
Transparent redirection of file-based data accesses
for distributed scientific applications

Michael Hofmann, Gudula Rünger, Tommy Seifert
Department of Computer Science
Technische Universität Chemnitz

09107 Chemnitz, Germany
Email: mhofma@cs.tu-chemnitz.de

Abstract—File-based data access represents one of the most
common ways of providing input data and retrieving output
data in scientific applications. However, in distributed computing
environments, the execution platform of the application and the
storage location of the data might be different. Thus, additional
efforts for performing the data transfers are required either by
the application programmer or user. In this article, we propose
an approach for accessing non-local data files with existing
applications that can be performed by a regular user. The existing
file-based data access operations of an application are intercepted
and redirected to dedicated storage services with a specialized
communication library. The approach is transparent in the sense
that the application does not have to distinguish whether the data
access is redirected or not. We present an implementation that
supports various POSIX file I/O operations. Performance results
with a benchmark application and the mesh generator Gmsh
are shown to demonstrate the good performance and the low
overhead of the proposed approach.

Index Terms—file accesses, distributed applications, data cou-
pling, engineering simulation, scientific computing

I. INTRODUCTION

Today’s simulations in science and engineering are increas-
ingly complex applications build up from individual software
components. These components are often highly specialized
software tools (e. g., a special-purpose programming library
or application) developed independently from each other.
Depending on their unique purposes, each of these components
might also have individual requirements (e. g., computational
power, memory or storage capacity, user interaction) regarding
the utilized hardware platform. Thus, instead of implementing
complex simulations as monolithic application codes, it be-
comes increasingly important to develop an application such
that it reuses existing codes and supports distributed execu-
tions. The potentially large variety of software components
and hardware platforms involved leads to several challenges
for the application programmer. Especially the data coupling
between the software components has to be supported in an
efficient way [1].

The complex simulations which we consider are applica-
tions from mechanical engineering for optimizing lightweight
structures based on numerical simulations. This class of
applications is extensively studied in the research project
MERGE1. The simulations cover the manufacturing process

1MERGE Technologies for Multifunctional Lightweight Structures, http:
//www.tu-chemnitz.de/merge

of short fiber-reinforced plastics with a computational fluid
dynamics (CFD) application based on OpenFOAM [2]. The
mechanical properties of the structures are subsequently tested
by simulating specific operating load cases with an in-house
finite element method (FEM) application called SPC-FEM
implemented in Fortran [3]. Additional software components
perform the optimization methods, distribute compute and data
intensive numerical simulation jobs among HPC platforms,
handle interactive user input, and store and convert simula-
tion data. To support a flexible coupling of these individual
software components in distributed computing environments,
the Simulation and Data Coupling (SCDC) programming
library [4] has been developed.

Existing tools and applications in scientific computing are
usually not prepared for the usage in distributed computing
environments. However, there exist a large variety of pro-
gramming frameworks and libraries to achieve the coupling
of independent software components of scientific applications.
An overview of the SCDC library and a comparison with
other existing approaches is given in [1]. All these approaches
usually require high additional programming efforts to modify
existing applications in such a way that data accesses to non-
local storage locations can be performed.

In this article, we present a new approach that works without
modifying an application and, thus, is applicable for a broad
range of users and applications. The existing file-based data
accesses of an application are intercepted and immediately
redirected using the SCDC library as a communication layer.
The approach is transparent in the sense that the application
does not have to distinguish whether its input or output data
files are stored within the local file system or redirected to a
non-local storage location. Instead, the user of the application
specifies where the input or output data files are stored and pro-
vides either regular file paths or specific URI-based addresses
to be used by the SCDC library. We present performance
results for file I/O benchmarks and for the mesh generator
Gmsh [5].

The rest of this article is organized as follows: Section II
discusses related work. Section III presents the approach
for redirecting file-based data accesses. Section IV gives an
overview of the SCDC library and Sect. V describes its
usage for the redirection. Section VI shows corresponding
performance results. Section VII concludes the article.

