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Abstract In this article, we propose an in-place algorithm for irregular
all-to-all communication corresponding to the MPI Alltoallv operation.
This in-place algorithm uses a single message buffer and replaces the
outgoing messages with the incoming messages. In comparison to exist-
ing support for in-place communication in MPI, the proposed algorithm
for MPI Alltoallv has no restriction on the message sizes and displace-
ments. The algorithm requires memory whose size does not depend on
the message sizes. Additional memory of arbitrary size can be used to
improve its performance. Performance results for a Blue Gene/P system
are shown to demonstrate the performance of the approach.
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1 Introduction

The amount of the memory required to solve a given problem can be one of the
most important properties for algorithms and applications in parallel scientific
computing. Since main memory is a limited resource, even for distributed mem-
ory parallel computers, the memory footprint of an application decides whether
a certain problem size can be processed or not. Examples are parallel applica-
tions that use domain-decomposition techniques, e.g. mesh-based algorithms or
particle codes. Adaptive or time-dependent solutions often require periodical re-
distributions of the workload and its associated data. This may require irregular
communication based on MPI Alltoallv where individual messages of arbitrary
size are exchanged between processes. Even though the redistribution step may
require only a small part of the runtime, it can significantly reduce the maxi-
mum problem size if a second fully-sized buffer has to be kept available only for
receiving data during this step.

MPI communication operations commonly use separate send and receive
buffers. MPI version 2.0 has introduced “in place” buffers for many intracom-
municator collective operations using the MPI IN PLACE keyword. The result-
ing in-place communication operations use only a single message buffer and
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replace the outgoing messages with the incoming messages. Support for an in-
place MPI Alltoallv operation was introduced in the MPI version 2.2 [1], but
only with the restriction that counts and displacements of the messages to be
sent and received are equal. In this article, we present an algorithm for an in-
place MPI Alltoallv operation with arbitrary counts and displacements. This
in-place algorithm requires memory whose size does not depend on the message
sizes. If additional memory is available, it can be used to speed up the in-place
algorithm. The algorithm is described in the context of all-to-all communication,
but can directly be adapted to many-to-many or sparse communication. We have
implemented the algorithm and present performance results for a Blue Gene/P
system using up to 4096 processes to demonstrate the efficiency of our approach.

The rest of this paper is organized as follows. Section 2 presents related work.
Section 3 introduces the in-place algorithm for the MPI Alltoallv operation.
Section 4 shows performance results and Section 5 concludes the paper.

2 Related Work

Optimizations of MPI communication operations usually address latency and
bandwidth results. Interconnection topologies and other architecture-specific
properties are the subject of performance improvements, especially for high scal-
ing parallel platforms [2]. Specific MPI implementations as well as the MPI spec-
ification itself are analyzed with respect to future scalability requirements [3].
Here, the memory footprint of an MPI implementation becomes an important
optimization target.

Efficient data redistribution is a common problem in parallel computing.
Especially data parallel programming models like High Performance Fortran
provide support for flexible distributions of regular data structures to different
processors. In this context, numerous algorithms for efficient redistributions of
block-cyclic data distributions have been proposed (e.g. [4,5,6]). Algorithms for
irregular data redistribution with limited memory have received less attention.
Pinar et al. have proposed algorithms for data migration in the case of limited
memory based on sequences of communication phases [7]. Siegel et al. have
implemented various algorithms for data redistribution with limited memory in
the MADRE library [8]. In [9], they have provided a modification to prevent
livelocks in the basic algorithm of Pinar et al. In [10], we have proposed a fine-
grained data distribution operation in MPI and provided several implementation
variants including an in-place implementation based on parallel sorting.

3 An In-place Algorithm for MPI Alltoallv

The MPI Alltoallv operation is one of the most general collective communi-
cation operations in MPI. With p participating processes, each process sends p
individual messages to the other processes and receives p messages from them.
For each process, the sizes of the messages to be sent and received are given by
arrays scounts[1. . .p] and rcounts[1. . .p]. Additional arrays sdispls[1. . .p] and



rdispls[1. . .p] specify displacements that determine the locations of the messages.
The standard MPI Alltoallv operation uses separate send and receive buffers.
Therefore, the locations of all messages are non-overlapping and all messages
can be sent and received independently from each other.

