Modular Construction of Model Partitioning Processes
for Parallel Logic Simulation

KrLAUs HERING

GUDULA RUNGER

SVEN TRAUTMANN*

Fakultét fiir Informatik, Technische Universitdt Chemnitz, Germany

{hering,ruenger,sven.trautmann }@informatik.tu-chemnitz.de

Abstract

Logic simulation of a complex processor model in
VLSI design is very time consuming. One possibility
to increase the simulation speed is to partition the pro-
cessor model and assign the resulting parts to simulator
instances that cooperate over a loosely-coupled system.
For corresponding model partitioning processes, we
have developed a distributed framework parallelMAP
implementing a hierarchical partitioning strategy. It is
intended to be used as production environment in VLSI
design as well as an experimental test bed for algorithm
development. In this paper we describe the possibili-
ties parallelMAP offers for the modular construction
of partitioning processes starting from a set of basic
sequential and parallel modules. Ezxperimental experi-
ences are given with respect to IBM processor models
comprising from 1.5 % 10° to 2.5 x 10° elements at gate
level.

1 Introduction

The complexity of Very Large Scale Integration
(VLSI) design is growing rapidly. Therefore the use
of verification tools is unavoidable in all design phases.
Logic simulation is a very time consuming verification
method for the design of processor structures. There
have been many efforts to accelerate logic simulation
which essentially fall into three categories:

e Variation of simulation techniques and introduction of

special data structures

o Parallelization of simulation software

e Migration of simulation processes into hardware

These categories are closely related and don’t ex-
clude each other. With respect to the first point,
time-driven, event-driven and demand-driven simula-
tion techniques are to be mentioned which have been
combined with compiled and interpretive implemen-
tation methods [1, 2]. A further promising approach

*supported by Deutsche Forschungsgemeinschaft (DFG)

is based on the usage of Binary Decision Diagrams
(BDDs) as representations of Boolean functions [3]. In
this case, simulation speed up comes at the expense of
a large need for memory. Examples of parallel event-
driven and time-driven logic simulators can be found in
[4] and [5], respectively. For these approaches, balanc-
ing of load and keeping the communication overhead
as small as possible are key issues. The partial or com-
plete realization of simulation processes in hardware
making use of hardware accelerators and emulators [6]
by far results in the highest speed gain. But in this case
a loss of flexibility and observable modeling detail has
to be noted. We have parallelized the sequential func-
tional logic simulators TEXSIM and MVLSIM (IBM)
with loosely-coupled processor systems as target hard-
ware [7]. Our parallelization approach makes use of
model inherent parallelism. Within a parallel simula-
tion, parts of the original circuit model are distributed
to cooperating simulator instances. Thereby, sophis-
ticated model partitioning is a crucial point to reach
significant simulation speed up. Corresponding parti-
tioning problems are related to NP-hard combinatorial
optimization problems. That’s why for the partition-
ing of complex circuit models heuristics are essentially
applied to provide suboptimal solutions. An introduc-
tion to the spectrum of partitioning problems in VLSI
design is given in [8]. There exists a couple of parti-
tioning tools such as METIS [9] and JOSTLE [10].

For our special application field we have developed a
hierarchical partitioning strategy [11]. Model parti-
tioning appears as BOTTOM UP clustering starting
from basic building blocks called cones. A preparti-
tioning phase that is intended to reduce problem com-
plexity leads to super-cones. These objects are taken
to generate hypergraph structures. Their edges carry
information with respect to overlapping and commu-
nication relations between model parts. In a second
partitioning phase, algorithms can exploit these struc-
tures for partition valuation on the basis of a formal
model of parallel logic simulation. In general, a parti-
tioning process is concluded by iterative algorithms to

improve partitions. Among other algorithms, we have
developed Parallel Evolutionary Algorithms [12] for
this purpose.

The raising number of algorithms applied in our parti-
tioning project led to the need for efficiently organizing
work within a partitioning environment. There were
two application scenarios to consider: It should serve
as a production environment in industrial processor de-
sign processes (IBM) as well as an experimental test
bed for the development of partitioning algorithms in
the academic area. The resulting parallelMAP environ-
ment is a realization of the client/server architecture
DRIVE (Distributed Runtime Environment) [13]. It
supports the construction and execution of partitioning
processes on heterogeneous computing resources (for
instance, workstation clusters in combination with par-
allel machines).