Original published: M. Hofmann, G. Rünger, and T. Seifert. Transparent redirection of file-based data accesses for distributed scientific
applications. In Proceedings of the 19th IEEE International Conference on Computational Science and Engineering (CSE 2016), pages 1–8.
IEEE, August 2016. Online available at http://dx.doi.org/10.1109/CSE-EUC-DCABES.2016.236.

http://www.tu-chemnitz.de/merge
http://www.tu-chemnitz.de/merge
http://dx.doi.org/10.1109/CSE-EUC-DCABES.2016.236


II. RELATED WORK

Distributed file systems represent the most common ap-
proach for providing file-based data access in situations where
the accessing application is executed on a different comput-
ing platform than the data storage. Widespread systems and
protocols include the Lustre file system [6] and the IBM
General Parallel File System (GPFS) [7] for HPC platforms,
the Hadoop Distributed File System (HDFS) [8] for cloud
computing, as well as the Network File System (NFS) [9]
and the Andrew File System (AFS) [10] for general computer
networks. Shared directories of a distributed file system are
usually mounted within the hierarchy of the local file system
of a computer such that any application executed on the
computer can access the distributed data. However, setting
up corresponding file servers and integrating distributed file
systems into a specific computer usually requires extensive ad-
ministration efforts and privileges that are not within the scope
of a regular user of an application. Furthermore, distributed
file systems usually enforce a centralized data transfer across
dedicated file servers, but do not provide direct point-to-point-
oriented data transfer. In comparison to that, the redirection
proposed in this article represents a lightweight solution that
can be used by any user of an application. Direct point-to-
point-oriented data transfer is supported, because the service-
oriented approach of the utilized SCDC library allows to
run corresponding storage services on any computer in a
distributed environment.

There exists a large number of frameworks and toolkits
(both application-specific and application-independent) for the
coupling of independently developed software components
into a single simulation application [11]. Examples include
the Earth System Modeling Framework [12], the OASIS
framework [13], the Model Coupling Toolkit [14], or the Mul-
tiscale Coupling Library and Environment [15]. Specialized
communication libraries, such as PSMILe from the OASIS
framework [13], the parallel coupler PALM [16], or the Typed
Data Transfer (TDT) library [17] provide operations for data
exchanges between parallel software components. However,
integrating an existing application into these frameworks usu-
ally enforces significant changes for the usage of the applica-
tion. Using the communication libraries in an existing appli-
cation requires additional programming efforts. In comparison
to that, the redirection proposed in this article represents a
lightweight approach that does not require changes to the
application. Additionally, the utilized SCDC library has several
unique advantages such as the dynamic coupling of flexible
distributed software components at runtime and the support
for various data exchange methods, including direct function
calls. A more detailed comparison of the SCDC library with
other existing frameworks and libraries is given in [1].

III. REDIRECTING FILE-BASED DATA ACCESSES

A typical usage scenario of component-based complex
simulation codes is illustrated in Fig. 1. The user executes
an existing application code either locally on its desktop com-
puter (A) or remotely on the nodes of a compute cluster (B).

application
execution

data access

data
access

(A) desktopcomputer

(B) computecluster

(C) storageserver

Figure 1. Overview of distributed application executions and data accesses.

The storage location of the input and output data files for the
application to be executed is either the desktop computer (A)
or a dedicated storage server (C). To support a large variety of
applications, it is assumed that an application code is capable
of reading and writing its data within the local file system of
the computer executing the application. Achieving a seamless
utilization of varying storage and execution locations thus
requires additional efforts for transferring the data between
these locations.

A redirection of file-based data accesses is required and
should work in any situation of data file storage or execution
platform. There are several approaches to achieve this goal for
existing applications:

• The applications and their utilized programming libraries
can be modified so that the application code can access
data from the specific storage location. This approach
requires access to the corresponding source codes, which
is not always possible, e. g. for commercial application
codes. Moreover, the programming efforts required for
modifying the applications can be very high for an
application user.

• The input and output data files can be stored temporarily
on the computer executing the application code. This
approach leads to a runtime overhead for storing data
(that is usually only read or written once) and is often
only applicable for data of limited size. In the worst case,
the total data storage requirements increase by a factor
of two if the input and output data files are stored at the
original and the temporary location.

• A distributed file system can be used for storing the
input and output data. This approach requires significant
system administration efforts and is usually not allowed
for a regular user of a computer system. Thus, the
distributed file system has to be available on all computers
to be utilized and the input and output data files have
to be stored (and subsequently used) from within the
distributed file system.

The approach proposed in this article replaces the existing
file access operations utilized by the application by alternative
versions that redirect all accesses to alternative storage loca-
tions. This solution circumvents the drawbacks and limitations
of the previous approaches. However, the implementation re-

2



quires (1) an appropriate communication layer for performing
the data transfers and (2) alternative versions of all file access
operations utilized by the application.
(1) The SCDC library is used as a communication layer for

performing the data transfers in a distributed computing
environment. This programming library provides a unique
interface for performing data transfers based on different
data exchange methods, such as direct function calls, inter-
process communication, and network communication. An
URI-based addressing scheme is provided for selecting
a specific data exchange method and storage location.
These addresses are used as the file paths that a user
of an application can specify as input and output data
files. A description of the SCDC library and its utilized
functionalities is given in Sect. IV.

