
Parallel Sorting Algorithms for Optimizing Particle Simulations

Michael Hofmann∗ and Gudula Rünger
Department of Computer Science

Chemnitz University of Technology, Germany
Email: {mhofma,ruenger}@cs.tu-chemnitz.de

Paul Gibbon and Robert Speck
Forschungszentrum Jülich

Jülich Supercomputing Centre, Germany
Email: {p.gibbon,r.speck}@fz-juelich.de

Abstract—Real world particle simulation codes have to
handle a huge number of particles and their interactions.
Thus, parallel implementations are required to get suitable
production codes. Parallel sorting is often used to organize the
set of particles or to redistribute data for locality and load bal-
ancing concerns. In this article, the use and design of parallel
sorting algorithms for parallel particle simulation codes are
discussed. As a typical example, the particle simulation code
PEPC is considered and a specific parallel sorting algorithm for
this application is presented. The resulting parallel simulation
code was implemented on an IBM Blue Gene/P system and
corresponding performance results are shown.

Keywords-particle simulations; parallel sorting; load balanc-
ing; data redistribution; performance optimization;

I. INTRODUCTION

Particle simulation methods belong to the most com-
monly used approaches for numerical simulations of com-
plex physical problems [1]. The fields of application in-
clude astrophysics, molecular dynamics, plasma physics, and
fluid dynamics. Real-world scientific problems are mod-
elled using large particle systems, thus leading to large
scale computational problems. Consequently, advanced and
efficient simulation methods are required and the use of
high performance computer systems is inevitable. Complex
particle systems consist of millions or billions of particles
and involve large amounts of data that need to be processed
efficiently during the simulation. Parallel sorting is often
used in parallel particle simulations to distribute the particles
across the compute nodes and to prepare the particle data
in such a way that the locality of computations is increased.
Therefore, efficient parallel sorting methods for complex and
high scaling parallel environments are of great importance.

Sorting in general and parallel sorting in particular is
a fundamental problem in computer science. The sorting
problem has been the subject of both theoretical and practi-
cal interest for decades, resulting in numerous contributions
on sequential and parallel sorting [2], [3], [4], [5]. Current
research activities include sorting in high scaling parallel
environments [6] and the use of multi-core processors and
GPUs [7], [8], [9], [10]. Most research contributions for
parallel sorting focus on generic sorting problems without

∗Supported by Deutsche Forschungsgemeinschaft (DFG).

taking into account the specific demands of the particular
applications (e.g., in scientific computing). However, to
achieve scalability and efficiency for large, complex particle
simulations, the parallel sorting algorithm has to be adapted
to the specific needs of the specific particle simulation.

In this article, the need for efficient parallel sorting
algorithms in particle simulations is discussed. An overview
of the demands on sorting algorithms in parallel particle
simulations is given. Important aspects are the structure of
the data elements to be sorted, the memory requirements
and weighted data elements. Parallel sorting in particle
simulations serves different purposes, including the creation
of an appropriate order for the computations, locality aspects
for memory accesses, or particle distribution in distributed
memory machines. In most cases, parallel sorting is used to
achieve fast and efficient simulation codes. Thus, the sorting
itself should be fast and efficient and should fit into the
application code, which leads to the challenge to design
specific parallel sorting methods for specific simulation
codes. The investigation of parallel sorting in the context of
particle simulation codes is part of the ScaFaCoS project1.

The contribution of this article is to consider the problem
of using an appropriate parallel sorting algorithm for the
specific needs of a parallel particle simulation code. As a
realistic example, the simulation code PEPC [11] is inves-
tigated. In this simulation code, sorting is used for locality
and load balancing reasons. For this application code, an im-
proved parallel sorting phase is developed and incorporated
into the code. The improved sorting is based on partitioning
which exploits weights measuring the computational load
associated with the particles. This leads to an optimization
of the parallel particle simulation code PEPC. Performance
results on an IBM Blue Gene/P system [12] using up to
16,384 processes are shown.

The rest of this article is organized as follows. Section II
introduces efficient particle simulation methods and their
need for parallel sorting. Section III discusses the demands
on parallel sorting algorithms in particle simulations. Sec-
tion IV describes the optimization of parallel sorting in
the particle simulation code PEPC and Sect. V presents
performance results. Section VI concludes the article.

