes [9].

In-place buffers for collective communication operations
were introduced with MPI version 2.0 and are supported by
MPI implementations, such as MPICH [1] and OpenMPI [2].
Only MPICH supports in-place buffers for the MPI_Alltoall
operation and for the symmetric all-to-all exchange with the
MPI_Alltoallv and MPI_Alltoallw operation. The utilized
algorithm is described in Sect. 3.1. An in-place algorithm
for the general (not-symmetric) all-to-all exchange with the
MPI_Alltoallv operation is presented in [10]. The algo-
rithm requires additional memory as temporary buffer and
leads to a complex implementation that respects arbitrary
dependencies between sending and receiving (i.e., overwrit-
ing) data. The presented algorithms do not require tempo-
rary buffers and are specifically designed for the dependen-
cies of the symmetric all-to-all exchange. The MADRE li-
brary provides memory efficient operations for redistributing
equal sized data blocks [13]. Exchanging the arbitrary sized
data of the MPI_Alltoallv operation requires to treat each
data element (specified by the MPI datatype) as a separate
data block, thus leading to increased memory requirements
that are proportional to the size of the data to be exchanged.

Platform-specific optimizations and library-internal details
of MPI implementations have been a frequent subject of re-
search that can also affect in-place communication opera-
tions. For example, the hierarchical factor algorithm can
provide series of pairwise data exchanges that are suitable
for hierarchical systems, such as SMP clusters [12].

3. IN-PLACE ALGORITHMS FOR THE
SYMMETRIC ALL-TO-ALL EXCHANGE

The symmetric all-to-all exchange for the in-place commu-
nication of the MPI_Alltoallv operation can be performed
with a series of pairwise data exchanges. Each pairwise data
exchange involves two processes that send their data to each
other and overwrite their data with the incoming data. This
functionality is provided by the MPI_Sendrecv_replace op-
eration. In the following, three algorithms for performing
the pairwise data exchanges are presented.

3.1 MPICH Algorithm
An implementation of the symmetric all-to-all exchange is

part of the portable MPI implementation MPICH [1]. The
pseudocode of the utilized algorithm is shown in Fig. 1. The
algorithm is executed by all parallel processes in an SPMD
way. Two loops are used to iterate over all pairs of processes.
In the inner loop, the pairwise data exchange between the
processes i and j is performed while all other processes con-
tinue the loops. The two loops lead to a complexity ofO(p2),
which is inappropriate for large numbers of processes p. Fur-
thermore, the algorithm performs data exchanges for each
process with itself, which is unnecessary.

Figure 2 (left) illustrates the resulting order of the pair-
wise data exchanges for an example with p = 7 processes.
The loop overhead is neglected and it is assumed that each
process can perform a single data exchange in each commu-
nication step. Each entry (i, j), 0 ≤ i, j < 7, of the 7 × 7

1 Let rank be the local process rank
2 for i = 0 to p− 1 do
3 for j = i to p− 1 do
4 if i = rank then
5 Exchange data with process j

6 else if j = rank then
7 Exchange data with process i

Figure 1: Pseudocode of the MPICH algorithm
for the symmetric all-to-all exchange. The al-
gorithm is executed by p parallel processes in
an SPMD way.

matrix represents a data transfer from process i to process
j, thus entries (i, j) and (j, i) represent one pairwise data
exchange. The number of each entry represents the com-
munication step in which the data exchange is performed.
For example, process 0 performs the pairwise data exchange
with itself in step 1 while all other processes are idle. In step
2, processes 0 and 1 exchange data with each other while all
other processes are idle. In step 3, processes 0 and 2 ex-
change data with each other while process 1 continues all
iterations of the inner loop and performs the pairwise data
exchange with itself. The number of idle processes decreases
until step 7. After step 7, the number of idle processes in-
creases and in step 13 only process 6 performs the last data
exchange with itself. For p parallel processes, the MPICH
algorithm performs 2p−1 consecutive communication steps.

