
TGrid – Grid runtime support for hierarchically structured task-parallel
programs

Sascha Hunold and Thomas Rauber
Department of Mathematics and Physics

University of Bayreuth, Germany
{hunold,rauber}@uni-bayreuth.de

Gudula Rünger
Department of Computer Science

Chemnitz University of Technology, Germany
ruenger@informatik.tu-chemnitz.de

Abstract

In this article we introduce a grid runtime system called
TGrid which is designed to run hierarchically structured
task-parallel programs on heterogenous environments and
can also be used for common component-based grid pro-
gramming. TGrid is built on top of a location-aware com-
munication layer which enables the runtime system to clus-
ter grid nodes. As a result, the component scheduler assigns
a multi-processor task to a set of processors taking into ac-
count the spatial locality within the available processors.
The multi-processor task directly benefits from having less
network overhead and thus, the overall runtime of a grid-
enabled multi-processor program is reduced.

1. Introduction

Many large applications that require execution on a high-
performance platform have an inherent modular structure
of cooperating subtasks calling each other. Examples of
such applications include environmental models combining
atmospheric, surface water and water models, or aircraft
simulations combining models for fluid dynamics, struc-
tural dynamics and surface heating. Coding such appli-
cations with hierarchically structured multiprocessor tasks
(M-tasks) has been shown to be successful for parallel plat-
forms with a distributed address space [13] , since the corre-
sponding group-based execution of communication opera-
tions can help to reduce the communication overhead. This
effect is most significant if collective communication op-
erations like broadcast or gather are involved and can be
exploited to obtain message-passing programs that are scal-
able for a larger number of processors. Hierarchical M-task
programs are obtained by subdividing the application pro-
gram into subprograms (M-tasks) that can be executed con-
currently to each other or that must be executed sequentially
one after another, as given by the dependencies of the ap-

plication. Each subprogram can be structured correspond-
ingly, leading to an hierarchy of M-tasks.

The runtime environment TGrid is our approach for
executing M-tasks in a heterogeneous distributed environ-
ment. The TGrid environment consists of several mod-
ules which enable the processing of M-tasks, the mapping
of M-tasks to processors for execution, the observation of
M-tasks during execution, and the redistribution of data be-
tween M-tasks. M-tasks which can be executed in TGrid
are able to take full advantage of the underlying communi-
cation network by using MPI. M-tasks for TGrid are writ-
ten in Java and thus, they are completely platform indepen-
dent which is elementary for the computation in heteroge-
nous environments.

The contribution of this paper is to present the design and
the implementation of the TGrid runtime system to ex-
ecute hierarchically-structured programs on heterogenous
systems and to present preliminary results with the current
implementation of TGrid.

The rest of the paper is structured as follows. Section 2
describes the basic modules of TGrid. Section 3 shows
experimental results of example programs. Section 4 dis-
cusses related work and Section 5 concludes the paper.

2. The TGrid runtime system in detail

The goal of the TGrid runtime system is to provide a
heterogenous runtime platform for hierarchically-structured
multi-processor tasks (M-tasks). Using multi-processor
tasks can improve the performance of parallel programs due
to a reduced communication overhead [9, 13]. In previous
work we have proposed a concept how to execute M-tasks
on heterogenous systems and grid environments [12] and
we have presented an approach to provide efficient schedul-
ing strategies for each M-task [14].

A sample grid configuration which is the target of the
TGrid runtime environment is outlined in Figure 1. As de-
picted, the TGrid consists of a number of connected subnet

1-4244-0328-6/06/$20.00 c©2006 IEEE.

Figure 1. Sample Grid configuration for the TGrid environment

managers which have control over a homogenous cluster.
Subnet managers should be able to connect to other sub-
net managers over a possible insecure WAN. Therefore, the
subnet managers need to support several protocols such as
https, ssh, etc. in order to pass the local firewall and also to
perform encrypted data transfer. A developer has access to
one of the subnet managers and can submit programs to the
local subnet manager.