In this paper we will describe the possibilities paral-
leIMAP offers for the modular construction of parti-
tioning processes. We start with an outline of our
model partitioning strategy in Section 2. Four phases
of a typical partitioning process are presented. In Sec-
tion 3 the potential of our modular partitioning ap-
proach for parallel and distributed execution is shown.
Then, in Section 4 the main components of paral-
lelMAP are introduced. Section 5 presents experimen-
tal results with respect to the runtime of basic modules
of our partitioning processes. Section 6 comprises con-
clusions and our intentions for future work.

2 Hierarchical partitioning process

We work with processor models provided by IBM
and have access to their internal structure through
the IBM-specific Design Automation DataBase (DADB).
First we will introduce some basic terms in context of
the DADB. The data type for a processor model is called
proto. It contains the functional description of the pro-
cessor model and is generated by compiling DSL/1 or
VHDL sources. A proto consists of lists of bores and
nets. Boxes can embody logical gates, latches, input-
pins, output-pins or a combination of boxes. Nets rep-
resent connections between boxes. The complete list
of models considered in this paper, their function and
size is shown in Table 1.

Cones as special circuit areas play an important role in
our model partitioning processes. We consider cones
which are determined by output-pins or latches (so
called head-boxes). A cone belonging to such a head-
box b is defined as the set of all boxes of the proto
from which a direct path to b exists without interme-
diate latches (see shaded area in Fig. 1).

Because of the high complexity of the partitioning
problem, a hierarchical partitioning strategy has been
chosen which allows the splitting of the problem into
easier parts. For a complete partitioning process, start-
ing from a proto as representation of the original cir-

Name Function Boxes Nets

CLKSTRG6 | Clock-Chip (Monet) 187120 274781

PICMOFP | Picasso Chip-set, IBM 390 235721 374837
architecture

PU_M5X | Processing Unit (Monet) 252082 355453

MBA9S | Memory = Bus
(Monet)

Adapter 512843 510986

ML100MOS Monet Chip-set, IBM 390 ar-

chitecture

2657165 4830437

Table 1. Name, function and size of the stud-
ied processor models

cuit model up to the generation of parallel simulator
input, we distinguish four consecutive phases: prepar-
titioning, partitioning, partition improvement and sim-
ulation model generation. Prepartitioning (I) concen-
trates cones resulting in a specified number of super-
cones. This represents a step into a new hierarchy
level. The partitioning algorithms (II) assign the pre-
viously generated super-cones to blocks. The use of
super-cones instead of cones leads to a lower number of
elements to assign and therewith to a lower complexity
of the partitioning process. The improvement phase
(IIT) conditionally changes the assignment of super-
cones to blocks with the objective of increasing the
expected speed of parallel simulation processes based
on a corresponding model partition. Finally, the sim-
ulation models as input for the parallel simulator are
generated in phase (IV). In the following we illustrate

Figure 1. Cone belonging to latch L2

the mentioned phases in more detail. Algorithms of
the prepartitioning phase (I) identify all head-boxes
and generate a specified number of super-cones by uni-
formly distributing the head-boxes (each box represent-
ing ”its” cone). This is done without explicit consid-
eration of the cone size and cone overlapping. The
STEP-algorithm is an example for such an algorithm.
As parameter it takes the number of super-cones to
be built. This number typically ranges from 100 up to
1000 depending on the model size. Assuming the head-
boxes numbered consecutively according to their posi-
tion in the proto box list, the STEP-algorithm assigns
the head-boxes sx theadbozes (g4 1) theadboses]

supercones Ngupercones

to the super-cone s. This approach takes advantage
from the structure of the proto data type defined in
the DADB. The STEP prepartitioning can lead to super-
cones with quite little overlapping effects.