3.2 Linear Shift Algorithm
The linear shift algorithm eliminates the high complexity

and the large number of idle processes of the MPICH al-
gorithm. Figure 3 shows the pseudocode of the linear shift
algorithm that is executed by all parallel processes in an
SPMD way. A single loop iterates over the consecutive com-
munication steps. In each iteration, the calculated value j
represents the rank of the target process for the pairwise
data exchange. This data exchange is only performed if the
target process is not the local process itself. For p parallel
processes, the linear shift algorithm has a complexity ofO(p)
and performs at most p consecutive communication steps.

The calculation of the target process in line 3 corresponds
to a linear processing of all processes according to their
ranks. However, the linear processing is shifted by the rank
value of the local process, thus leading to an individual order
of pairwise data exchanges on each process. Figure 2 (mid-
dle) illustrates the resulting order of the pairwise data ex-
changes for an example with p = 7 processes. Apart from
the skipped data exchanges in the main diagonal, the upper
left part of the matrix is equal to the matrix of the MPICH
algorithm in Fig. 2 (left). The lower right part of the matrix
is different and shows that these pairwise data exchanges are
also performed during steps 1–7. The i-th row of the matrix
(0 ≤ i < 7) corresponds to the 0-th row shifted i entries to
the left and with the dropped entries reinserted on the right.

3.3 Hierarchical Sets Algorithm
The hierarchical sets algorithm divides the symmetric all-

to-all exchange between all processes into a series of ex-
changes between disjoint sets of processes. The algorithm
starts with an initial set containing all processes. This initial

Figure 2: Illustration of the communication steps performed by the MPICH algorithm (left), the linear shift
algorithm (middle), and the hierarchical sets algorithm (right) for p = 7 processes. Each entry (i, j), 0 ≤ i, j < 7,
of the matrices denotes the communication step in which the data transfer from process i to process j is
performed. Gray rectangles for the hierarchical sets algorithm represent data exchanges that are performed
between disjoint subsets of processes.

1 Let rank be the local process rank
2 for i = 0 to p− 1 do
3 j = i− rank + p mod p
4 if j 6= rank then
5 Exchange data with process j

Figure 3: Pseudocode of the linear shift al-
gorithm for the symmetric all-to-all exchange.
The algorithm is executed by p parallel pro-
cesses in an SPMD way.

set is equally divided into two disjoint subsets of processes,
each containing processes with consecutive ranks. Between
the two subsets of processes, the exchange is performed with
an algorithm similar to the linear shift algorithm: A loop
iterates over the communication steps and each process cal-
culates its target processes for the pairwise data exchanges
according to a linear processing that is shifted by the rank
value. After the exchange between the two subsets, the ex-
change within each subset is performed independently from
each other in the same way as for the initial set.

Figure 4 shows the pseudocode of the hierarchical sets
algorithm that is executed by all parallel processes in an
SPMD way. Variables low and high denote the current set
of processes to which the local process belongs to. A while-
loop is performed as long as the current set contains more
than one process (line 3). In each iteration of the while-loop,
the current set is divided into two subsets by calculating the
middle value mid between low and high (line 4). If the local
process belongs to the subset of processes with lower rank
values, then pairwise data exchanges are performed with
processes with higher rank values (lines 5–10). Otherwise,
pairwise data exchanges are performed with processes with
the lower rank values (lines 12–17). The new current set of
processes for the next iteration of the while-loop is selected
by setting high (line 11) or low (line 18) to the middle value.

Figure 2 (right) illustrates the resulting order of the pair-
wise data exchanges for an example with p = 7 processes.
The gray rectangles represent data exchanges that are per-
formed between disjoint subsets of processes. For example,
the two biggest gray rectangles represent the data exchanges

1 Let rank be the local process rank
2 Set low = 0 and high = p
3 while low + 1 < high do

4 mid = b low+high
2

c
5 if rank < mid then
6 n = high−mid
7 for i = 0 to n− 1 do
8 shift = min(rank − low, n− 1)
9 j = mid + i + shift mod n

10 Exchange data with process j

11 high = mid

12 else
13 n = mid− low
14 for i = 0 to n− 1 do
15 shift = min(rank −mid, n− 1)
16 j = low + shift− i + n mod n
17 Exchange data with process j

18 low = mid

Figure 4: Pseudocode of the hierarchical
sets algorithm for the symmetric all-to-all ex-
change. The algorithm is executed by p parallel
processes in an SPMD way.

between the subsets of processes 0–2 and 3–7 that are per-
formed in steps 1–4. Further data exchanges between sub-
sets of processes are performed in steps 5–6 and step 7.

