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Abstract. Data redistribution of parallel data representations has be-
come an important factor of grid frameworks for scientific computing.
Providing the developers with generalized interfaces for flexible paral-
lel data redistribution is a major goal of this research. In this article
we present the architecture and the implementation of the redistribution
module of TGrid. TGrid is a grid-enabled runtime system for applications
consisting of cooperating multiprocessor tasks (M-tasks). The data redis-
tribution module enables TGrid components to transfer data structures
to other components which may be located on the same local subnet
or may be executed remotely. We show how the parallel data redistri-
bution is designed to be flexible, extendible, scalable, and particularly
easy-to-use. The article includes a detailed experimental analysis of the
redistribution module by providing a comparison of throughputs which
were measured for a large range of processors and for different intercon-
nection networks.

1 Introduction

Heterogeneous distributed environments or grid environments provide large com-
putation resources for the execution of extremely computation intensive scientific
applications. These computing environments can be exploited to execute algo-
rithms and applications with task-parallel structure. Those applications have to
be transformed into modular component-based parallel programs which can be
executed on a grid environment. A suitable programming model and an efficient
runtime environment which implements the programming model are required
for developing this kind of applications. The modular structure of programs can
be expressed by a task graph. Each node in the task graph represents a single
grid-enabled component. These components are implemented as multiprocessor
tasks (M-tasks). A task graph containing M-tasks offers two levels of parallelism.
Components can be executed concurrently but each component may also contain
data-parallel code or may even contain a recursive structure of components.

The runtime environment TGrid is an approach for executing M-tasks in
a heterogeneous distributed environment. The TGrid environment consists of



several modules which enable the processing of M-tasks, the mapping of M-
tasks to processors for execution, the observation of running M-tasks, and the
redistribution of data between M-tasks [1]. M-tasks which can be executed in
the TGrid environment are able to take full advantage of the underlying com-
munication network by using MPI. On the other hand, since the M-tasks are
written in Java, they are also completely platform independent. The redistribu-
tion of data structures within cooperating components plays an important role
for component-based grid environments. There are several requirements that a
data redistribution component has to meet to provide a solid framework for
component-based programming on the grid. The data redistribution component
must be flexible to support various data types and to be easily extendible if re-
quired. It should be simple to use, i.e. the developer should only provide all the
information to allow an efficient data redistribution, and the component should
support the coupling of components.

The contribution of this paper is the design and the implementation of a
data redistribution module which enables the coupling of M-tasks in heteroge-
nous computation systems. The redistribution module is able to dynamically
create data messages from information provided by the source component (M-
task) and to automatically redistribute these data onto the processors of the
target component. In particular, the redistribution module relieves the program
developer from writing redistribution code for each component, which is tedious
and error-prone.

The rest of the paper is structured as follows. Section 2 gives a short intro-
duction to the TGrid runtime system. In Section 3 the architecture of the re-
distribution module of TGrid outlined. Section 4 addresses the implementation
details and introduces the management protocol of the redistribution module.
Section 5 presents experimental results. Section 6 discusses related work, and
Section 7 concludes the paper.

2 Overview of TGrid

TGrid is a runtime system for a network of heterogenous parallel machines which
allows the execution of hierarchically-structured multi-processor tasks. Multi-
processor tasks (M-tasks) can improve the performance of parallel programs due
to a reduced communication overhead [2, 3]. TGrid provides a framework to run
these M-tasks on a heterogenous collection of clusters as proposed in [4]. TGrid
consists of several subnets of which each is controlled by a subnet manager.
The subnet manager is in charge of executing and observing tasks on its private
network. Such a private network could be a homogeneous cluster or any other
heterogenous collection of machines that share a private IP address space or are
visible to each other. The subnet managers are able to transfer data through a
WAN, which might be insecure. Therefore, the subnet managers support several
protocols, such as https, ssh, etc., in order to bypass local firewalls and to perform
encrypted data transfer.