(2) File accesses within scientific applications are usually
based on specific data formats. Proprietary data formats,
such as the native MSH format of the mesh generator
Gmsh [5] or the STD format of the SPC-FEM applica-
tion [3], are directly implemented within the applications.
More general data formats, such as the VTK format of the
Visualization Toolkit (VTK) [18] or the STL format for
surface geometries [19], might be used through dedicated
programming libraries. Due to the large variety of existing
data formats, applications, and programming libraries in-
volved, a format-independent approach based on plain file
accesses will lead to a widely applicable solution. Thus,
the proposed approach redirects the file access operations
of the Portable Operating System Interface (POSIX). The
specific operations supported and their implementation
based on the SCDC library is described in Sect. V.

IV. SIMULATION AND DATA COUPLING (SCDC) LIBRARY

The SCDC library is a programming library that can be used
by an application programmer to implement the data coupling
between distributed program components. In the following, we
give an overview of the SCDC library as well as its supported
data exchange methods and data storage functionalities. A
more detailed description of the SCDC library is given in [1].

A. Overview

The SCDC library follows a service-oriented approach
where all interactions between program components are or-
ganized as data exchanges between client and service compo-
nents. The general interaction scheme supported by the SCDC
library is application-independent and proceeds as follows:
A service component provides access to datasets that are
managed by data providers. A client component interacts
with services by executing commands on specific datasets
provided by services. The corresponding functionalities of
datasets and commands depend on the specific data provider.
The SCDC library contains several data providers with pre-
defined functionalities as well as a generic data provider whose
functionality is specified by the programmer through hook
functions.

In this work, the pre-defined storage data provider for
accessing the local file system will be used. A dataset of
a storage data provider represents a directory or file within
the local file system of the execution platform on which
the corresponding service component is executed. Executing
commands on these datasets can be used, for example, to read
or write files. More detailed information about the utilization
of the storage data provider and its supported functionalities
is given in Sect. IV-C. Additionally, the pre-defined relay data
provider will be used as a bridge between client and service
components that run on execution platforms which are not
directly connected. The datasets of a relay data provider have
the same functionalities as the corresponding datasets of the
target service configured for the relay by the programmer.
Executing a command on the dataset of a relay service invokes
the command on the target service. The relay data provider is
used for the performance experiments presented in Sect. VI.

The datasets of an SCDC service are identified with an URI-
based addressing scheme:

<scheme>://<authority>/<base>/<path>

The scheme part identifies the data access method to be
used to interact with an SCDC service and the authority
part identifies the specific SCDC service to interact with. In
Sect. IV-B, the currently supported data access methods and
the corresponding specification of scheme and authority
are described. The base part identifies the specific data
provider of the SCDC service and the remaining path identi-
fies the specific dataset. The following example shows a valid
URI address for accessing a file of a storage service:

scdc+tcp://gupta/storeHDD/bench/rand1G.dat

Network communication with a TCP socket is used to in-
teract with the storage service running on host gupta. File
bench/rand1G.dat within the root directory of the storage
data provider storeHDD will be accessed.

The application programmer of a client component has to
use the library functions to open a dataset of a service, execute
one or several commands on the dataset, and close the dataset
when it is not used anymore. The execution of a command is
implemented within the library in the following steps:

1) The input data of the command is transferred from the
client to the service.

2) The corresponding data provider managing the dataset
performs the command on the service.

3) The output data of the command is transferred from the
service back to the client.

The input and output data are provided by the application
programmer through dedicated data objects that contain at
least a plain memory buffer for storing the input and output
data. Furthermore, a data object can optionally contain a
reference to a next function that supplies additional input or
output data. The next function of an input data object has
to be specified by the programmer and will be called by the
SCDC library during the execution of the command whenever
additional input data is required. The next function of an output

3



data object is returned by the SCDC library after executing the
command and has to be called by the programmer to retrieve
additional output data. This mechanism allows to transfer and
process the input and output data as a data stream and is
especially designed for supporting large data sizes. Neither
client components nor service components have to store the
entire input or output data before their processing.

The SCDC library can be utilized through C and Python
programming interfaces. The library functions provide mech-
anisms for setting up existing application programs as services
as well as to access these services from within other applica-
tion programs as clients.

B. Data access methods

The SCDC library supports different data access methods to
execute a command on a dataset (i. e., invoked by a client and
performed by a service). Direct access is enabled as default
and connects all commands executed by a client to direct
function calls of a service. Further support of connection-
oriented access can be enabled (and released) by a service
component with the nodeport_open/close functions.
The specific data access method used for accessing a dataset
depends solely on the URI address specified by the client.
All programming details of the different data access methods
are transparently hidden within the SCDC library. Thus, a
client component can easily switch between different datasets
and data access methods without additional programming
efforts. The following specifications for the scheme and
authority parts of the URI address are currently supported.