1ScaFaCoS (Scalable Fast Coulomb Solvers) is a research project sup-
ported by the German Federal Ministry of Education and Research (BMBF).

978-1-4244-8396-9/10/$26.00 c© 2010 IEEE

Original published: P. Gibbon, M. Hofmann, G. Rünger, and R. Speck. Parallel sorting algorithms for optimizing particle simulations. In
Proceedings of the 2010 IEEE International Conference on Cluster Computing, Workshops and Posters (CLUSTER WORKSHOPS), pages
1–8. IEEE, 2010. Online available at http://dx.doi.org/10.1109/CLUSTERWKSP.2010.5613105.

http://dx.doi.org/10.1109/CLUSTERWKSP.2010.5613105

II. EFFICIENT PARTICLE SIMULATIONS

Simulating systems consisting of a large number of parti-
cles is a common problem in physics [13]. For example, the
motion of the particles induced by interactions through long-
range forces are studied. Since systems with more than two
particles do not have analytical solutions for the equations
of motion, numerical solutions are inevitable. The dynamical
evolution of such systems can be simulated by calculating
the interactions between particles at discrete time steps and
modifying their positions and velocities accordingly.

A. Particle Simulation Methods

Long-range potentials, like the Coulombic or gravitational
potential, provide significant contributions even for distant
particles. Therefore, all pairwise interactions between parti-
cles need to be taken into account. The direct evaluation of
these potentials for a system with n particles would require
O(n2) operations in each time step. Efficient methods like
the Barnes-Hut algorithm [14] or the Fast Multipole Method
[15] can reduce these costs down to O(n log n) or O(n)
operations, respectively. These methods can be used for an
efficient simulation of large particle systems. However, the
continuing need for simulating an ever increasing number
of time steps and larger systems in reasonable time requires
efficient implementations of these methods on high perfor-
mance computer systems.

The Barnes-Hut algorithm and the Fast Multipole Method
represent efficient methods that divide the interactions into
near field and far field. A hierarchical partitioning is used to
group particles into boxes according to their positions. Inter-
actions of particles that are “close” to each other represent
near field interactions, which are calculated directly. Interac-
tions of particles that are “separated” from each other (based
on specific criteria of the particular application) represent far
field interactions. Their contributions are approximated using
truncated expansions (e.g., Taylor expansion or Legendre
expansion). This enables a treatment of a set of distant
particles as a single massive pseudo-particle and leads to
reduced computational costs for the far field calculations.

Partitioning the particles into boxes is usually based on
a specific numbering of the boxes. Particles are assigned a
box number according to the box they are located in. By
sorting the particles and their associated data according to
their box numbers, all particles that belong to the same
box are contiguously arranged in memory. By using an
appropriate numbering of the boxes, it is also possible to
arrange particles of neighboring boxes close to each other in
memory. This can be used to increase the locality of the later
computations. Figure 1 shows a two dimensional example for
a numbering of boxes according to a Z-order space filling
curve [16].

Data parallel implementations of particle simulations can
be achieved by distributing the particles across the avail-
able processing elements (e.g., compute nodes or processor

Figure 1. Two dimensional (particle system) example for partitioning
and numbering of boxes according to a Z-order space filling curve and
distribution them across three compute nodes.

cores). An efficient and scalable parallel implementation
requires a partitioning of the particle data that leads to an
appropriate balancing of the computational load and to a
minimization of the resulting communication. A common
partitioning scheme is based on the linear ordering of the
boxes according to a space filling curve. The curve is divided
into several parts and the particles and boxes of each part
are assigned to a single compute node. The two-dimensional
example in Fig. 1 shows a distribution of the particles and
boxes across three compute nodes.

B. A library for long-range interactions

The goal of the ScaFaCoS project is to create a soft-
ware library that includes various fast solution methods
for the efficient calculation of long-range interactions. This
includes parallel implementations of algorithms like the Fast
Multipole Method (FMM), the Barnes-Hut algorithm (BH),
Particle-Particle Particle-Mesh methods (P3M), Multigrid
methods, and fast summations with Fast Fourier transforms.
The parallel solution methods are based on efficient and
scalable implementations that are suitable for high scaling
parallel architectures like the IBM Blue Gene/P platform.