The in-place MPI Alltoallv operation uses a single buffer for storing the
messages to be sent and received. This leads to additional dependencies for
sending and receiving the messages. A message cannot be received until there is
enough free space available at the destination process. Furthermore, a message
cannot be stored at their target location if this location is occupied by a message
that has to be sent (in advance). A trivial solution for this problem uses an
intermediate buffer to receive the messages. This requires additional memory
whose size depends on the size of the messages. The proposed in-place algorithm
solves this problem using additional memory of a size independent from the
message sizes.

3.1 Basic Algorithm

The algorithm is described from the perspective of a single process. We assume
that all messages consist of data items of the same type and that the buffers
used to store the messages are arrays of this type. Let Si denote the set of indices
belonging to the data items of the message to be sent to process i for i = 1, . . ., p.
Let Ri denote the set of indices of the locations where the incoming data items
from process i should be stored. The initial index sets can be calculated from the
given counts and displacements. We assume that the initial send index sets Si are
disjoint. The same applies to the initial receive index sets Ri. The messages are
sent and received in several partial submessages and the index sets are updated
as the algorithm proceeds. Even though the buffer can be seen as a large array,
only the locations given by the initial index sets are accessible.

The in-place algorithm is based on the basic algorithm of Pinar et al. [7,9]
and consists of a sequence of communication phases. In each phase the following
steps are performed. (1) The number of data items that can be received in free
space from every other process is determined. (2) These numbers are sent to the
corresponding source processes. This represents an exchange of request messages
between all processes that still have data items left to be exchanged with each
other. (3) The data items are transferred. The algorithm terminates when all
data items are exchanged. Algorithm 1 shows the basic algorithm adapted to our
notation. Additionally, our algorithm includes procedures for the initialization of
the index sets (line 2), for determining the items that can be received in free space
(line 4), and for updating the index sets at the end of each communication phase
(line 11). A description of these procedures is given in the following subsections.
Exchanging the request messages (lines 5–7) and the data items (lines 8–10) can
be implemented with non-blocking communication.

Siegel et al. have shown that the basic algorithm will neither deadlock nor
livelock, provided there is additional free space on every process used to receive
data items [9]. This is independent from the actual size of the additional free
space and from the particular strategy that determines how free space is used



Algorithm 1 Basic algorithm of the in-place MPI Alltoallv operation.

1: let recv[1. . .p] and send[1. . .p] be arrays of integers
2: init the index sets Si and Ri for i = 1, . . ., p (see Sect. 3.2)
3: while (

∑
i |Si| +

∑
i |Ri| > 0) do

4: recv[1. . .p] = determine the number of data items to be received (see Sect. 3.3)
5: exchange requests
6: → send recv[i] to process i for all i with |Ri| > 0
7: → receive send[i] from process i for all i with |Si| > 0
8: exchange data items
9: → send send[i] items at indices Si to process i for all i with send[i] > 0

10: → receive recv[i] items at indices Ri from process i for all i with recv[i] > 0
11: update the index sets (see Sect. 3.4)
12: end

to receive data items (line 4). The proof for deadlock-freedom applies to the
basic algorithm and is independent from our modifications. The original proof
for livelock-freedom assumes that all locations that become free (during the
algorithm) can be used as free space. However, for the MPI Alltoallv operation,
only locations given by the initial index sets Ri can be used as free space. All
locations that become free and do not belong to the initial index sets Ri cannot
be used as free space. The original proof can be modified to distinguish between
the usable and not-usable free locations, leading to the same result.

The additional available memory is used to create auxiliary buffers that are
independent from the input buffer. These auxiliary buffers provide the additional
free space that is required for the successful termination of the basic algorithm.
The usage of the auxiliary buffers is independent from the rest of the algorithm
and described in Sect. 3.5.