Each TGrid program can be represented as a directed
task graph as depicted in Figure 2. The user submits a pro-
gram to the TGrid runtime which executes the nodes of
the task graph as components. As soon as all input data
dependencies of a node are fulfilled a component is ready
for execution. A component represented as node in the
graph runs in a single subnet of the grid runtime system.
All components can be arbitrary single-processor or multi-
processor tasks. However, the main design goal of TGrid
is the support of hierarchically-structured multi-processor
tasks preferably based on TLib [13].

The TGrid connects different subnets to a grid-enabled
runtime system. In general, a subnet is locally con-
nected through high-speed switches provided by homoge-
nous computing clusters. The subnet is controlled by a sub-
net manager that runs on one of the cluster nodes. The
TGrid runtime system is in charge of selecting the next
component to be executed as well as the subnet that this
component will be scheduled to. In particular, the TGrid
runtime is also responsible for the data redistribution be-
tween components which may require intra-cluster commu-
nication as well as inter-cluster communication.

The execution of a TGrid program consists of the fol-
lowing steps:

1. The user submits a TGrid program to one of the sub-
net managers currently connected.

2. A program processing thread is spawned. This thread
is responsible for executing all components by travers-
ing the task graph of the program.

3. Components that are ready for execution are passed
to the component scheduler. A schedule is provided
which takes into account the current workload of all
connected subnets as well as the component’s prefer-
ences and requirements, e.g. the minimum and pre-
ferred number of executing processors.

4. A component executor is requested on the target subnet
which is used for running the component. For exam-
ple, an MPI executor writes an MPI machinefile and
calls the appropriate mpirun command.

5. The mpirun command will start the specified number
of MPI processes. Each MPI process runs a ’compo-
nent container’ (task runner) which is able to run arbi-
trary MPI components. This container process regis-
ters with its subnet manager and requests a component
to run.

6. The subnet managers sends the component’s code to
the requesting task runner. If the execution of this com-
ponent requires input data the task runner will notify
the subnet manager that is has received the component
and waits until the redistribution is done.

7. Redistribution may be performed between the exe-
cution of components to make one component ready
for execution by reorganizing the distribution of data
structures according to the needs of the next compo-
nent to be executed.

8. The component is executed inside the container and
the task runner informs the subnet manager about the
exit code of this component.

A sample program is given in Figure 3. In this
example, a 16 × 16 matrix is allocated by a matrix
generation component and then redistributed to a print
component. For doing so, two TGrid components
have to be instantiated, namely MatrixGenerate and Ma-
trixPrint. Variables which need to be declared or to

Figure 2. Structure of a TGrid program. The example shows a task graph of TGrid components which
are MPI components in this case. Each MPI component can be a multi-processor task which might
also exhibit a recursive structure.

be referenced for the redistribution are uniquely identi-
fied by constants MatrixGenerate.GEN MATRIX and
MatrixPrint.PRT MATRIX. These identifiers have to
be provided by a component’s developer. The print com-
ponent will only print the right upper square of the matrix.
This information is part of the redistribution configuration
(ArraySelection, ArrayMapping).

2.1. Grid configuration

All possible subnets which may participate in processing
components are configured as described in an XML config-
uration file. Figure 4 shows a basic configuration file of
the TGrid environment. In the ports section the user de-
fines which ports will be used for intra-subnet communica-
tion. The element contextdefinition determines which un-
derlying communication module will be selected for inter-
subnet communication. Currently, communication between
subnets is done via the TCP protocol. It is also possible
to use JMS (Java messing service) as basic communication
platform. TGrid is entirely built upon free software and
hence, we use OpenJMS as JMS implementation. By using
OpenJMS, the user can choose his preferred communication
protocol, e.g. RMI, http, or https. So, the communication
module can be adapted to any firewall configuration.

An important part of the configuration is the declaration
of the subnets which are part of a TGrid runtime environ-
ment. The subnet configuration contains information about
the subnet manager and the connected clients. Only clients
that are listed inside the ’clients’ tag are candidates as grid
computing nodes. Listing the names of clients in the con-
figuration file has two reasons. Many cluster systems are
equipped with more than one inter-connection network. It
is therefore crucial for high-performance to exactly indi-
cate which inter-connection network should be used within
multi-processor tasks. The second reason is to make the
adjustment of the TGrid configuration technically easier
since subnet managers only have to inform clients about
their new affiliation.