• scdc: Access datasets within the same program compo-
nent through direct function calls. The authority part
has to be empty.

• scdc+uds: Access datasets of program components
running on the same execution platform through inter-
process communication with Unix Domain Sockets. The
socket within the local file system is given by the
authority part.

• scdc+tcp: Access datasets of program components
running on different execution platforms through network
communication with TCP sockets. The hostname of the
execution platform running the service component is
specified by the authority part.

• scdc+mpi: Access datasets within a distributed memory
parallel program with message-passing based on MPI.
The authority part specifies an existing MPI commu-
nicator or a port name to establish an MPI connection.

C. Storage data providers

A service component can have several data providers at the
same time. Each data provider has to be created (and released)
with the dataprov_open/close functions and can be
individually addressed with the base part of the URI address
(see Sect. IV-A). Creating a storage data provider within a
service component thus requires to specify an individual string
for the base part as well as the root directory that should
be accessed within the local file system. A client component

opens a dataset, executes commands on the dataset, and
closes the dataset with the dataset_open/cmd/close
functions. Each command is specified as a string consisting
of the command name and additional optional parameters. A
dataset of a storage data provider represents either a directory
or file within the root directory of the storage data provider
and supports the following commands:

• cd: Change the dataset to select the directory or file given
as additional parameter.

• ls: List information about the selected directory or file. If
a directory is selected, then a list of the directory entries
(i. e., subdirectories and files) is returned as the output
data of the command. If a file is selected, then the size
of the file is returned as the output data of the command.

• rm: Remove the selected directory or file and change the
dataset to the parent directory.

• put: Create a new file and/or write data to a file. If
a directory is selected, then create a new file given as
additional parameter. If a file was selected or a new file
was created, then write the input data of the command to
the file. In both cases, additional parameters can be used
to specify the offset and the size of the data to be written.

• get: Read data from a file. If a directory is selected, then
read the file given as additional parameter. If a file was
selected, then read the selected file. In both cases, the data
read is returned as the output data of the command and
additional parameters can be used to specify the offset
and the size of the data to be read.

V. TRANSPARENT REDIRECTION OF FILE ACCESSES

The goal of this work is to implement a redirection of the file
access operations of existing applications to an SCDC storage
service. In the following, we give an overview of the approach
and describe the implementation with the SCDC library as well
as the supported POSIX file I/O operations.

A. Overview

The redirection should be transparent in the sense that a user
of an application is able use a local file or an URI address of
an SCDC storage service as input or output data file. However,
it should not be required to modify the application code itself,
because otherwise only a limited number of applications might
be supported. Instead, the operation of opening a file within
an existing application is intercepted. Depending on the file
path it is detected whether an URI address or a file within
the local file system is used. All following operations (e. g.,
reading, writing, or closing a file) are then either performed
with the SCDC library as described in Sect. IV-C or with the
original operations provided by the operating system.

To redirect the file access operations, an alternative im-
plementation for each POSIX file I/O operation utilized by
the application is provided. These alternative implementations
are included in a software library called libfileio_scdc
that can be used either as a static library (i. e., an archive on
Linux systems) or as a shared library (i. e., a shared object file
on Linux systems). The static library can be used if the user

4



performs the linker step for creating the application executable
itself. The shared library can be used for the execution of
dynamically linked application executables. By adding the
shared library libfileio_scdc.so to the LD_PRELOAD
environment variable, the dynamic loader ld-linux.so on
Linux systems loads the shared library before all other libraries
are loaded [20]. This causes that the alternative implementa-
tions for file accesses are used by an application instead of
the original operations provided by libraries of the operating
system. Fig. 2 illustrates the redirection of file accesses to local
and remote file systems with the libfileio_scdc library.

Fig. 3 gives an overview of the software layers involved in
redirecting the file access operations of existing applications:

1) User application layer using POSIX file I/O operations,
such as fopen, fread, fwrite, and fclose.

2) LFIO layer mapping POSIX file I/O operations either
to the operations of the operating system or the SCDC
library as described in the next subsection.

3) Operating system layer providing POSIX file I/O opera-
tions for local file accesses.

4) SCDC layer providing service-oriented accesses to re-
mote file systems as described in Sect. IV.

B. Mapping to the SCDC library

The POSIX API supports various file access operations
with overlapping functionalities. To map all these operations
to the corresponding operations of the SCDC library, the
libfileio_scdc library uses a separate layer called LFIO.
This layer contains a small set of functions for plain byte-
oriented accesses to a file within an SCDC storage service.
Handles are used to distinguish between different SCDC
storage files that are accessed at the same time. The LFIO
handle of an SCDC storage file is a structured data type
that contains an SCDC dataset representing a file within an
SCDC storage provider (see Sect. IV-C) as well as the current
read/write position within the file.