3.2 Initializing the Index Sets

The initial send index sets Si are defined according to the given send counts and
displacements: Si = {sdispls[i], . . ., sdispls[i] + scounts[i]− 1}. We assume that
the indices of Si are lower than the indices of Si+1 for i = 1, . . ., p−1. Otherwise,
a local reordering of the index sets is necessary. The receive index sets Ri are
initialized analogously. Each send index set Si is split into a finite number of
disjoint subsets S1

i , . . . , S
ni
i with Si = S1

i ∪ . . .∪ S
ni
i . The splitting is performed

at the positions given by the lowest and highest indices of the receive index
sets. Each subset created contains contiguous indices and is either disjoint from
all receive index sets or completely overlapped by one of the receive index sets.
There are at most 2p possible splitting positions, since each receive index set
provides two splitting positions. Thus the p initial send index sets can be split
in at most p+ 2p subsets. We define two functions to specify how the send index
subsets and the receive index sets overlap each other. A send subset is assigned
a matching receive set and vice versa using the functions rmatch and smatch.
For a send subset Sk

i 6= ∅, k ∈ {1, . . . , ni}, the matching receive set rmatch(Sk
i )



corresponds to the receive set Rj that overlaps with Sk
i . If there exists no such

receive set then rmatch(Sk
i ) = ∅. For a given receive set Rj , the matching send

subset smatch(Rj) corresponds to the send subset Sk
i 6= ∅ such that i and k are

minimal and Sk
i is overlapped by Rj . If there exists no such send subset then

smatch(Rj) = ∅. Figure 1 (left) shows an example for this initialization.

Figure 1. Examples for initialization (left) and update (right) of send and receive index

sets. Arrows indicate matching sets, e.g. S2
i → Rj corresponds to rmatch(S2

i ) = Rj .

3.3 Determine the Number of Data Items to be Received

For each message, the data items are received from the lowest to the highest
indices. The number of data items that can be received from process j in free
space at locations given by Rj is determined from the matching send subset of
Rj and is stored in recv[j].

recv[j] =

{
|Rj | if smatch(Rj) = ∅
min{x|x ∈ smatch(Rj)} −min{x|x ∈ Rj} otherwise

If no matching send subset exists, then all remaining data items from process
j can be received. Otherwise, the number of data items that can be received is
limited by the matching send subset smatch(Rj). The lowest index of this subset
corresponds to the lowest location of Rj that is not free. In addition to the data
items that can be received in the input buffer, the free space that is available in
the auxiliary buffers is used to receive additional data items.

3.4 Updating the Index Sets

The data items of the messages are sent and received from the lowest to the high-
est indices. All index sets are updated when the data items of the current phase
are sent and received. Each receive set Rj is updated by removing the recv[j]
lowest indices, since they correspond to the data items that were previously re-
ceived. Similarly, the send[i] lowest indices are removed from the send subsets
S1
i , . . . , S

ni
i . Sending data items to other processes creates free space at the local

process. However, only contiguous free space available at the lowest indices of a



receive set can be used to receive data items in the next communication phase.
For each receive set Rj , the free space corresponding to its indices is joined at
its lowest indices. This is achieved by moving all data items that correspond to
send subsets Sk

i with rmatch(Sk
i ) = Rj towards the highest indices of Rj (the

index values of Sk
i are shifted accordingly). After that, data items from process

j that are stored in the auxiliary buffers are moved to the freed space and Rj is
updated again. Finally, the functions rmatch and smatch are adapted and for
each send set Si the value of |Si| is computed according to its updated subsets
(only |Si| is required in Algorithm 1). Figure 1 (right) shows an example for this
update procedure. The costs for updating the index sets depend on the number
of data items that have to be moved. In the worst case, all data items of the
remaining send subsets have to be moved during the update procedure in every
communication phase.

3.5 Using Auxiliary Buffers

Additional memory of arbitrary size a is used to create auxiliary buffers on each
process. These buffers are used to receive additional data items while their tar-
get locations are still occupied. The efficient management of the auxiliary buffers
can have a significant influence on the performance. We use a static approach
to create a fixed number of b auxiliary buffers, each of size a

b . Data items from
process j can be stored in the (j mod b)-th auxiliary buffer using a first-come,
first-served policy. This static partitioning of the additional memory allows a
more flexible utilization in comparison to a single auxiliary buffer, but prevents
fragmentation and overhead costs (e.g., for searching for free space). More ad-
vanced auxiliary buffer strategies (e.g., with dynamic heap-like allocations) can
be subject of further optimizations.