The ScaFaCoS library is intended to provide a uniform
interface for all implemented solution methods. Similarly to
other successful library approaches for standard operations
(e.g., (P)BLAS and (Sca)LAPACK for linear algebra), the
library is intended to be a parallel software library that can
be easily integrated into various applications. This should
allow the application programmer to focus on the needs of

the specific application (e.g., a molecular dynamics code),
while using the efficient solution methods of the library
for the computationally intensive calculations of the particle
interactions. The simulation algorithms of the library exploit
parallel sorting of the particles and so parallel sorting
algorithms are included.

C. PEPC: A Multi-Purpose Parallel Tree-Code

PEPC (Pretty Efficient Parallel Coulomb-solver) is a parti-
cle simulation code for the computation of long-range forces
based on the Barnes-Hut algorithm [14]. The kernel rou-
tines of PEPC are used by several “front-end” applications
that are built on top of PEPC. The front-end applications
implement the dynamic evolution of particle systems and
include problem specific aspects of the particular physical
domain. Examples for front-end applications are PEPC-E
for molecular dynamics simulations, PEPC-B for simulating
laser- or beam-plasma interactions, or PEPC-G for astro-
physical simulations.

The Barnes-Hut algorithm uses a hierarchical partitioning
of the particles into boxes until every particle is located
in a separate box. The parallel implementation of PEPC is
based on the Hashed Oct Tree scheme of Warren et al. [17].
In this scheme, the position of a particle is encoded in a
specific key such that the oct-tree of boxes is not stored
as hierarchical data structure but as a hash table. During
the creation of the data structures in PEPC, all particles
are assigned a box number according to the box they are
located in. The box numbers are recursively created based on
their spatial coordinates. The resulting linear ordering of the
boxes corresponds to a Morton ordering. For inhomogeneous
distributions of particles, this construction leads to non-
uniform distributions of the box numbers of the particles.
The chosen linear ordering retains the spatial locality of
the boxes. By sorting all particles according to their box
numbers, particles that are close to each other (in the particle
system) become also close to each other in memory. In the
same way, the parallel implementation uses parallel sorting
to redistribute the particles among the compute nodes, such
that particles that are close to each other are distributed to
the same compute node (with high probability).

PEPC is also capable to simulate the dynamic evolution
of the particle system (e.g., the motion of the particles)
across many time steps. In every time step, the Barnes-Hut
algorithm is used to calculate the interactions of the particles.
Based on information collected in the previous time step,
every particle is assigned a computational load value that
approximates the costs for calculating the interactions of that
particle. These load values are used in the sorting algorithm
to determine a balanced distribution of particles across the
compute nodes. In PEPC, the parallel sorting algorithm is
also responsible for creating this balanced distribution during
the redistribution of the particles.

III. PARALLEL SORTING FOR PARTICLE SIMULATIONS

In practice, parallel sorting is used in parallel particle
simulations mainly for preparing the data for later com-
putations. The costs for sorting are rather small (< 10%)
in comparison to the total runtime. However, especially in
parallel applications, even these small program parts can
have a significant influence on the overall performance.
Using sequential sorting or other centralized (non-parallel)
solutions can lead to a significant reduction of the achievable
parallel performance. On the other hand, also parallel sorting
solutions can have considerable drawbacks, for example, if
the scalability of the parallel sorting algorithm is not as good
as the scalability of the rest of the application or if the
output distribution (of the data) produced by the parallel
sorting algorithm leads to load imbalances for the later
computations. Thus, parallel sorting in particle simulations
has specific demands rarely covered by existing parallel
sorting algorithms. In the following, we discuss several
aspects that arise from parallel particle simulations.

A. Sorting Data Elements

Sorting data elements in practice involves data elements
consisting of a key value and additional information asso-
ciated with this key. In particle simulations, the additional
information usually includes information about properties of
the particles, like their positions or their masses. These prop-
erties represent data components that need to be rearranged
in memory or send to other compute nodes together with the
keys during the sorting process. Handling these additional
data components is often done by the parallel sorting method
and can have a significant influence on its performance.