To bring up the grid environment the user has to start
TGrid client daemons on all clients. The subnet man-
agers can then be started by passing the unique identifica-
tion (’id’) as parameter. A subnet manager reads the cor-
responding configuration and checks if the specified clients
and the adjacent subnet managers are online. Until the sub-
net manager is shut down it keeps detecting whether the sta-
tus of other subnet managers or local clients has changed.

p u b l i c c l a s s M a t r i x T e s t implements TGProgram {

p u b l i c vo id run (TGRuntime r u n t i m e) throws TGridRunExcept ion {

TGridComponent matGen = new M a t r i x G e n e r a t e () ;
matGen . s e t D a t a D e c l a r a t i o n (M a t r i x G e n e r a t e . GEN MATRIX, new ArrayDec l (1 6 , 1 6)) ;

S c h e d u l e [] sched = T G r i d S c h e d u l e r . g e t S c h e d u l e r I n s t a n c e () . s c h e d u l e (matGen) ;

TGComponentHandle matGenHandle = r u n t i m e . e x e c u t e (matGen , sched [0]) ;
matGenHandle . w a i t F o r () ;

TGridComponent matPrintComp = new M a t r i x P r i n t () ;
matPrintComp . s e t D a t a D e c l a r a t i o n (M a t r i x P r i n t . PRT MATRIX , new ArrayDec l (8 , 8)) ;

S c h e d u l e [] sched2 = T G r i d S c h e d u l e r . g e t S c h e d u l e r I n s t a n c e () . s c h e d u l e (matPrintComp) ;

TGComponentHandle m a t P r i n t H a n d l e = r u n t i m e . e x e c u t e (matPrintComp , sched2 [0]) ;

/ / i n f o r m a t i o n r e q u i r e d t o per form a r e d i s t r i b u t i o n
/ / (s c h e d u l e s , component hand le s , u n iq ue i d o f v a r i a b l e s)
R e d i s t C o n f i g O b j e c t r e d i s t C o n f i g = new R e d i s t C o n f i g O b j e c t (

M a t r i x G e n e r a t e . GEN MATRIX, matGenHandle , new A r r a y S e l e c t i o n (0 , 8 , 8 , 8) ,
M a t r i x P r i n t . PRT MATRIX , m a t P r i n t H a n d l e , new ArrayMapping (0 , 0)) ;

R e d i s t r i b u t o r 2 r e d i s t = new R e d i s t r i b u t o r 2 (r u n t i m e . ge tSubne tManager () ,
r e d i s t C o n f i g) ;

r e d i s t . s t a r t () ;
r e d i s t . w a i t F o r () ;

/ / . . .
}

}

Figure 3. In this TGrid example, a matrix is instantiated by a component MatrixGenerate and is then
transferred to the processors that run the MatrixPrint component which prints the matrix as its result.

2.2. Component structure of TGrid

The component is the central entity of TGrid. TGrid
components can be assigned to different subnets, i.e. they
can be moved to another cluster and are then executed re-
motely. A component represents an execution unit for a
single task. The granularity of different tasks depends on
the problem and the required performance. For example,
for our experiments we have created a component that al-
locates arrays of doubles on a given set of processors. An-
other component might print some data to the terminal. To
enable such a data flow from one component to the other,
we need a way to identify data of components and to access
and modify this data.

To execute a component in TGrid, the component has
to implement the following interfaces:

• Scheduling interface to provide meta information
about the component such as the minimum number of
processors, the maximum number of processors, etc.

• Data mapping interface to get information about data
distribution and mapping of a variable for a set of pro-
cessors. The component returns the processor grid and
the mapping of the variable onto each processor.

• Data redistribution interface to get and set data which
is required by the redistribution thread. During the re-
distribution this thread receives data for a component’s
variable and but has no knowledge of the internal struc-
ture of the same. Therefore, these are crucial methods
for the redistribution.

• Data initialization interface to get and set initial data
declarations like the size of a matrix.