4 Performance Results

We have performed experimental results for a Blue Gene/P system to investigate
the performance of the proposed in-place algorithm for MPI Alltoallv. The
implementation uses the standard MPI Alltoallv operation for exchanging the
request messages, because using non-blocking communication for this exchange
has caused performance problems for large numbers of processes (≥ 1024). In-
place communication usually involves large messages that occupy a significant
amount of main memory. Unless otherwise specified, each process uses 100 MB
data that is randomly partitioned into blocks and sent to other processes. Results
for the platform-specific MPI Alltoallv operation are obtained using a separate
(100 MB) receive buffer.

Figure 2 (left) shows communication times for different numbers of processes
p depending on the number of auxiliary buffers b. The total size of additional
memory used for the auxiliary buffers is 1 MB. Increasing the number of auxil-
iary buffers leads to a significant reduction in communication time, especially for
large numbers of processes. Choosing the number of auxiliary buffers depending
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Figure 2. Communication times for in-place MPI Alltoallv depending on the number
of auxiliary buffers (left) and with different sizes of additional memory (right).

on the total number of processes shows good results for various values of p. For
the following results we continue to use b = p

8 . Figure 2 (right) shows communi-
cation times for different sizes of additional memory (in % with respect to the
total message size of 100 MB) depending on the number processes. Increasing
the additional memory up to 10 % leads to a significant performance improve-
ment. A further increase up to 100% shows only small differences. This can be
attributed to the static auxiliary buffer strategy. With 100 % additional memory,
the sizes of the auxiliary buffers exceed the sizes of the messages to be received.
This leads to an insufficient utilization of the additional memory. However, even
with an optimal auxiliary buffer strategy there can be differences in performance
in comparison to a platform-specific MPI Alltoallv operation that includes op-
timizations for the specific system architecture [2]. For the following results we
continue to use 1 % additional memory (1 MB).
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Figure 3 (left) shows communication times for different total message sizes
depending on the number of processes. The communication time with small
messages strongly depends on the number of processes, while for large messages
it increases more slowly. Figure 3 (right) shows the time spend on different parts
of the in-place algorithm depending on the number of processes. The major part
of the communication time is spent for exchanging the data items. The costs for
exchanging the request messages are comparably small, but they increase with
the number of processes. The costs for updating the index sets are also rather
small. However, these costs strongly depend on the actual data redistribution
problem. If the number of communication phases increases and a large number
of data items need to be moved for each update, the total time of the in-place
MPI Alltoallv operation can be dominated by the local data movements.
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MPI Alltoallv, in-place MPI Alltoallv and two MADRE algorithms (right).

Figure 4 (left) shows communication times for different sparse data redistri-
bution schemes depending on the number of processes. For the sparse all-to-all
communication, each process sends messages only to a limited number of random
processes. The results show that the performance of the in-place algorithm is al-
most independent from the actual number of messages. Figure 4 (right) shows
communication times for the platform-specific MPI Alltoallv operation, the in-
place algorithm, and for the Basic Pinar-Hendrickson algorithm (BPH) and the
Local Copy Efficient algorithm (LCE) from the MADRE library [11] depending
on the number of processes. MADRE and its in-place algorithms are designed
to redistribute an arbitrary number of equal-sized (large) blocks according to a
given destination rank and index for each block. To compare these algorithms to
the MPI Alltoallv operation, we increase the data item size up to 16 KB and
treat each data item as a separate block in MADRE. Additional free blocks are
used to provide the additional memory to the MADRE algorithms. There is a
general increase in communication time for the MADRE algorithms depending



on the number of processes. In comparison to that, the results for the platform-
specific MPI Alltoallv operation and the in-place algorithm are more stable.
The communication time of the in-place algorithm is within a factor of three of
the platform-specific MPI Alltoallv operation.

5 Summary

In this paper, we have proposed an in-place algorithm for MPI Alltoallv that
performs data redistribution with limited memory. The size of required memory
is independent from the message sizes and depends only linearly on the number of
processes a single process has messages to exchange with. Additional memory can
be used to improve the performance of the implementation. It is shown that the
size of the additional memory and its efficient usage has a significant influence on
the performance, especially for large numbers of processes. Performance results
with large messages demonstrate the good performance of our approach.

Acknowledgment

The measurements are performed at the John von Neumann Institute for Com-
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