The number of communication steps required for data ex-
changes between two disjoint subsets of processes is equal
to the size of the larger subset. If the number of parallel
processes p is a power of 2, then all occurring sets of pro-
cesses are of even size and can always be divided into equal
sized subsets. In this case, the hierarchical sets algorithm
performs the optimal number of p−1 consecutive communi-
cation steps. Otherwise, sets of uneven size occur and each
of the dlog2 pe − 1 iterations of the while-loop can increase
the optimal number of consecutive communication steps by
one. Thus, the hierarchical sets algorithm performs at most
p + dlog2 pe − 2 consecutive communication steps.

3.4 Usage of Additional Memory
The algorithms described in the previous subsections use

the MPI_Sendrecv_replace operation for pairwise data ex-
changes. Since the MPI_Sendrecv_replace operation is block-
ing, only a single pairwise data exchange can be performed
at the same time. Furthermore, additionally available mem-
ory can not be used for improving the data buffering. To
exploit additionally available memory, each process uses an
auxiliary buffer as temporary storage for outgoing data.

As long as the empty space within the auxiliary buffer
is large enough, the outgoing data of a pairwise data ex-
change is copied from the given memory buffer to the aux-
iliary buffer. In this case, non-blocking point-to-point com-
munication operations are used to send the outgoing data
from the auxiliary buffer and to receive the incoming data
in the given memory buffer. Each copy of the outgoing data
reduces the empty space within the auxiliary buffer. If the
empty space is too small for a copy of the outgoing data,
then the MPI_Sendrecv_replace operation is used. Usually,
each process will first perform data exchanges with non-
blocking communication operations until the empty space
within the auxiliary buffer is almost exhausted. After that,
the remaining data exchanges will be performed with the
blocking MPI_Sendrecv_replace operation. Each process
can individually decide about the usage of blocking or non-
blocking operations, because both kinds of communication
operations can be matched with each other. After all data
exchanges are performed, each process waits for the comple-
tion of the non-blocking communication operations.

4. PERFORMANCE RESULTS
The algorithms described in Sect. 3 are implemented with

MPI point-to-point communication operations. Performance
results are shown to compare the algorithms with each other
and with other existing implementations.

4.1 Experimental setup
Two supercomputer systems called JuRoPA and Juqueen

have been used to obtain the performance results1. The
JuRoPA system is a parallel computing cluster consisting
of 2208 compute nodes connected with a QDR InfiniBand
network. Each compute node contains two quad-core Intel
Xeon processors with 2.93 GHz and 24 GiB main memory.
The MPICH based ParaStation MPI library from ParTec
is used. All results for the JuRoPA system were obtained
executing 8 processes on each compute node.

The Juqueen system is an IBM Blue Gene/Q system with
28 672 compute nodes. Each compute node consists of a
PowerPC A2 1.6 GHz processor with 16 compute cores and
16 GiB main memory [8]. An MPICH based MPI implemen-
tation specially adapted to the high-performance networks
of the Blue Gene/Q platform is used. All results for the
Juqueen system were obtained executing 16 processes on
each compute node.

For the following generic benchmark runs, 64-bit integers
are used as data elements for the symmetric all-to-all ex-
change. The size of the data each pair of processes exchanges
with each other is chosen uniformly random. The total size
of the data of each process for one symmetric all-to-all ex-

1The measurements were performed at the John von Neu-
mann Institute for Computing, Forschungszentrum Jülich,
Germany.

change is the same for all processes: 1 GB for the JuRoPA
system and 300 MB for the Juqueen system.