When all these interface definitions have been imple-
mented the component can be used in any TGrid program
and can be executed on each subnet, respectively.

2.3. Data redistribution

Data redistribution is a crucial task when executing M-
tasks in grid environments. One main goal of the design of
TGrid is that the programmer should not have to care about
the details of data redistribution while developing compo-
nents. The data redistribution is entirely the responsibil-
ity of the runtime system. So, the program developer only
haves to define which data has to be moved to some other
subsequent component, but the developer is not responsible
for organizing the data transfer between components. This

<t g r i d c o n f >
<p o r t s>

<p r o p e r t y name=” p o r t m a n a g e r ” v a l u e =” 3002 ”/>
<p r o p e r t y name=” t a s k r u n n e r ” v a l u e =” 3003 ”/>

</ p o r t s>
<c o n t e x t d e f i n i t i o n >

<c o n t e x t t y p e =” t c p ”/>
</ c o n t e x t d e f i n i t i o n >
<subne tmanage r s>

<s u b n e t i d =” sn1 ”>
<manager>

<a d d r e s s >192.168.1.1 < / a d d r e s s>
<!−− c o n t e x t f o r i n t e r c l u s t e r communicat ion−−>
<c o n t e x t s >

<c o n t e x t t y p e =” t c p ”>
<p r o p e r t y name=” p o r t ” v a l u e =” 3004 ”/>

</ c o n t e x t>
</ c o n t e x t s >

</manager>
<c l i e n t s p o r t =” 3000 ”>

<c l i e n t >192.168.1.2 < / c l i e n t >
<c l i e n t >192.168.1.3 < / c l i e n t >

</ c l i e n t s >
<env> <p r o p e r t y name=” p r u n j a v a ” v a l u e =” p r u n j a v a . sh ”/> </env>

</ subne t>
<s u b n e t i d =” sn2 ”>

<manager>
<a d d r e s s>c l u s t e r </ a d d r e s s>
<c o n t e x t s >

<c o n t e x t t y p e =” t c p ”>
<p r o p e r t y name=” p o r t ” v a l u e =” 3004 ”/>

</ c o n t e x t>
</ c o n t e x t s >

</manager>
<c l i e n t s p o r t =” 3000 ”>

<c l i e n t >192.168.2.1 < / c l i e n t >
<c l i e n t >192.168.2.2 < / c l i e n t >

</ c l i e n t s >
<env><p r o p e r t y name=” p r u n j a v a ” v a l u e =” p r u n j a v a . x86 64 . su se 93 . c l u s t e r . sh ”/></env>

</ subne t>
<c o n n e c t o r s>

<c o n n e c t o r>
<e n d p o i n t i d =” sn1 ”/>
<e n d p o i n t i d =” sn2 ”/>

</ c o n n e c t o r>
</ c o n n e c t o r s>

</ subne tmanage r s>
</ t g r i d c o n f >

Figure 4. Sample TGrid configuration file. The configuration defines the subnets ’sn1’ and ’sn2’
which are controlled by subnet manager 192.168.1.1 and cluster respectively.

dramatically reduces the complexity of writing grid-enabled
task-parallel programs. Not only the complexity is reduced,
also bugs in the data redistribution are avoided which di-
rectly enhances the program development speed.

The basic procedure for data redistribution was summa-
rized by Jeannot and Wagner as (1) data identification, (2)
message generation, (3) message scheduling and (4) com-
munication [10]. The TGrid redistribution module extends
this approach. The resulting steps to perform data redistri-
bution within two components in TGrid are:

1. Register the variables with the redistribution thread
which are to be moved between the source and the tar-
get component.

2. The redistributor collects the relevant meta data (host-

names, ports) of the sending and receiving side.

3. Create a communication schedule which includes the
messages that each participating processor has to send
or receive.

4. Convert the basic communication schedule to an ex-
tended schedule by adding meta data of each client
and create proxy objects which perform the sending
of messages transparent to the sender, i.e., the sender
is not aware whether the receiving processor belongs
to its subnets or not.