The size of the additional data has a strong effect on their
efficient handling. In particle simulations, the key values
are often box numbers that can be represented by single
integer values. The size of the additional data depends
on the specific application, but is usually larger than the
key value. For example, methods for calculating long-range
interactions (e.g., FMM or Barnes-Hut) require at least
positions (three floating point values in three-dimensional
space) and masses or charges (one floating point value) of
the particles. Applications like PEPC also require properties
like the velocities and the computational load values of the
particles.

Besides the size of the data elements, also the data format
used to store the data in memory plays an important role
for the implementations of parallel sorting methods. The
following three different data formats are commonly used:

1) The key value and all other data components of a
particle are stored within a structured data type. A
single array of this data type is used to store the
particles.

2) Separate arrays are used for the key value and for
all other data components. For data components that

consist of several values (e.g., three floating point
values for positions in three-dimensional space), these
values are stored consecutively.

3) Arrays with single basic data type entries are used.
Data components that consist of several values are
stored in several separate arrays (e.g., the x, y and
z values of the positions are stored in three separate
arrays).

The particle simulation code PEPC implements the third data
format.

B. Memory Requirements

The memory requirements of sorting algorithms in particle
simulations depend on the number of particles of the system
to be simulated. Out-of-place sorting algorithms use separate
output arrays for storing the sorted data. Depending on the
data format (see Sect. III-A), these memory requirements can
include both, the key values and the additional data. The
maximum number of particles that can be simulated by a
given parallel environment may be limited by the memory
requirements of the parallel sorting step. To avoid this lim-
itations, in-place sorting algorithms are highly required for
sequential and parallel sorting. In-place sorting algorithms
sort the input data itself and require only an amount of
additional memory that is independent from the data to be
sorted. However, in-place sorting algorithms usually achieve
these reduced memory requirements at the expense of an
increased runtime [18].

The particle simulation code PEPC makes excessive use of
additional memory during the parallel sorting of the particle
data. Especially for large numbers of compute nodes, the
memory requirements become hardly predictable and can
often only be resolved by an exaggerated usage of memory.

C. Weighted Data Elements

For parallel sorting of data elements of equal size, each
of these data elements imposes the same computational
load. Therefore, in homogeneous parallel environments a
balanced distribution of data elements across compute nodes
is preferred by the vast majority of parallel sorting algo-
rithms. Moreover, for specific algorithms a balanced dis-
tribution can be strictly required [19]. However, parallel
applications like particle simulations often rely on their own
(application-specific) modelling of the computational load.
From the perspective of parallel sorting algorithms, this kind
of application-specific property can be seen as a weight value
associated with each data element.

The computational load values assigned to the particles in
PEPC can be treated as weights. A balanced distribution of
the particle data according to these weights after the parallel
sorting is essential for achieving good load balancing in the
following computations.

Figure 2. Example for parallel sorting the keys in Step I (keys are
represented by individually sized vertical bars) with p = 3 processes.

IV. OPTIMIZING PARALLEL SORTING IN PEPC

As an example for a successful adaptation of parallel
sorting to the requirements of a particle code, we present
an improved parallel sorting step in the parallel particle
simulation code PEPC. Parallel sorting in PEPC is part of
the domain decomposition method that is used for a data
parallel implementation of the Barnes-Hut algorithm. As de-
scribed in Sect. II-C, each particle is assigned a box number
represented by an integer key. By sorting the particles in
parallel with respect to these key values, the particle data
are redistributed among the processes. This parallel sorting
step is also responsible for creating a balanced distribution
of particles to processes according to the computational load
associated with each particle.

Besides the key value, each particle has about 100 Bytes of
additional data that needs to be redistributed together with
the key value. The different components of the additional
data are stored in separate arrays as described as data
format 3 in Sect. III-A.

A. Original Parallel Sorting in PEPC

The original parallel sorting method in PEPC sorts the
particle data in two steps:

I. Sorting keys: Sort the key values in parallel to create
a plan that captures the reordering and redistribution
to be performed during parallel sorting of the entire
data set.

II. Redistributing particle data: Reorder and redistribute
the particle data according to the plan from Step I.

Sorting the key values in Step I uses an adapted version of
Parallel Sorting by Regular Sampling [20]. Figure 2 shows
an example for this parallel sorting strategy with p = 3
processes. Step I has the following substeps:

Ia) Sort the local sequences of keys on each process.
Ib) Determine p − 1 sample keys by adaptive sampling.