Fig. 1. TGrid architecture

The software architecture of the TGrid runtime system and an overview of
the functioning of the subnet manager is sketched in Fig. 1. The program de-
veloper has access to one of the subnet managers and can submit programs to
this local subnet manager. A TGrid program can be represented as a directed
task graph where TGrid components are the nodes of the graph. Edges of the
task graph represent dependencies between components, which includes data
dependencies based on an output-input relation between components. If there
is a data dependency between consecutive components A and B, such that B
requires data structures produced by A, then the TGrid framework provides a
redistribution component which can automatically satisfy the dependency (cou-

pling of component). The subnet manager enqueues TGrid programs into a list
of programs to be executed. The queue controller selects the next program to be
executed on TGrid, spawns a TaskGraph Walker, and passes the user’s program
as parameter. The TaskGraph Walker executes the nodes of the task graph (com-
ponents) as specified in the application program. An instance of a TaskGraph
Walker observes the execution of a program throughout the entire life cycle of
the program.

As soon as all input data dependencies of a node (component) are fulfilled a
component is ready for execution. In TGrid, a component can only be executed
within a single subnet of the grid runtime system. Components can be arbitrary
single-processor or multi-processor tasks. TGrid is especially designed to support



the execution of hierarchically-structured multi-processor tasks based on TLib

[2]. TLib is an MPI-based library that provides separate functions for the hierar-
chical structuring of processor groups and for the coordination of concurrent and
nested M-tasks. TGrid components can also be executed on a remote subnet. If
the component scheduler decides to execute a component in a remote subnet, the
component will be sent to this target subnet and started remotely. As mentioned
before, executing a component requires a component scheduling beforehand. The
component scheduler maps a component to processors of a subnet taking into ac-
count the current workload of the subnet as well as the component’s preferences
and requirements, e.g. minimum and preferred number of processors to run this
component. The scheduler can retrieve this information about the workload and
the connected processors by calling interfaces provided by the subnet manager.

To eventually execute a scheduled component, the TaskGraph Walker starts
a Component Executor which encapsulates the necessary actions to run the
code. For instance, components using MPI have to be started differently than
components using Java sockets. In case of MPI components, the client processor
starts an MPI component container. An MPI component container initializes the
MPI environment, registers itself with its local subnet manager, and waits for
an MPI component to execute. The subnet manager sends the component to the
component container. The component container checks if all data dependency
of this component have been satisfied. If not, it notifies the subnet manager
that it is ready for performing a data redistribution operation. When the data
dependencies have been satisfied, the component container starts the execution
of the component. The component container also informs the subnet manager
when the component has finished its computation.

TGrid and all its components are written in Java which makes them com-
pletely platform independent. The current implementation supports components
that are based on MPI. This approach allows us to run these components on ar-
bitrary machines in the grid without having to recompile some parts. Moreover,
the ability to access the MPI layer through JavaMPI enables the application
to benefit from using the best network driver available on the corresponding
machine.

3 Architecture of the MxN redistribution component

A parallel data redistribution, often known as MxN redistribution, is required for
the coupling of programs (or components) which are executed in a data-parallel
manner and have a data dependency. MxN stands for a data redistribution from
M processors of the source program to N processors of the target program.
Since all kinds of data redistributions between components require similar meta
informations, the implementations follow similar patterns. The basic steps to
redistribute data are data identification, message generation, message scheduling,
and the actual communication. For TGrid, these basic steps are realized by the
following tasks:



1. Specify the input and output variables of the redistribution. An output vari-
able defines data which are provided by the sending component. Hence, input
variables define data structures of the receiving component.

2. Define which parts of the source data has to be transferred to the target
component (selection).

3. Define the data mapping between sending and receiving component.

4. Create a schedule of redistribution messages (communication schedule) that
includes a sequence of messages that correctly moves data structures from
the source to the target component.

5. Start communication and perform transfer.

In TGrid, the redistribution can be started when the source component has
finished its computation and the target component has been initialized. The
redistribution process has to determine all the meta information from both end-
points in order to create the communication schedule. Enumerating the infor-
mation required to create a communication schedule may be straight-forward,
however, it is difficult to design an easy-to-use and extendible (data-typing sys-
tem) software component, i.e. TGrid provides generic data type interfaces which
enables the developer to define and implement new data distribution types (e.g.
block-cyclic 2-dimensional arrays of integers) if necessary.