For further partitioning, aspects of overlapping and
communication between super-cones are represented by
hypergraphs. Within phase (II), hypergraph genera-
tion (ITa) using a proto and a prepartition is done as

first step. A following partitioning algorithm (IIb) as-
signs super-cones to a specified number of blocks taking
a hypergraph, prepartition and proto (or a subset of
them) as input. To exemplify a partitioning algorithm
from the second phase we sketch the MOCC (Mini-
mum Overlap Cone Cluster) algorithm. We assume
the number of blocks to be n:

1. The n super-cones with the largest number of boxes
are chosen and assigned to the n blocks.

2. The remaining super-cones are sorted according to
their size.

3. The block B with the least number of boxes is chosen.

4. The overlapping areas of B with all remaining super-
cones are calculated and the super-cone that con-
tributes most to overlapping is assigned to B.

5. The number of boxes for B is recalculated.

6. If there are remaining super-cones, the procedure is
continued at 2.

The algorithms of phase (III) try to improve parti-
tions by moving super-cones from one block to another.
As an example we outline the parallel genetic algorithm
(PGA). We consider one of a number of identical mod-
ules realizing a multiple subpopulation approach:

1. A partition is taken as input and a number of indi-
viduals (representing partitions) is generated to form
a subpopulation.

2. Genetic operators modify individuals by exchanging
small numbers of cones (variation).

3. Using a fitness function (related to estimated parallel
simulation times) the quality of the modified individ-
uals is calculated.

4. Some of the individuals are exchanged with other PGA
modules involved in the partitioning of the same proto
(migration).

5. The best individuals are selected to form the base of
the next generation (selection).

6. Aslong as the predefined number of generations is not
reached, the procedure is continued at 2.

After the third phase one final partition is available.
Phase (IV) comprises ”technical” algorithms which
generate for each block the corresponding proto (IVa)
and simulation model (IVb) starting from the final
partition. So, this phase provides the model-related
input for the parallel logic simulator.

Within our partitioning strategy, we allow the compe-
tition of algorithms. Having on the one side complex
circuit models and on the other side a set of heuristics
to handle them, in general one can not know in
advance which algorithm is to be preferred. In this
context, distributed execution of different algorithms
together with a selection or merging mechanism for
result determination is advantageous. To enable
competition within our partitioning processes, some
functionality has to be added to broadcast preparti-
tions and hypergraphs to involved nodes as well as a
possibility to compare partitions and choose the one

with the smallest expected parallel simulation time.

A complete overview of a partitioning process in-
cluding simulator input generation and assuming
competition of m algorithms in phases (IIb) and (III)
is shown in Fig. 2.

A selection of implemented algorithms and a short
description can be found in Table 2.

‘ Proto

}—{Prepartitioning (I)}
[
{

i Hypergraph
‘ Prepartition }—*{ generation (Ila)}
[

‘ Hypergraph }—{ Broadcast }

i

‘ m x Hypergraph HE{ Partitioning (11b) JQ}E‘ m x Prepartition m

i

‘ Partition 1-m H}%E{Improvement(lll)m

i

‘ Partition 1-m HE{ Selection ﬂ]
[
{

‘ Partition }—{ Broadcast }

i

‘ n x Best partition %E{ Proto build (IVa) m

HE{Model build (|Vb)m

N3

‘ Protos

i

‘Simulationmodels%E{ Simulation m

Figure 2. A complete partitioning process

3 Potential of parallel and distributed
module execution

In the previous section we have described a sequence
of phases forming typical partitioning processes in the
context of our parallel logic simulators. Like simulation
itself, these processes show a potential of reasonable
parallel and distributed execution. One argument sup-
porting this assertion is delivered by the competition
of algorithms mentioned in the previous section. Fur-
thermore, if we consider the generation of protos and
simulation models as input for the parallel simulators
in phase (IV), this can be done for each model part in-
dependent of the corresponding steps for other model
parts. Then, with our PGA we have a building block
of partitioning processes that already represents a par-
allel algorithm. Finally, taking the aspect of algorithm
development into consideration, partitioning processes
can be accompanied by a couple of analyzing processes
and processes for the generation of intermediate struc-
tures which are well suited for distributed realization.
To describe execution dependencies between modules