The lfio_open function uses a given URI address of an
SCDC storage file to perform the corresponding dataset_-
open function of the SCDC library and returns a new LFIO
handle. The following opening modes are supported:

• READ/WRITE: Open the file for reading and/or writing.
• SYNC: Disable an optional I/O buffering.
• CREATE: Create the file with a put command first.
• TRUNCATE: Empty the file by removing and recreating

the file with rm and put commands.
The information about the READ, WRITE, and SYNC modes
are stored within the handle. The required commands for
the CREATE and TRUNCATE modes are performed with the
dataset_cmd function of the SCDC library.

The lfio_read function reads a requested amount of data
from the SCDC storage file of an LFIO handle. The data is
retrieved with a get command using the current read/write
position of the handle as offset and the given memory buffer
for the output data object of the command (see Sect. IV-A).
The number of bytes read is returned and the current read/write

position of the handle is increased. Analogously, the lfio_-
write function writes a given amount of data to an SCDC
storage file with a put command.

An I/O buffering is implemented within the LFIO handle
so that put and get commands transfer bigger amounts of
data if possible. The buffering considers only a continuous
area around the current read/write position. For example, if
only a few bytes should be read, a bigger amount of data
is retrieved with a get command and this additional data
is stored in a separate buffer that can be used to serve
subsequent reads. Analogously, writing small amounts of data
is first directed to the buffer and only transferred with a put
command if necessary. The lfio_sync function can be used
to synchronize the buffered data. The I/O buffering is not
intended as a cache that reduces the amount of data transferred,
but as a way of reducing the number of data transfers. Thus,
the size of the buffer is kept relatively small (see Sect. VI-A)
and the order of read and write operations is maintained.

The lfio_seek function can be used to set the current
read/write position of an LFIO handle relative to either the
start of the file, the current position, or the end of the file.
Setting the position relative to the end of the file is achieved
by determining the size of the file with an ls command. Fi-
nally, the lfio_close function releases an LFIO handle by
writing the remaining buffered data with a put command and
performing the corresponding dataset_close function.

C. Emulation of POSIX file I/O operations

POSIX file I/O operations reference open files either with
a FILE handle (i. e., an opaque data structure) or a file de-
scriptor (i. e., an integer value). When the libfileio_scdc
library intercepts an invocation of a POSIX file I/O operation,
it is required to decide depending on the FILE handle or
the file descriptor whether the mapping to the SCDC library
or the original operation of the operating system should be
used. Since application programmers only work with pointers
to FILE handles, a FILE handle can be replaced with an LFIO
handle without any notice by the application programmer.
However, the LFIO handle contains a specific marker such that
the libfileio_scdc library can decide whether a given
pointer references a FILE handle or an LFIO handle. For
the file descriptors, a special range of integer values is used
to represent open SCDC storage files (without notice by the
application programmer). If the given file descriptor is within
this special range, then a static table is used to map this SCDC
storage file descriptor to its corresponding LFIO handle. The
reverse mapping (i. e., from LFIO handle to file descriptor) is
supported by intercepting the POSIX operation fileno.

Opening SCDC storage files is supported by intercepting the
fopen and open operations and depending on the file path,
either the lfio_open function or the original operation of
the operating system is called. The given modes and flags
of the POSIX operations are mapped to the corresponding
opening modes described in the previous subsection. Addi-
tionally, the libfileio_scdc library also intercepts the
fdopen, freopen, and creat operations. Closing SCDC

5



libfileio_scdc

user application using POSIX file I/O

.../file.dat

libscdclibscdclibscdc
libscdc

scdc:///.../file.dat
scdc+uds://.../file.dat
scdc+tcp://.../file.dat
scdc+mpi://.../file.dat

local
SCDC
service

remote
SCDC

services

remote server file systemslocal file system

UDS TCP MPI

Figure 2. Overview of the redirection of file accesses to local and remote file systems with the libfileio_scdc library.

2) LFIO (libfileio_scdc.so)

4) SCDC library
3) operating system

1) user application (binary executable)

Figure 3. Overview of the software layers involved in redirecting the file
access operations of existing applications.

storage files is supported by intercepting the fclose and
close operations and calling the lfio_close function.
Reading and writing SCDC storage files is supported by
intercepting the following POSIX file I/O operations and
calling the lfio_read and lfio_write functions.