A major concern is the throughput and the latency that can be provided
in the communication stage. In order to gain good performance, we decided
to differentiate between inter-subnet and intra-subnet redistribution. The data
redistribution between two components which are part of the same subnet is
referred to as intra-subnet redistribution. Intra-subnet redistribution in TGrid

is characterized by direct message transfer from the sending processors to the
receiving processors. In case that a component is executed by multiple operat-
ing system processes on one machine, direct message transfer to each of these
participating processes is only possible if each processor can allocate arbitrary
ports to receive data. Since most firewalls are configured to allow communication
only on a few ports, we assume that unrestricted port management may only be
allowed in private subnets. Unrestricted port management within a subnet en-
ables the processors to directly transfer messages. As a result of the intra-subnet
design, the message transfer within processors of the same subnet can be per-
formed concurrently, i.e. no routing is involved. This ensures a high throughput
and enables a fast redistribution within subnets. The communication between
different subnets has different requirements. Many network configurations do
now allow direct communication between a pair of processors, each located in a
different subnet. However, firewalls may block traffic between two nodes and the
IP address space may be completely private to a subnet. Instead, messages from
one subnet to another have to be routed through the local subnet manager. The
subnet manager has to be set up appropriately to support bypassing the firewall
restrictions. The number of message hops increases when messages have to be
routed over several other nodes which strongly influences the achievable latency
and throughput.



Fig. 2. TGrid Redistribution Protocol

Another important design goal for the redistribution module is to allow con-
current redistributions between components. The redistribution component of
TGrid is implemented entirely in a multi-threaded way, i.e. different redistribu-
tions can be performed between each pair of components at the same time.

4 Data redistribution protocol of TGrid

Data redistribution is realized by the TGrid Communication Protocol, which is
shown in Fig. 2. A common case is that a sub-matrix computed by a component
(Component 1) is required as input by another component (Component 2). The
processors that execute these components may be located on different subnets
or may be part of the same subnet. The redistributor is the entity that manages



the entire redistribution and may be located on a third subnet, called Subnet C
in Fig. 2. Since the redistributor is part of the execution of a TGrid program
(see Fig. 1 in Sec. 2) it runs on the subnet where the user has submitted the
application program. The user has to instruct the redistributor (by passing meta
information) which data has to be transferred between the components. This
meta information includes

– unique identifiers of variables which determine the source and the target
data structure in source and target component

– the data selection in the source component and the data mapping in the
target component as described in Section 3.

– the component schedule of the source and the target component (number
of processors, mapping). It enables the redistributor to retrieve information
about the data layout which is required for generating the communication
schedule.

– references to source and target component objects.

Using this information, the redistributor creates an abstract communication
schedule. The abstract communication schedule is composed of a list of abstract
messages which do not contain system information such as host names or IP
addresses of the TGrid environment. In order to deliver messages in the current
runtime environment, the redistributor has to convert the abstract communica-

tion schedule into a system-dependent communication schedule. Therefore, ab-
stract messages are extended with a header which is used to uniquely identify
the destination of a target variables. A component’s variable can be uniquely
identified within TGrid by specifying

– the subnet to uniquely identify the subnet to route the message to.
– the component to locate the component in the subnet. TGrid components

get a unique label when they are passed to the runtime environment for
execution.

– the name of the variable which stores the data to be accessed.

The name of the variable and the name of the subnet can be easily determined.
The component id in TGrid however is assigned at runtime. To retrieve the
component identifier from a remote subnet, the restributor sends a request to
the remote subnet manager. The subnet manager responds by sending the cor-
responding component id back to the redistributor. The redistributor has now
all information to convert the abstract communication schedule into a system-

dependent communication schedule.
The redistributor starts redistribution managers on both subnets which man-

age the redistribution on the remote subnets and are primarily used to avoid
communication across subnet border when it is not required. One redistribu-
tion manager controls the actions taken by the sending processors and the other
controls the receiving processors, respectively. Redistribution managers belong
to the same subnet as the sending or the receiving processors. Therefore, only
data messages from source processors to target processors have to be sent across



subnet borders. All other protocol messages that may be necessary for the re-
distribution, e.g. synchronization, require only communication within subnets
(from processors to their redistribution manager).