we make use of Series Parallel (SP) Graphs. In
Fig. 3 a) three fictitious partitioning processes (with-
out input generation for parallel simulation) are rep-
resented. Process 1 describes a sequential partition-
ing process. In contrast, process 2 shows competi-
tion of algorithms with corresponding result selection
and/or result merging modules. There are two com-
peting prepartitioning algorithms and two competing
sequences of partitioning and improvement algorithms.
One of the improvement algorithms is assumed to be
parallel (on this level of abstraction without informa-
tion on a number of nodes to be exploited). Process
3 is built from the former two processes which can be
executed in parallel. In the context given, SP graphs

Phase | Name Function

T STEP Algorithm description can be found in Section 2
SAWTOOTH| The list of head-boxes with their cones is sep-
arated by a sawtooth-like function, the rise is
adjustable by a parameter
RANDOM The cones are arranged randomly
T MOCC Algorithm description can be found in Section 2
nBCC n Backward Cone Concentration — n overlapping
super-cones are combined and assigned to the
block with the lowest number of boxes
STEP Similar to the prepartitioning algorithm STEP
the super-cones are assigned to blocks according
to a given order
RANDOM The super-cones are assigned randomly to
blocks
SAWTOOTH]| Similar to the prepartitioning algorithm SAW-
TOOTH the super-cones are separated by a
sawtooth-like function
T PGA Algorithm description can be found in Section 2
ITALG Iterative improvement algorithm, searching for
adjacent suboptimal partitions
Iterative improvement algorithm with problem
specific (adapted) cost function
MIXED Combination of MINCUT and ADAPTED to
achieve a faster solution than using ADAPTED
and a more balanced one than using MINCUT
Min-cut-algorithm for overlapping and commu-
nication hypergraph. Because of the two hyper-
graphs a weighted sum of the cut sizes is used
to achieve a better partition
TABU. Best adjacent solution is chosen and to prevent
SEARCH loops already visited, solutions are blocked for
a specified period

ADAPTED

MINCUT

Table 2. Partitioning algorithms which can be
used in the different phases

represent a starting point for scheduling processes re-
sulting in a number of execution threads on a virtual
set of nodes. For process 2, in Figure 3 b) a trans-
formation result comprising three execution threads is
shown. Dashed arrows represent communication rela-
tions between instances of parallel algorithms, contin-
uous arrows describe the control flow within the exe-
cution threads. We have two parallel algorithms for
selection/merging processes (concerning two and three
execution threads, respectively). A broadcast opera-
tion with respect to the selected prepartition and the
generated hypergraph has been inserted. Finally, there
is a parallel improvement algorithm with instances ap-
pearing within two execution threads.

The scripting language of our partitioning environment
parallelMAP allows to formulate execution threads as
described above based on a set of dynamically linked
libraries that provide the modules available for the con-
struction of partitioning processes.

Start start

[LoadProto | [Loadproto]

\]
‘
Hypergraph

Start

[
igra] [/\
Process 1 Process 2
Hypergraph

Selection

Partitioning 1

Partitioning 2

Improvement

Parallel
Improvement

End

End

Process 3
Process 1

End

Process 2

a)

[Loadproto |

Prepartitioning 2

[Loadproto | [Loadproto |

Prepartitioning 1

Selection | [Selection
Merging Merging

Hypergraph
generation

Hypergraph & Hypergraph & Hypergraph &
Prepartition |----=| Prepartition |---->| Prepartition
broadcast broadcast broadcast

[partitioning 1 | [partitioning 1 | [Partitioning 2 |

(el o] [

[selection J<---{ selection J<---{ selection |

b)
Figure 3. a) Modular structure of partition-
ing processes given in terms of SP graphs
b) Three execution threads belonging to Pro-
cess 2 with four parallel algorithms involved