• Byte I/O with fread, fwrite, read, and write.
• Single character I/O with fgetc and fputc.
• String I/O with fgets and fputs (using a loop to

search for a newline as the end of the input for fgets).
• Formatted I/O with f[v]scanf and f[v]printf

(using in-memory files created with fmemopen).
Synchronizing or discarding the optional I/O buffering is
supported by intercepting the fflush and fsync operations
and calling the lfio_sync function. Changing the current
read/write position is supported by intercepting the fseek and
lseek operations and calling the lfio_seek function. Fi-
nally, the libfileio_scdc library also intercepts auxiliary
operations such as ftell, feof, ferror, and clearerr,
file management operations such as remove and stat as
well as additional variants of the POSIX operations (e. g., 64-
bit variants).

VI. PERFORMANCE RESULTS

In this section, we present performance results for redirect-
ing the file accesses within a benchmark application as well
as a scientific application. We also compare these results with
alternative approaches based on a distributed file system and
temporary file copies.

A. Experimental setup

For the benchmark applications, two identical compute
nodes ws1 and ws2 of a compute cluster are used. Each node

has two 6-core Intel Xeon X5650 processors with 2.66 GHz,
12 GiB main memory, and a 1 TB Western Digital hard disk.
The nodes are connected with a 1 Gigabit Ethernet network
and a 10 Gigabit InfiniBand network for MPI communica-
tion. For the scientific applications, a dedicated storage node
gupta within the compute cluster is used. The storage node
has two 14-core Intel Xeon E5-2683 v3 processors with
2.00 GHz, 128 GiB main memory, and two 480 GB solid state
disks. Additionally, a desktop computer with an Intel Core
i7-3770 processor with 3.40 GHz, 8 GiB main memory, and
a 240 GB solid state disk is used. The nodes of the compute
cluster can only be accessed through a dedicated login node
that is connected with a 1 Gigabit Ethernet network to the
desktop computer. The data size for the I/O buffering within
the LFIO layer (see Sect. V-B) is set to 1 MB. The following
results represent file access operations performed without and
with redirection through the SCDC library. Bandwidth and
latency results achieved for data transfers with the SCDC
library (i. e., without file access operations) for the different
networks are given in [1].

B. Benchmark application

The benchmark application is executed on the compute node
ws1 and uses the fopen operation for opening a file within
the local file system or a file redirected with the SCDC library.
Results for the local file system access either a local hard disk
(HDD) or a shared directory of a distributed NFS file system
provided by the login node. Results for the redirection with the
SCDC library access either a file on the same compute node
ws1 through direct function calls (direct) or Unix Domain
Sockets (UDS) or on compute node ws2 through network
communication with TCP or MPI. Both compute nodes ws1
and ws2 execute a corresponding SCDC storage service as
the target of the redirection.

Figure 4 shows bandwidth results for reading a file of size
24 GB with the fread operation and for writing a file of
size 12 GB with the fwrite operation. The file accesses
to the local hard disk (HDD) achieve bandwidths of about
135 MB/s for reading and about 100 MB/s for writing. These
results represent the corresponding limits of the local file
system being utilized. Redirecting the file accesses with the
SCDC library within the same compute node (SCDC direct,

6



0

20

40

60

80

100

120

140

HDD NFS SCDC
direct

SCDC
UDS

SCDC
TCP

SCDC
MPI

B
an

dw
id

th
[M

B
/s

]
Bandwidths for local and redirected file accesses

fread
fwrite

Figure 4. Bandwidth results for reading and writing files without and with
redirection through the SCDC library.

10−5

10−4

10−3

HDD NFS SCDC
direct

SCDC
UDS

SCDC
TCP

SCDC
MPI

L
at

en
cy

[s
]

Latencies for local and redirected file accesses

fgetc
fputc

Figure 5. Latency results for reading and writing files without and with
redirection through the SCDC library.

SCDC UDS) leads to the same results, thus showing that the
overhead caused by the redirection does not reduce the data
access performance. The usage of the distributed NFS file
system leads to a lower bandwidth for reading, which is caused
by the 1 Gigabit communication network. Redirecting the file
accesses to the compute node ws2 leads to bandwidths of
about 80 MB/s with TCP and about 100 MB/s with MPI. The
differences between reading and writing are smaller in both
cases, thus showing that the achieved data access performance
is limited by the data transfers. However, since the differences
between TCP and MPI are significantly smaller than between
the bandwidths of the communication networks, there might
be still potential for optimizing the SCDC library.