5. Send message lists to each client with the messages to
be sent and to be received by the client.

6. The redistributor waits until it has been notified of the
completion from all clients.

There are two different types of redistributions that may
occur in TGrid. One is the redistribution inside one sub-
net which we will refer to as intra-cluster redistribution; the
other is the redistribution between different clusters which
is referred to as inter-cluster redistribution. The redistribu-
tion module of TGrid has been designed to gain high per-
formance. Intra-cluster communication is done by sending
messages directly to the receiving processors. Hence, we
need an efficient port handling, since receiving data for a
component requires to open a unique port. Thus, the send-
ing processors can send directly to the receiving processors
without bandwidth bottleneck. Such bottleneck cannot be
avoided for inter-cluster redistribution. In this case, the pro-
cessor sends its data to its local subnet manager which for-
wards the message to the target subnet. Hence, the band-
width of the redistribution is limited by the bandwidth of
the subnet manager. Since clients may be part of private
networks, forwarding and routing messages is the only op-
tion to transfer data between processors of different subnets.

As a result, good scheduling strategies and an efficient
mapping of tasks to processors and consequently to sub-
nets is important for achieving high-bandwidth redistribu-
tion. Thus, the scheduler tries to map subsequent tasks that
have a data dependency onto the same subnet if all require-
ments, like the number of processors, are fulfilled.

3. Experimental results

In this section, we present preliminary results for two
applications on a grid system with two subnets.

3.1. Task-parallel implementation of Strassen’s ma-
trix multiplication algorithm

To evaluate TGrid we have chosen Strassen’s matrix
multiplication as first application. As stated in [7], the par-
allel execution of the matrix multiplication by Strassen is
limited by the huge number of data dependencies between
each recursion step. Hence, the resulting speedup cannot
compete with the speedup of parallel-matrix multiplications
on a homogenous environment. However, the Strassen ma-
trix multiplications has many properties which makes it in-
teresting to consider. First, we can decompose the algorithm
into several tasks as shown in [9]. Moreover, the TGrid
framework makes it easy for the programmer to define re-
cursive algorithms for the grid. Unlike other grid environ-
ments, a TGrid program is not statically defined and so, a
TGrid program gives the programmer full control of when
to stop a recursion during execution. Another very impor-
tant criterion of grid environments is the ability to redis-

tribute data structures between components. For redistribut-
ing data structures like arrays the grid framework has to pro-
vide interfaces to select certain data from the source and
map this data to the memory of the receiving component.
In each recursion step of Strassen, the matrices to multi-
ply have to be decomposed into four sub-matrices and those
sub-matrices have to be mapped to a new data location on
the target component. As shown in section 2.3, the TGrid
framework supports these redistribution requirements (data
selection, data mapping) by design.

The TGrid application to compute Strassen’s algorithm
consists of three components; a component for generat-
ing matrices, a component to print matrices, and the main
Strassen component. The matrix generation component al-
locates a distributed matrix on the grid and the print compo-
nent simply prints the result to a file or to stdout. The com-
ponents for generating and printing matrices are generic and
can therefore be reused by other matrix applications. The
print component is the sink of the computation and it is also
used as a target for gathering the sub-results. Figure 5 shows
the resulting task structure.

Strassen’s algorithm computes the result matrix C =
A × B by dividing the matrix C recursively into four sub-
problems C11, C12, C21, and C22. The sub-problems are
solved by seven recursive calls whose results are combined
to yield C11, C12, C21, and C22. A TGrid component has
been implemented to compute the solution for each of these
four sub-problems.

For the sake of simplicity we decided to use only one
recursion step for the TGrid program. So, another ma-
trix multiplication algorithm is used to compute the sub-
result after the cutoff. This can be implemented as a single-
processor task or as a multi-processor task. We have imple-
mented a broadcast-multiply-roll style algorithm similar to
the algorithm of Fox that is used as multi-processor task. If
there is only a single processor to run the task, we simply
perform a local matrix multiplication.