4 Partitioning environment
parallelMAP

This environment has been developed to support
model partitioning in the industrial design process as
well as algorithm design in the academic area. It is
a realization of the distributed runtime environment
DRIVE [13] that enables scientists and engineers
to build, run and monitor parallel programs in an
easy way. Programs are formulated using a scripting
language that allows the combination of sequential
and MPI-based parallel program modules. A DRIVE
script specifies a set of execution threads such as shown
in Figure 3 b). There are three types of basic DRIVE
components called clients, servers and workers. They
are completed by problem specific shared libraries and
databases (DADB in the case of parallelMAP). The base
of a DRIVE implementation is the server. Clients may
connect to, and workers and processing machines are
controlled by the server. The server is able to attend
to several users simultaneously, each possibly handling
a couple of scripts. It also realizes: script-based
node allocation, starts of a set of worker instances as
framework for parallel script execution, application
coordination and the control of the data flow between
clients and their corresponding set of worker instances.

The clients provide a comfortable graphical user
interface and an editor allowing partially automated
script generation. Beyond this, scripts can be started
(sent to the server to be arranged for execution) and
the output of the workers can be monitored using a
socket connection for communication.

Worker instances are always related to an underlying
script. From the programming point of view, a set
of workers embodies a set of n processes belonging
to a MPI-program under execution. Each of the
workers has its own socket connection to the server for
receiving a sequence of script-based requirements for
function execution. Some of the functions are internal
functions (implemented within the worker), but the
majority of the functions is located in shared libraries.
The internal functions are of general importance (for
instance, concerning synchronization and communica-
tion aspects related to worker components). Functions
in the shared libraries are application-specific. In the
case of parallelMAP they represent algorithms which
can be applied in the four phases of model partitioning
processes we have described in Section 2. There are
distinguished sequential and parallel functions, as
well. The execution of the latter ones is connected
with a set of related function calls within different
workers. Communication between the corresponding
function instances is based on MPI. For example,
there exists a parallel function to realize PGA (see
Section 2). Dynamic linking permits the modification
of application-specific parallelMAP functionality even
at runtime.

The general structure of a script consists of three parts:
machine reservation, communicator initialization for
MPI and the list of queues. Such a list of queues
describes a set of possibly parallel execution threads.

5 Experimental experiences

In Section 3 we have outlined the potential of our
modular construction approach for partitioning pro-
cesses with respect to parallel and distributed realiza-
tion. A variety of partitioning processes described by
SP graphs of moderate size is thinkable. To support
scheduling processes starting from such graphs, one
needs information on the runtime of involved modules
under different conditions. Related experimental re-
sults will be presented in the following. First we want
to describe our experimental environment. As men-
tioned before we use different processor models (see
Table 1).

5.1 Measurement environment

The runtime measurements have been done on an
IBM RS/6000 Workstation Model 595 running AIX

Version 4.3 equipped with a 135 MHz P2SC proces-
sor and 2GB of RAM. To measure the algorithms ef-
ficiently we have modified the parallelMAP worker’s
source code. The worker usually does not send run-
time information via the server back to the clients.
Therefore we have modified the wrapper function which
starts functions stored in shared libraries. We obtain
runtime values using MPI’s MPI Wtime function and
send them to clients using the previously established
socket connection. Script generation and script execu-
tion has been automated. For this purpose a client im-
plementation in Java was modified. A Java class was
implemented that generates new scripts from lists of
protos, prepartitioning, partitioning and improvement
algorithms by rearranging them. The generated scripts
are sent to the parallelMAP server, the worker’s out-
put with the included runtime information is received
and the runtime information is filtered out for later
evaluation.

5.2 Resaultsof the measurements

Loading phase The partitioning starts with the
loading of the proto. The loading time depends on
the size of the proto, i.e. the number of its boxes and
nets, as well as the underlying file-systems like NF'S,
AFS or a local one. For the protos considered, the
loading times range from 4 up to 57 seconds and de-
pend linearly on the number of boxes and nets in the
proto.

Prepartitioning phase (I) The runtime of prepar-
titioning depends on the size of the proto and the
prepartitioning algorithm used. The number of gen-
erated super-cones has no influence on the runtime of
the prepartitioning. This is obvious after looking at
the details of the prepartitioning algorithms (see Sec-
tion 2). The runtimes for the RANDOM algorithm are
10 to 20% larger than for the STEP or SAWTOOTH
algorithms. That may be caused by the extra use of
the rand function for calculating the random numbers.