Figure 5 shows latency results for reading single characters
with the fgetc operation and for writing single characters
with the fputc operation (1 GB in total in both cases). The
lowest latencies are achieved for the file accesses to the local
hard disk (HDD), thus representing the corresponding limits of
the local file system being utilized. Due to the asynchronous

operation of the distributed NFS file system, there is only a
small increase of the latencies. Redirecting the file accesses
with direct function calls through the SCDC library within
the same compute node (SCDC direct) leads to a small
increase in comparison to the HDD results. Thus, the minimum
overhead introduced by the SCDC library is only small. Using
a redirection with UDS and TCP causes a significant increase
of the latencies of about an order of magnitude. This can be
attributed to the socket-based communication that leads to an
additional overhead from the operating system. In comparison
to that, using a specialized HPC communication library such
as MPI causes significantly lower overhead.

C. Scientific applications

The mesh generator Gmsh [5] is used to demonstrate the
redirection of file accesses within a scientific application.
Results are shown for using the proposed redirection based
on the SCDC library and for an alternative approach that uses
temporary files and file transfers with Secure Copy (SCP).
The Gmsh application is executed on the desktop computer
and uses either local files or files of the storage node gupta
as input and output data files. Since the desktop computer is
not part of the compute cluster, there is no direct network
connection to the storage node available. Thus, the login node
is set up for tunneling the data transfers using the pre-defined
relay data provider of the SCDC library or a separate SSH
connection for the file transfers with SCP. A mesh file with
about 75,000 vertices and 151,000 elements is used in four
different data formats: binary MSH and STL (≈ 7.5 MB), text
MSH (≈ 9.3 MB), text STL (≈ 26.7 MB). Depending on the
specific data format, the Gmsh application utilizes different
file access operations (e. g., plain bytes or formatted strings).

Figure 6 shows Gmsh runtimes for converting mesh files
between the MSH and STL formats using local and redirected
input and output data files with data transfers through SCP or
the SCDC library. In all situations, there are only small differ-
ences when using local input and output data files (L2L). This
shows that there is almost no overhead caused by the LFIO
layer if no redirection is used (see Sect. V-A). With binary data
formats, the SCDC redirection is always faster than using SCP.
Furthermore, the results show that file I/O represents a large
part of the runtime when performing data conversions with
Gmsh. For example, with the SCDC redirection, the runtime
increases about a factor of two between entire local (L2L) and
entire redirected (R2R) input and output data files.

With text formats, the runtimes for all conversions with
Gmsh increase. Furthermore, the differences between the
runtimes with the SCDC redirection and with SCP are very
small in all situations. This behavior is caused by the specific
file access operations utilized by Gmsh for reading and writing
text format MSH and STL files (i. e., fgets, fscanf, and
fprintf). Even though these operations read and write only
small amounts of data at once, the buffering used within the
LFIO layer (see Sect. V-B) leads to fewer data transfers with
large amounts of data. Thus, the runtime caused by the data
transfers as well as by the specific functionality of the data

7



0

0.5

1

1.5

2

2.5

L2L R2L

binary MSH to STL

L2R R2R L2L R2L

binary STL to MSH

L2R R2R L2L R2L

text MSH to STL

L2R R2R L2L R2L

text STL to MSH

L2R R2R

R
un

tim
e

[s
]

Gmsh runtimes for mesh file conversion with local and redirected data files

temporary files with SCP
redirection with SCDC

Figure 6. Gmsh runtimes for converting mesh files with local input and output (L2L), redirected input and local output (R2L), local input and redirected
output (L2R), and redirected input and output (R2R). Data files are either transferred with SCP or with the SCDC library.

access operations (i. e., search for line ending in fgets, text
parsing in fscanf, text formatting in fprintf) is the same
with the SCDC redirection and with SCP.

VII. CONCLUSION

In this article, we have proposed an approach for redirecting
the existing file-based data access operations of scientific
applications to arbitrary storage locations within a distributed
computing environment. By emulating the specific POSIX
file I/O operations utilized by the applications, a transparent
redirection without modifying the applications was achieved.
Due to the large number of existing POSIX file I/O operations,
a separate software layer was introduced to ease the mapping
to the communication library utilized for the data transfers.
The reading and writing of data is buffered within this
software layer to avoid extensive transfers of small amounts
of data. Performance results with a benchmark application
demonstrated the low overhead introduced by the redirection
approach. The results with the mesh generator Gmsh showed
that our approach is either faster or at least as fast as an
alternative approach with explicit transfers of temporary files.

ACKNOWLEDGMENT

This work was performed within the Federal Cluster of
Excellence EXC 1075 “MERGE Technologies for Multifunc-
tional Lightweight Structures” and supported by the German
Research Foundation (DFG). Financial support is gratefully
acknowledged.