4.2 Symmetric All-to-all Exchange
The implementations of the three algorithms for the sym-

metric all-to-all exchange described in Sect. 3 are compared
with each other and with two implementations of the general
(not-symmetric) MPI_Alltoallv operation, i.e., the (not-in-
place) operation of the system-specific MPI library and the
general in-place algorithm presented in [10]. The imple-
mentation of the general in-place algorithm is available as
a software library [3] and uses 1 MB additional memory as
temporary buffer on each process. Figure 5 shows runtimes
of the system-specific MPI_Alltoallv operation, the general
in-place algorithm, the MPICH algorithm, the linear shift
algorithm (LSA), and the hierarchical sets algorithm (HSA)
depending on the number of processes for the JuRoPA sys-
tem (left) and the Juqueen system (right).

On the JuRoPA system, all implementations lead to in-
creasing runtimes for increasing numbers of processes. The
MPICH algorithm is always about a factor of two slower
than the best of the other implementations. Up to 32 pro-
cesses, the system-specific MPI_Alltoallv operation repre-
sents the fastest implementation. With more than 32 pro-
cesses, the system-specific MPI_Alltoallv operation is sig-
nificantly slower than LSA and HSA. This behavior of the
system-specific MPI_Alltoallv operation is usually not ex-
pected and indicates the absence of a suitable optimization.
The differences between LSA and HSA are only small, but
HSA is faster in almost all cases (about 10 % in the best
case). The behavior of the general in-place algorithm is sim-
ilar to the system-specific MPI_Alltoallv operation. Thus,
especially for large numbers of processes, the algorithms pre-
sented for the symmetric all-to-all exchange can lead to sig-
nificant performance benefits.

On the Juqueen system, all implementations except the
system-specific MPI_Alltoallv operation lead to increasing
runtimes for increasing numbers of processes. The system-
specific MPI_Alltoallv operation shows strongly increasing
runtimes for up to 16 processes (i.e., all processes are ex-
ecuted on a single compute node). Further increasing the
number of processes leads to almost constant or decreasing
runtimes, thus demonstrating the good performance of the
optimized collective communication operation of the Blue
Gene/Q system. The MPICH algorithm has significantly
higher runtimes in most cases, including a strongly increased
runtime with 512 processes that is about a factor of three
higher than the other in-place implementations. The run-
times of LSA and HSA differ up to 25 %, with HSA being
faster in most cases. With the torus network of the Juqueen
system, the hierarchical processing of HSA leads to more sta-
ble results for varying numbers of processes than the linear
processing of the MPICH algorithm and LSA. The general
in-place algorithm also leads to stable results for varying
numbers of processes, but is significantly slower than HSA
which is specialized for the symmetric all-to-all exchange.

4.3 Usage of Additional Memory
The implementation of the hierarchical sets algorithm is

extended to make use of additionally available memory as
described in Sect. 3.4. Figure 6 (left) shows runtimes of
the system-specific MPI_Alltoallv operation and the hier-
archical sets algorithm (HSA) with different amounts of ad-

0

2

4

6

8

10

12

2 4 8 16 32 64 128 256 512 1024

0

2

4

6

8

10

12

14

2 8 32 128 512 2048 8192

R
u

n
ti

m
e

[s
ec

o
n

d
s]

Number of processes

JuRoPA

MPI_Alltoallv

General in-place alg.

MPICH reference alg.

Linear shift alg.

Hierarchical sets alg.

Number of processes

Juqueen

MPI_Alltoallv

General in-place alg.

MPICH reference alg.

Linear shift alg.

Hierarchical sets alg.

Figure 5: Runtimes of the system-specific MPI_Alltoallv operation, the general in-place algorithm, the
MPICH algorithm, the linear shift algorithm, and the hierarchical sets algorithm depending on the number
of processes for the JuRoPA system (left) and the Juqueen system (right).

ditional memory depending on the number of processes for
the JuRoPA system.

The usage of additional memory leads to varying results
that reflect the behavior seen in Fig. 5 (left). With 1000 MB
additional memory, HSA performs the entire symmetric all-
to-all exchange with simultaneously executed non-blocking
point-to-point communication operations. In this case, HSA
shows the same behavior for increasing numbers of processes
as the system-specific MPI_Alltoallv operation, but with
the latter always being 5–30 % faster. This difference can be
attributed to the extra memory copies that are required by
HSA for creating temporary copies of the outgoing data. Up
to 32 processes, both HSA with 1000 MB additional mem-
ory and the system-specific MPI_Alltoallv operation lead
to better results than HSA with lesser or without additional
memory. With more than 32 processes, the usage of addi-
tional memory increases the runtime of HSA such that the
best results are achieved without additional memory. Thus,
on the JuRoPA system, it is sufficient to perform the sym-
metric all-to-all exchange with a series of consecutive block-
ing communication operations. Overlapping these block-
ing communication operations with additional non-blocking
communication operations continuously reduces the perfor-
mance for increasing numbers of processes.