The tests were performed with two different grid config-
urations which are summarized in Table 1. In configura-
tion (1), two subnets are used within the grid environment,
namely the subnets denoted as (a) and (b). The subnet (a)
consists of two P4 machines that are used to allocate the ma-
trices A and B. The computation of the Cij is performed
on subnet (b). Parts of matrices A and B have to be re-
distributed to the corresponding target processor. Collect-
ing and printing the result on a single processor is part of
the program but not part of the measurement presented in
the following figures. In configuration (2), the computa-
tion of the sub-matrices is done on different subnets. The
tasks C11 and C12 are computed by Dual-Opterons in sub-
net (b), whereas the other two tasks are executed by P4s
in subnet (a). The Dual-Opterons are connected via Giga-
bit Ethernet, and the subnet that contains the Pentiums is

Figure 5. Task structure of the Strassen implementation for TGrid.

connected via Fast Ethernet. Table 1 also contains a col-
umn ’processes per node’. The value ’2 x 2’ means that
the component C11 is assigned to 2 nodes where each node
is running 2 processes and so, the component C11 will be
executed by 4 processors.

Figure 6 compares the runtime of Strassen’s algorithm
on a single processor and on 16 processors in a TGrid
configuration. For both configurations running Strassen’s
algorithm on TGrid will only pay off when an adequate
task-size has been reached. We have included the runtime
for smaller matrix dimensions (< 1024) only to give an im-
pression about the time consumed for the grid management
and the redistribution overhead. The black line denotes the
speedup gained for each matrix dimension. It is not sur-
prising that the speedup raises when the matrix dimension
increases. In case of configuration (1) we get a speedup of
about 7 which is respectable considering the huge number
of redistributions that have to be performed before the com-
putation can be started. When different subnets and there-
fore also different platforms work together as in configura-
tion (2), we get a smaller speedup. The speedup of the entire
grid environment is computed by dividing to the execution
time on a single Opteron by the parallel execution time on
the TGrid environment. In our configuration, the Opteron
is faster than the Pentium 4 processor and so, the speedup
of the heterogenous grid system is smaller.

3.2. Distributed computation of a Mandelbrot set
on the grid

The computation of a Mandelbrot set is well-suited for
the grid since there are only a few data dependencies be-
tween subsequent components. Unlike Strassen, only a few
bytes of input data (image boundaries) are required to pro-
duce the corresponding part of the Mandelbrot image. How-
ever, the computation time of each pixel is irregular and so
the decomposition strategy plays an important role for the
parallel performance. Since we do not want to examine dif-
ferent decompositions in the first place, we decided to the
equally decompose the number of lines onto the number
of computation tasks. Although each component has the
same number of lines to compute, the lines are mapped in
round-robin fashion which avoids having components with
a larger number of black bits (many iterations). Therefore,
we simply modified sequential Java code and wrapped it in-
side a TGrid-component. The redistribution component of
TGrid has support for block-partitioned matrices; a line-
cyclic distribution of arrays could also be implemented on
demand. Using the block-based array redistribution the out-
put component of the Mandelbrot program will produce an
image as shown in Figure 7.

The program consists of only two grid components. One
is responsible for computing bits of the Mandelbrot set and
the other is used for coloring each pixel and writing the im-
age.

For this experiment we connected two TGrid subnets.
The first subnet consisted of three Opterons running Linux
in 64-bit mode. The Opterons are connected via a dedi-

Table 1. TGrid configuration for testing Strassen’s matrix multiplication
Configuration (1)

Task Processes Processor Subnet
per node

Matrix gen. 1 x 1 P4 3.0 a
Matrix gen. 1 x 1 P4 3.0 a
C11 2 x 2 Opteron 2.0 b
C12 2 x 2 Opteron 2.0 b
C21 2 x 2 Opteron 2.0 b
C22 2 x 2 Opteron 2.0 b

Configuration (2)
Task Processes Processor Subnet

per node
Matrix gen. 1 x 1 P4 3.0 a
Matrix gen. 1 x 1 P4 3.0 a
C11 2 x 2 Opteron 2.0 b
C12 2 x 2 Opteron 2.0 b
C21 2 x 2 P4 3.0 a
C22 2 x 2 P4 3.0 a

Figure 6. Runtime and speedup of Strassen’s algorithm implemented on top of TGrid. On the left: All
computations of sub-matrices Cij are done on Opteron-based machines; configuration (1). On the
right: Experiments were performed on two different subnets; configuration (2).