TGrid is designed to run several redistributors and also redistribution man-
agers concurrently. Therefore, each redistribution manager gets a unique ID
when instantiated. In order to determine the correct redistribution manager for
incoming messages the redistribution managers have to exchange their IDs at
first. Each redistribution manager sends its ID to the redistributor which for-
wards it to the remote redistribution manager.

The redistribution manager that controls the processors which have to send
messages is referred to as send manager and the manager for the receiving
processors as receive manager, respectively. The receive manager assigns a unique

port to each receiving processor and sends a receive request to the processors.
When all processors have responded to this request, the receive manager sends
meta data of each receiving processor (hostname, port, local rank, etc.) to the
send manager. The send manager uses this information to create a proxy object
through which the sending processors send their messages. Proxy objects are used
to make the sending of data messages transparent to the sending processor, i.e.
the processor is not aware whether the target processor is part of the same local
subnet or located on a remote subnet. With the information about the target
host, the send manager can assign the message list and proxies to each processor
that has data to contribute. Both the send manager and the receive manager
wait until all cluster machines have acknowledged that the message transfer has
been completed.

The sending or receiving of messages is not done by the component itself.
This would force the component developer to implement redistribution code
(sending/receiving) for every single component. Instead, the data transfer re-
sponsibility is part of the component container, see Section 2. Since component
containers have no knowledge of the internal data structure of a component, the
data transfer between a container and a component is realized by abstract inter-
faces which include methods to retrieve meta information (variable identifiers,
data selection, data mapping) as discussed in this section.

5 Experimental results

We performed a number of throughput experiments to evaluate the performance
of the TGrid redistribution component. All intra-subnet tests were run on a
cluster consisting of 64 Opteron processors (Model 246, 2 GHz). The cluster has
three different interconnection networks per node; 100 MBit Ethernet, Gigabit
Ethernet, and Melanox Infiniband. Currently, the TGrid framework provides a
small number of distributed data types, e.g. distributed block-partitioned ma-
trices, which play an important role in scientific applications.

The first experiment measures the throughput achieved when redistributing a
block-partitioned matrix between two components in TGrid. Fig. 3(a) compares
the throughput per node that was achieved with several matrix configurations
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Fig. 3. (a) Intra-subnet data redistribution performance on Gigabit Ethernet and In-
finiband. (b) Throughput comparison of several data redistributions on Gigabit Eth-
ernet and on Infiniband. Constant message size per processor.

and on different interconnection networks. The label ’mxn’ denotes the number
of processors that were assigned to the source (m) and to the target component
(n). For instance, the label ’Gigabit 2x2’ stands for the data redistribution over
Gigabit Ethernet between 2 processors which run the source component and
2 processors which run the target component. As expected, the throughput per
node increases with larger matrices. The message size that each processor has
to send or receive depends on the size of the input matrix and on the number of
processors that store the matrix. If more processors are used to store a matrix
the throughput will be smaller. On the other hand, the protocol overhead has
less impact on the overall time when the message size increases. For instance, for
matrix size 4096 the throughput between 2 nodes (’1x1’) is higher than measured
with 16 nodes (’8x8’). The small throughput that can be seen for a matrix
size of 256 is a direct result of the protocol overhead of the redistribution. The
throughput of the redistribution is also limited by the object serialization done at
the Java layer. The object serialization in Java is a very powerful tool and makes
it easy to send object with different implementations across the network. These
limitations cause the similar performance of Gigabit Ethernet and Infiniband.

Since the size of each message depends on the number of processors which
store a distributed matrix, it is also important to examine the throughput when
the size of matrices is adjusted in the way that the message size per processor is
held constant. Fig. 3(b) shows the throughput per node with a constant message
size per node (we used one processor per node on SMP boards). Again, the
impact of the protocol overhead decreases the throughput for a small message
size (0.5 MB) in comparison to bigger messages. We can also observe that the
throughput per node is almost equal for a specific message size taking advantage
of concurrent message redistribution.