4.4 In-place FFT
The parallel fast Fourier transforms provided by the FFTW

software library [6] rely on so-called global transposition
steps that perform an all-to-all exchange between all pro-
cesses. Depending on the block sizes that result from the
FFT size and the number of processes, the all-to-all ex-
change can either be implemented with the MPI_Alltoall

or the MPI_Alltoallv operation. If the FFT operates in-
place (i.e., the input data replaces the output data), then
the all-to-all exchange has also to be performed in-place. In
this case, the current implementation of the FFTW (version
3.3.3) allocates a temporary buffer and performs the all-to-

all exchange with point-to-point communication operations.
This implementation was modified to perform the all-to-all
exchange with the in-place algorithms presented in this arti-
cle. The parallel benchmark program of the FFTW is used
to perform three-dimensional real-valued forward FFTs that
operate in-place. The FFT sizes are chosen such that only
equal block sizes occur and only an in-place version of the
MPI_Alltoall operation is required: 512x512x512 for 2 pro-
cesses, 1024x1024x1024 for 16 processes, 2048x2048x2048 for
128 processes, and 4096x4096x4096 for 1024 processes. With
these FFT sizes, the total size of the data of each process
for the all-to-all exchange is about 512 MiB.

Figure 6 (right) shows runtimes of the all-to-all exchange
and the FFT using the MPICH algorithm and the hierar-
chical sets algorithm (HSA) depending on the number of
processes for the Juqueen system. The results represent the
runtime with the modified all-to-all exchange relative to the
unmodified FFTW. Using the MPICH algorithm leads to
a strong increase of the runtime of the all-to-all exchange.
The effect on the total runtime of the FFT is smaller and
depends on the number of processes. Especially for large
numbers of processes, the usage of the MPICH algorithm
leads to a strong increase of the total runtime up to a fac-
tor of about 1.6. With HSA, a significant increase of the
runtime is only observed with 16 processes. However, the
corresponding runtimes of HSA conform to the results ob-
tained in the previous subsections. For all other numbers
of processes, there exists either no significant increase of
the runtime or even a small decrease of the runtime. Even
though the overall effect on the total runtime of the FFT is
only small, the advantage of HSA is that no memory inten-
sive allocations of temporary buffers are required.

5. SUMMARY
In this article, two in-place algorithms for the symmet-

ric all-to-all data exchange of the MPI_Alltoallv operation
have been presented. Both algorithms perform a series of

0

2

4

6

8

10

2 4 8 16 32 64 128 256 512 1024

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

2 16 128 1024

R
u

n
ti

m
e

[s
ec

o
n

d
s]

Number of processes

Usage of additional memory on JuRoPA

MPI_Alltoallv

HSA with 1000 MB add. mem.

HSA with 500 MB add. mem.

HSA with 100 MB add. mem.

HSA without add. mem.

R
u

n
ti

m
e

re
la

ti
v
e

to
th

e
u
n

m
o
d

ifi
ed

F
F

T
W

Number of processes

In-place FFT on Juqueen

All-to-all / MPICH

FFT / MPICH

All-to-all / HSA

FFT / HSA

Figure 6: Left: Runtimes of the system-specific MPI_Alltoallv operation and the hierarchical sets algorithm
with different amounts of additional memory depending on the number of processes for the JuRoPA system.
Right: Runtimes of the in-place all-to-all exchange and the in-place FFT using the MPICH algorithm and
the hierarchical sets algorithm depending on the number of processes for the Juqueen system.