Figure 7. Example output of the TGrid Mandel-
brot program computed by 2 spawned tasks.

cated high-speed Gigabit Ethernet switch. The second sub-
net contained three Pentium 4 at 3 GHz. The Pentiums and
both subnets were connected via Fast Ethernet.

Figure 8 shows the experimental results of the Mandel-
brot program. The results show that running the program

on multiple processors on the grid notably reduced the run-
time. A good speedup is achieved at the same time. We
could have achieved an even better speedup if we had imple-
mented a suitable load-balancing algorithm as mentioned
above. But this is beyond the scope of this article.

4. Related work

Grid computing has been an active area of research in the
last few years. Since there is an immense number of active
projects, we only refer to grid projects which are directly
related to TGrid. Similar to TGrid, the Ibis [17] pro-
gramming environment is completely Java-based and offers
a multi-layered architecture. The Ibis portability layer is
the heart of Ibis. Ibis-based programming frameworks like
Satin use this portability layer to abstract from the actual
communication platform such as TCP, GM, or MPI.

Another grid programming environment is MPICH-G2
[11] which was also evaluated as communication platform
to build TGrid upon. Similar to Ibis, there is no easy way

Figure 8. Experimental results of the Mandelbrot program on TGrid. On the left: Execution time with
2, 4, and 6 distributed processors. On the right: Corresponding speedup.

to determine the location of a processing element on the
grid when using the communication stack. However, being
based on the Globus Toolkit [8] offers a lot of advantages
like security, information services, or data management.

The OurGrid project aims to provide computational
power for bag-of-tasks applications [1]. Bags of MPI-tasks
are also supported. Unlike tasks in TGrid, tasks that can
be used in such bags-of-tasks are independent of each other.

The GridRPC model [15] provides a standardized and
portable programming interface to the remote procedure
calls (RPC) mechanism. In this model, a client calls some
function on a service provider and the result is returned
when the computation is completed. In NetSolve [2, 16],
the server provides access to numerical functions like DG-
SEV (solution to a real system of linear equations). The
communication scheme of GridRPC has been improved in
[6] by avoiding sending results straight back to the client.
Instead, the data is directly transferred to the server that
will execute the next function using this result as input
data. We have extensively evaluated GridRPC and its re-
lated projects to use it as platform for our task-parallel re-
search. The biggest advantage of this approach is the per-
formance that one component can be achieved when all pro-
vided functions have been priorly optimized for each com-
putation server. Important parameters can be tuned for best
performance like network parameters for parallel computa-
tions (logical block size of ScaLAPACK routines [5]) and
block sizes of local routines can be adapted which reduces
the number of cache misses [18]. On the other hand, this is
a very time consuming approach when the grid environment
has changed. Optimizing each server requires a lot of skills

and experience and is less flexible when new services are
required.

Another component-centered architecture like TGrid is
the common component architecture (CCA) and the DCA
(distributed CCA) [3]. The CCA is a component frame-
work definition with three main criteria: a programming-
language independent interface definition language, compo-
nent ’ports’ that define which component are able to trans-
fer data and services which are provided by a component.
The entire framework is quite complex and hence, it was
not applicable to create runtime environment for hierarchi-
cally structured task-parallel programs. As for TGrid, the
M×N problem (data redistribution) plays an important role
for CCA components. The requirements for creating a data
redistribution framework for CCA components is addressed
in [4].

5. Conclusions

In this article we have presented the heterogeneous
runtime environment TGrid. TGrid supports the exe-
cution of hierarchically nested multiprocessor tasks pro-
grams with arbitrary dependencies in distributed environ-
ments. TGrid is a location-aware environment which sup-
ports the scheduling of components in the grid. Since the
components of TGrid can be nested or can be imple-
mented as multi-processor tasks, placing them on the same
subnet reduces the communication overhead of the pro-
gram. Experiments have shown that the TGrid can lead to
good speedups for suitable applications with coarse-grained
tasks.