REFERENCES

[1] M. Hofmann and G. Rünger, “Sustainability through flexibility: Building
complex simulation programs for distributed computing systems,” Simu-
lation Modelling Practice and Theory, Special Issue on Techniques And
Applications For Sustainable Ultrascale Computing Systems, vol. 58,
no. 1, pp. 65–78, 2015.

[2] H. Jasak, A. Jemcov, and Z. Tukovic, “OpenFOAM: A C++ library for
complex physics simulations,” in Proc. of the Int. Workshop on Coupled
Methods in Numerical Dynamics (CMND’07), 2007, pp. 1–20.

[3] S. Beuchler, A. Meyer, and M. Pester, “SPC-PM3AdH v1.0 - Program-
mer’s manual,” Preprint SFB/393 01-08, TU-Chemnitz, 2001.

[4] M. Hofmann, F. Ospald, H. Schmidt, and R. Springer, “Programming
support for the flexible coupling of distributed software components
for scientific simulations,” in Proc. of the 9th Int. Conf. on Software
Engineering and Applications (ICSOFT-EA 2014). SciTePress, 2014,
pp. 506–511.

[5] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh
generator with built-in pre- and post-processing facilities,” Int. J. for
Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331,
2009.

[6] Lustre Software Release 2.x: Operations Manual, http://lustre.org/, 2016.
[7] IBM General Parallel Filesystem (GPFS), https://www-03.ibm.com/

systems/storage/spectrum/scale/, 2016.
[8] Hadoop Distributed File System (HDFS), https://hadoop.apache.org/

docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, 2016.
[9] R. Arpaci-Dusseau and A. Arpaci-Dusseau, Operating Systems: Three

Easy Pieces. Arpaci-Dusseau Books, 2015, ch. Sun’s Network File
System (NFS).

[10] ——, Operating Systems: Three Easy Pieces. Arpaci-Dusseau Books,
2015, ch. The Andrew File System (AFS).

[11] D. Groen, S. Zasada, and P. Coveney, “Survey of multiscale and
multiphysics applications and communities,” Computing in Science &
Engineering, vol. 16, no. 2, pp. 34–43, 2014.

[12] C. Hill, C. DeLuca, V. Balaji, M. Suarez, and A. da Silva, “The
architecture of the earth system modeling framework,” Computing in
Science & Engineering, vol. 6, no. 1, pp. 18–28, 2004.

[13] R. Redler, S. Valcke, and H. Ritzdorf, “OASIS4 – A coupling software
for next generation earth system modelling,” Geoscientific Model De-
velopment, vol. 3, no. 1, pp. 87–104, 2010.

[14] J. Larson, R. Jacob, and E. Ong, “The Model Coupling Toolkit: A new
Fortran90 toolkit for building multiphysics parallel coupled models,”
Int. J. of High Performance Computing Applications, vol. 19, no. 3, pp.
277–292, 2005.

[15] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem,
B. Chopard, D. Groen, C. P.V., and A. Hoekstra, “Distributed multiscale
computing with MUSCLE 2, the Multiscale Coupling Library and
Environment,” J. of Computational Science, vol. 5, no. 5, pp. 719–731,
2014.

[16] A. Piacentini, T. Morel, A. Thévenin, and F. Duchaine, “O-PALM:
An open source dynamic parallel coupler,” in Proc. of the IV Int.
Conf. on Computational Methods for Coupled Problems in Science and
Engineering, 2011, pp. 1–11.

[17] C. Linstead, Typed Data Transfer (TDT) User’s Guide, https://www.
pik-potsdam.de/research/transdisciplinary-concepts-and-methods/tools/
tdt/typed-data-transfer-tdt-user-s-guide, 2004.

[18] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit:
An Object-oriented Approach to 3D Graphics. Kitware, 2006.

[19] Stereolithography Interface Specification, 3D Systems Inc., 1988.
[20] Linux Programmer’s Manual, ld.so, ld-linux.so*, http://man7.org/linux/

man-pages/man8/ld-linux.so.8.html, 2015.

8

http://lustre.org/
https://www-03.ibm.com/systems/storage/spectrum/scale/
https://www-03.ibm.com/systems/storage/spectrum/scale/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://www.pik-potsdam.de/research/transdisciplinary-concepts-and-methods/tools/tdt/typed-data-transfer-tdt-user-s-guide
https://www.pik-potsdam.de/research/transdisciplinary-concepts-and-methods/tools/tdt/typed-data-transfer-tdt-user-s-guide
https://www.pik-potsdam.de/research/transdisciplinary-concepts-and-methods/tools/tdt/typed-data-transfer-tdt-user-s-guide
http://man7.org/linux/man-pages/man8/ld-linux.so.8.html
http://man7.org/linux/man-pages/man8/ld-linux.so.8.html