pairwise data exchanges, but differ in the order in which
these pairwise data exchanges are performed. The linear
shift algorithm performs the pairwise data exchanges in or-
der of the ranks of the processes. The hierarchical sets algo-
rithm divides the processes hierarchically into subsets, thus
leading to a better locality of communication. Performance
results for an InfiniBand cluster and an IBM Blue Gene/Q
system have shown that both presented algorithms perform
significantly better than the existing algorithm of MPICH.
The hierarchical sets algorithm usually leads to better re-
sults than the linear shift algorithm. On the InfiniBand
cluster, the differences between both algorithms are only
small. However, on the Blue Gene/Q system, the hierarchi-
cal sets algorithms is faster in most cases and leads to more
stable results for varying numbers of processes. Exploiting
additionally available memory has been described, but per-
formance improvements are only achieved in few cases with
small numbers of processes. Performance results for par-
allel FFTs within the FFTW software library have shown
that optimized in-place algorithms can reduce the memory
requirements without causing significant performance loss.

6. REFERENCES
[1] MPICH – High-Performance Portable MPI, Ver. 3.0.3.

http://www.mpich.org/.

[2] Open MPI: Open Source High Performance
Computing, Ver. 1.6.4. http://www.open-mpi.org/.

[3] ZMPI All-to-all In-place Library, Ver. 1.0.2.
http://www.tu-chemnitz.de/cs/PI/dl/software/.

[4] MPI: A Message-Passing Interface Standard Version
3.0, 2012. http://www.mpi-forum.org/.

[5] P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
T. Hoefler, S. Kumar, E. Lusk, R. Thakur, and
J. Träff. MPI on Millions of Cores. Parallel Processing
Letters, 21(01):45–60, 2011.

[6] M. Frigo and S. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005.

[7] D. Goodell, W. Gropp, X. Zhao, and R. Thakur.
Scalable Memory Use in MPI: A Case Study with
MPICH2. In Proc. of the 18th European MPI Users’
Group Meeting Conf., pages 140–149. Springer, 2011.

[8] R. Haring, M. Ohmacht, T. Fox, M. Gschwind,
D. Satterfield, K. Sugavanam, P. Coteus,
P. Heidelberger, M. Blumrich, R. Wisniewski,
A. Gara, G.-T. Chiu, P. Boyle, N. Chist, and C. Kim.
The IBM Blue Gene/Q Compute Chip. IEEE Micro,
32(2):48–60, 2012.

[9] M. Hofmann and G. Rünger. Fine-Grained Data
Distribution Operations for Particle Codes. In Proc. of
the 16th European PVM/MPI Users’ Group Meeting
Conf., pages 54–63. Springer, 2009.

[10] M. Hofmann and G. Rünger. An In-place Algorithm
for Irregular All-to-All Communication with Limited
Memory. In Proc. of the 17th European MPI Users’
Group Meeting Conf., pages 113–121. Springer, 2010.

[11] M. Pérache, P. Carribault, and H. Jourdren.
MPC-MPI: An MPI Implementation Reducing the
Overall Memory Consumption. In Proc. of the 16th
European PVM/MPI Users’ Group Meeting Conf.,
pages 94–103. Springer, 2009.

[12] P. Sanders and J. Träff. The Hierarchical Factor
Algorithm for All-to-All Communication. In Proc. of
the 8th Int. Euro-Par Conf. on Parallel Processing,
pages 799–804. Springer, 2002.

[13] S. Siegel and A. Siegel. MADRE: The Memory-Aware
Data Redistribution Engine. Int. J. High Performance
Computing Applications, 24:93–104, 2010.

[14] J. Träff. Alternative, uniformly expressive and more
scalable interfaces for collective communication in
MPI. Parallel Computing, 38(1–2):26–36, 2012.

http://www.mpich.org/
http://www.open-mpi.org/
http://www.tu-chemnitz.de/cs/PI/dl/software/
http://www.mpi-forum.org/

	Introduction
	Related Work
	In-place Algorithms for the Symmetric All-to-all Exchange
	MPICH Algorithm
	Linear Shift Algorithm
	Hierarchical Sets Algorithm
	Usage of Additional Memory

	Performance Results
	Experimental setup
	Symmetric All-to-all Exchange
	Usage of Additional Memory
	In-place FFT

	Summary
	References