References

[1] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. Our-
Grid: An Approach to Easily Assemble Grids with Equi-
table Resource Sharing. In 9th Workshop on Job Scheduling
Strategies for Parallel Processing, 2003.

[2] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller,
K. Seymour, K. Sagi, Z. Shi, and S. Vadhiyar. Users’ Guide
to NetSolve V1.4.1. Innovative Computing Dept. Technical
Report ICL-UT-02-05, University of Tennessee, Knoxville,
TN, June 2002.

[3] F. Bertrand and R. Bramley. DCA: A Distributed CCA
Framework Based on MPI. In 18th International Paral-
lel and Distributed Processing Symposium (IPDPS 2004),
pages 90–97, Santa Fe, New Mexico, USA, April 2004.
IEEE Computer Society.

[4] F. Bertrand, R. Bramley, K. B. Damevski, J. A. Kohl, D. E.
Bernholdt, J. W. Larson, and A. Sussman. Data Redistribu-
tion and Remote Method Invocation in Parallel Component
Architectures. In Proceedings of the 19th International Par-
allel and Distributed Processing Symposium: IPDPS 2005,
2005. Best Paper Award.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1997.

[6] F. Desprez and E. Jeannot. Improving the GridRPC Model
with Data Persistence and Redistribution. In 3rd Interna-
tional Symposium on Parallel and Distributed Computing
(ISPDC), Cork, Ireland, July 2004.

[7] F. Desprez and F. Suter. Impact of Mixed-Parallelism on
Parallel Implementations of Strassen and Winograd Ma-
trix Multiplication Algorithms. Concurrency and Compu-
tation:Practice and Experience, 16(8):771–797, July 2004.

[8] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[9] S. Hunold, T. Rauber, and G. Rünger. Multilevel Hierarchi-
cal Matrix Multiplication on Clusters. In Proceedings of the
18th Annual ACM International Conference on Supercom-
puting, ICS’04, pages 136–145, June 2004.

[10] E. Jeannot and F. Wagner. Messages Scheduling for data
Redistribution between Heterogeneous Clusters. In Pro-
ceedings of the IASTED International Conference on Par-
allel and Distributed Computing and Systems (PDCS 2005),
2005.

[11] N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2: a Grid-
enabled implementation of the Message Passing Interface.
Journal of Parallel and Distributed Computing, 63(5):551–
563, 2003.

[12] T. Rauber and G. Rünger. M-Task-Programming for Het-
erogeneous Systems and Grid Environments. In Proc. of the
IPDPS Joint Workshop on High-Performance Grid Comput-
ing and High-Level Parallel Programming Models. IEEE,
2005.

[13] T. Rauber and G. Rünger. Tlib - A Library to Support Pro-
gramming with Hierarchical Multi-Processor Tasks. Jour-
nal of Parallel and Distributed Computing, 65(3):347–360,
2005.

[14] T. Rauber and G. Rünger. Anticipated Distributed Task
Scheduling for Grid Environments. In Proc. of the IPDPS
Workshop on High-Performance Grid Computing (HPGC).
IEEE, 2006.

[15] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. A.
Lee, and H. Casanova. Overview of GridRPC: A Remote
Procedure Call API for Grid Computing. In M. Parashar,
editor, Grid Computing - GRID 2002, Third International
Workshop, Baltimore, MD, USA, November 18, 2002, Pro-
ceedings, volume 2536 of Lecture Notes in Computer Sci-
ence, pages 274–278. Springer, 2002.

[16] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra. Net-
Solve: Grid Enabling Scientific Computing Environments.
In L. Grandinetti, editor, Grid Computing and New Fron-
tiers of High Performance Processing. Elsevier, 2005.

[17] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hof-
man, C. Jacobs, T. Kielmann, and H. E. Bal. Ibis: a Flexible
and Efficient Java based Grid Programming Environment.
Concurrency and Computation: Practice and Experience,
17(7-8):1079–1107, June 2005.

[18] R. C. Whaley and J. J. Dongarra. Automatically Tuned
Linear Algebra Software. Technical Report UT-CS-97-366,
University of Tennessee, 1997.