Another important test for grid environments is to measure the bandwidth
between long-distance networks. As mentioned above, TGrid is able to execute
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Fig. 4. (a) Intra vs. Inter-cluster redistribution; (b) Time spent in each redistribution
step (matrix redistribution from 4 source processors to 4 target processors, 4x4, 8
nodes). Interconnection network: Gigabit Ethernet.

components remotely and can also handle the data redistribution between com-
ponents which are located in different subnets. Fig. 4(a) compares the through-
put achieved by inter-cluster redistribution (routed) with the throughput achieved
by intra-cluster redistribution (direct). The inter-subnet redistribution tests were
performed on a single cluster. To perform these tests, we divided the number of
nodes into two disjoint subnets where each subnet is controlled by one node of
the corresponding subnet. We also used another IP range with the consequence
that the transfer between both subnets as well as the communication in between
the subnet is done over the 100 MBit interconnection network. It is not surpris-
ing to see such a huge performance difference. Considering that the 100 Mbit
card has a maximum bandwidth of 12.5 MB/s. Since each message is routed
through two different subnet managers and since each message can only be for-
warded to the next destination when it was entirely received, the throughput of
a single message has an upper bound of 12.5/3 ≈ 4 MB/s (3 message hops to
destination). Additionally, the sending of message from multiple processors has
to be synchronized on a subnet manager to some extend which in turn reduces
the possible throughput per node.

Fig. 4(b) shows the partial times spent in different redistribution steps. The
bar labeled with ’Protocol’ denotes the protocol overhead introduced by using
the TGrid redistributor. The time ’Pack’ denotes is the time for packing mes-
sages and the time ’Send’ denotes the time for transferring the message over
the network. The packing of messages contains determining the matrix elements
to be sent, allocating a message buffer, selecting and copying elements from
the local matrix buffer into the message buffer, and writing a message header
containing meta informations for message reconstruction. We can observe that
the protocol overhead is constant for different matrix sizes. For this reason, the
TGrid protocol overhead has less impact on the performance for larger matrices.



As we expected, the time for packing and sending messages increases linearly
with the number of elements to be transferred.

The redistribution component of TGrid has shown good performance when
taking into account that there is a price to pay for determining data, converting
data, and managing arbitrary data inside a heterogenous grid environment.

6 Related work

Data redistribution in distributed or grid environments has been an active area of
research in the last couple of years. The Parallel Application WorkSpace (PAWS)
provides a framework for coupling parallel applications within a component-like
model [5]. The PAWS approach is similar to the redistribution component of
TGrid, however, on another level of granularity. In contrast to PAWS, TGrid
uses the notion of redistribution within an application, i.e. data redistribution
is required to start a particular M-task of the application. The Model Coupling
Toolkit (MCT) [6] is a software library written in Fortran 90 which provides func-
tions to transfer data structures between parallel applications. InterComm [7] is
a redistribution library that moves the determination of data redistribution pat-
terns inside the programs to be coupled. An ongoing research project is carried
out by the CCA (common component architecture) forum. The MxN working
group of the CCA forum is working on the definition and implementation of
interfaces to transfer data elements between parallel components running with
different numbers of processes in each parallel component [8]. The framework
Seine [9] is a geometry-based interaction model which is encapsulated as a CCA
compliant component within the Ccaffeine CCA framework. Other CCA compli-
ant frameworks that support coupling of distributed components are DCA [10]
and XCAT [11]. An effective algorithm for communication schedule generation
for data redistributions is presented in [12]. Messages between different clus-
ters are scheduled in order to avoid exceeding the bandwidth capacity of the
backbone.

7 Conclusions

In this article, we have presented the data redistribution component used by
TGrid. The redistribution component is fully capable of managing arbitrary MxN
redistributions. The redistribution framework of TGrid works completely multi-
threaded so that multiple variables of components can be transferred to arbitrary
receiving components in parallel. The redistribution component provides simple
but flexible interfaces which make it an easy task to extend the implemented
data types and algorithms. The redistribution component differentiates between
intra and inter-subnet communication. The intra-subnet communication allows
the parallel sending of messages and is therefore of major importance for high
throughput. The redistribution component of TGrid has shown good perfor-
mance in the experiments.
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