Hypergraph building (IIa) The next step in
partitioning is the generation of the hypergraph.
Corresponding runtime values are influenced by the
proto used and the previously executed prepartitioning
algorithm. Results are shown in Fig. 4. Values for the
largest proto (ML100MOS) based on the SAWTOOTH
algorithm using 500 super-cones and the RANDOM
algorithm could not be measured because of memory
overflow. The shorter the runtime for building hyper-
graphs, the smaller the generated hypergraphs, and,
the smaller the overlapping area of the super-cones
and the communication amount between them. For

the STEP algorithm, the runtime is almost linear
with respect to the number of super-cones generated
in prepartitioning. As shown in Fig. 4, the STEP
algorithm leads to the smallest runtime for the hy-
pergraph generation. All the following measurements
assume STEP as prepartitioning algorithm used.

MLTDINDS
NBAGE =

FUNEE %
CLKSTRE

PICMOFP .

STE
STEP SC-050

-
Protos STER Se-t0 preparitionng algoritm

Figure 4. Runtime of the hypergraph genera-
tion (Ila) depending on the prepartition algo-
rithm, the number of super-cones (SC) and
the proto used

Partitioning phase (IIb) In this phase the prepar-
tition and hypergraph are used as well as the proto to
generate a partition. SAWTOOTH, RANDOM and
STEP (see Table 2) show the smallest runtime, but
they mainly produce partitions connected with very
long simulation runtimes.

In general, nBCC and MOCC produce partitions
which are better suited for parallel simulation. Run-
time values of the nBCC and MOCC algorithm
considering different standard parameter settings are
shown in Fig. 5 with respect to the PICMOFP proto.

Figure 5. Runtime of nBCC and MOCC (llb)
with different parameter settings for the PIC-
MOFP proto

Improvement phase (III) We consider six differ-
ent improvement algorithms using the PU_M5X proto.
Five of them are iterative improvement algorithms
and the sixth is the earlier mentioned parallel genetic
algorithm PGA (handling 100 or 200 generations).
As algorithms of phase (IIb) nBCC and MOCC are

assumed. The results are shown in Fig. 6. Inconsistent
results for the iterative improvement algorithms are
caused by their truncation condition. The algorithms
stop, if no better adjacent solution is reachable. In
contrast the runtime of the PGA is affected by the
proto-size, the number of super-cones and a given
number of generations only.

Ml adapted - moce
B adapled - nbo
250 |+ [l mixed - mocc

0 et — ribas:

[mincut - mosc

0 minad — nbes

[tabu_search - moce
200 | 3 1t search - rbeo

[oga100ge. - masc

Bl oy 100ge. -~ nbes

B oga 200ge. - macc

B e SO0ge - nibos

runtime nseserds

B

ol — m=mlk |.—.=.‘ Jl.l[[hru:l -lI.II:[HH
100 280 500

number of supercones

Figure 6. Runtime of different algorithms in
phase (lll) using MOCC and nBCC as parti-
tioning algorithms in phase (llb) with respect
to the PU_M5X proto

Combination of phases (I - III) Finally, in
Fig. 7 we show the share of different phases in the
overall-runtime of partitioning processes without
consideration of simulator input generation. Results
are given with respect to the PUM5X proto. The 90
processes are represented using a top-down division by:

Partitioning algorithm (nBCC or MOCC)
Number of super-cones (100, 250 or 500)
Subtype of the partitioning algorithm (1, 2 or 3)
Five iterative improvement algorithms

6 Conclusion and future work

We have presented a modular approach to the con-
struction of model partitioning processes for parallel
logic simulation of processor structures in VLSI design.
It has been realized within the partitioning environ-
ment parallelM AP that provides a platform for efficient
work of both design engineers and scientists developing
partitioning algorithms.

We have shown the potential of our special partitioning
processes for parallel and distributed execution. For
the representation of partitioning scenarios SP graphs
have been used. They provide a basis for scheduling

120 T T
Il Load proto ! : :
prepartitioning
Il hypergraph
partitioning
100 H Il improvement

rurtime in seconds

partitioning processes

Figure 7. Runtime of whole partitioning pro-
cesses without simulator input generation
using different numbers of super-cones, par-
titioning and improvement algorithms on the
PU_M5X proto

processes leading to descriptions of sets of execution
threads. Within parallelMAP, such descriptions are
given using the DRIVE scripting language. To sup-
port scheduling, we have provided runtime information
with respect to our basic modules for the construction
of partitioning processes.

In future work we will investigate relations between
the runtime of partitioning processes and the quality
of resulting model partitions in terms of expected par-
allel simulation times. Furthermore, we will include
load information concerning the target system for the
execution of model partitioning into the process of gen-
erating corresponding parallelMAP scripts.

References

[1] J. B. Gosling, Simulation in the Design of Digital
Electronic Systems, Cambridge University Press,
1993.

[2] C. C. Charlton, D. Jackson, and P. H. Leng,
“Modelling and simulation of digital logic: An
alternative approach,” in Proc. of IASTED Int.
Symp. Identification, Modelling and Simulation,
1987, pp. 86-90.

[3] C. Scholl, R. Drechsler, and B. Becker, “Func-
tional simulation wusing binary decision dia-
grams,” in Proc. of the IEEE/ACM Int. Conf. on
Computer-Aided Design (ICCAD’97), 1997, pp.
8-12.

[4] R. Schlagenhaft, M. Ruhwandl, C. Sporrer, and
H. Bauer, “Dynamic load balancing of a multi-
cluster simulator on a network of workstations,”
in Proc. of the 9th Workshop on Parallel and Dis-
tributed Simulation (PADS’95), 1995, pp. 175—
180.

[5] K. Hering, J. Loser, and J. Markwardt, “dlb-
SIM - a parallel functional logic simulator allow-
ing dynamic load balancing,” in Proc. of the
Conf. on Design, Automation and Test in Europe
(DATE’01), 2001, pp. 472-478.

[6] A. Dieckmann, “HW-SW-coverification with em-
ulation, co-simulation and FPGA-based prototyp-
ing,” in Designer’s Forum, Conf. on Design, Au-
tomation and Test in FEurope (DATE’01), 2001,
pp- 98-101.

[7] D. Déhler, K. Hering, and W. G. Spruth, “Cycle-
based simulation on loosely-coupled systems,” in
Proc. of the 11th Annual IEEE Int. ASIC Conf.
(ASIC’98), M. E. Schrader, R. Sridhar, T. Buech-
ner, and P. P. K. Lee, Eds., 1998, pp. 301-305.

[8] F. M. Johannes, “Partitioning of VLSI circuits
and systems,” in Proc. of the 33rd Design Au-
tomation Conf. (DAC’96), 1996, pp. 83—87.

[9] G. Karypis and V. Kumar, “Multilevel algorithms
for multi-constrained graph partitioning,” Tech.
Rep. TR 98-019, Department of Computer Sci-
ence, University of Minnesota, 1998.

[10] C. Walshaw and M. Cross, “Parallel optimisa-
tion algorithms for multilevel mesh partitioning,”
Tech. Rep. 99/IM /44 (Mathematics Research Re-
port), University of Greenwich, Centre for Numer-
ical Modelling and Process Analysis, 1999.

[11] K. Hering, R. Haupt, and Th. Villmann, “Hier-
archical strategy of model partitioning for VLSI-
design using an improved mixture of experts ap-
proach,” in Proc. of the 10th Workshop on Parallel
and Distributed Simulation (PADS’96), 1996, pp.
106-113.

[12] H. Schulze, R. Haupt, and K. Hering, “Exper-
iments in parallel evolutionary partitioning,” in
Proc. of Int. Conf. ParC099, Parallel Computing -
Fundamentals € Applications. 2000, pp. 383—-390,
Imperial College Press.

[13] K. Hering, H. Hennings, and R. Haupt, “DRIVE:
A distributed environment supporting combina-
tion of sequential and parallel modules,” in
Proc. of the IASTED Int. Conf. on Parallel and
Distributed Computing and Systems (PDCS’99),
1999, pp. 637-644.