These sample keys are used by each process to divide
its local sequence of keys into p sub-sequences.

Ic) Redistribute the sub-sequences of keys of all processes
with an all-to-all communication operation.

Id) Merge the (received) sub-sequences of keys on each
process.

The adaptive sampling in Step Ib is a variation of regular
sampling [20]. For regular sampling, each process deter-
mines p − 1 local sample keys and sends them to a root
process. The root process selects p − 1 global sample keys
and sends them to all processes. The adaptive sampling of
the original parallel sorting method in PEPC increases the
number of local sample keys adaptively in several rounds.
The additional local sample keys are selected from sub-
sequences that contain too many keys. Additionally, the
choice of the global sample keys is performed with respect to
the computational load values of the particles. This ensures
that after redistributing the particles, the parallel Barnes-Hut
algorithm achieves a good load balancing.

The redistribution plan created during the parallel sorting
of the keys in Step I consists of the parameters used for
the all-to-all communication operation and two permutations
that describe the local reordering of the keys before and
after the redistribution. Redistributing the particle data itself
according to this plan in Step II proceeds as follows:
IIa) Permute the particles according to the permutation

created during the local sorting and store the reordered
particle data in a single intermediate array.

IIb) Redistribute the particle data with an all-to-all com-
munication operation.

IIc) Permute the received particles according to the per-
mutation created during the local merge and store the
reordered particle data in the target arrays.

The original parallel sorting method in PEPC has several
drawbacks. The adaptive sampling strategy creates large
numbers of sample keys (among which only p − 1 are
finally chosen). This results in high memory requirements
as well as large amounts of communication for coordinating
the selection of the sample keys between all processes.
Balancing the computational load of the particles evenly
depends on the chosen sample keys. Improving the load
balancing can only be achieved by further increasing the
number of sample keys, thus worsening the high memory
and communication requirements. Separating the parallel
sorting in two steps involves two all-to-all communication
operations (one for the keys and one for the particle data)
and is another drawback.

B. Optimized Sorting by Partitioning

To improve the parallel sorting method used in PEPC,
we have replaced the adaptive sampling in Step Ib with a
more efficient and exact partitioning algorithm. The adaptive
sampling determines p − 1 sample keys that are used to
divide each local sequence of keys into p sub-sequences. In
contrast, the partitioning algorithm searches directly for the

positions of the boundaries of the sub-sequences. The input
of the partitioning algorithm is a sequence of keys locally
sorted on each process. The output consists of p−1 position
values on each process that divide each local sequence into
p sub-sequences. The keys of the i-th sub-sequences of
all processes are smaller than the keys of the (i + 1)-th
sub-sequences for i = 1, . . ., p − 1. The sub-sequences are
then redistributed, such that process i receives the i-th sub-
sequences of all processes for i = 1, . . ., p.

The partitioning algorithm performs a search for the
local boundary positions of the sub-sequences. For ease of
description, we give a simplified algorithm that divides each
local sequence K of keys into two sub-sequences only.
The division is performed such that the total weight of
the first sub-sequences of all processes is between wmin

and wmax. The second sub-sequences (implicitly) get the
remaining weight. The weights of the keys approximate the
computational load of the corresponding particles in PEPC
and are given as input array W . The result of the simplified
partitioning algorithm is a local boundary position pos on
each process that divides the local sequence of keys into two
sub-sequences. To create all p− 1 local boundary positions,
the simplified partitioning is performed p − 1 times using
different values wmin and wmax each time. The values of
wmin and wmax are chosen depending on the total weight of
all keys. The difference between wmin and wmax controls
the imbalance allowed. The partitioning algorithm uses the
binary digit representation of the integer keys to search
for boundary positions. The search starts with the most
significant bits and proceeds towards the least significant
bits (as in most-significant-digit-first radix sort [2]).

The simplified partitioning algorithm is given in Fig. 3.
The function PARTITION is executed by all processes in
parallel (according to the SPMD model) and every process
contributes the keys and weights of its local particles.
Variables pos and size describe the local range of keys that
are currently considered and are initialized to contain all
local keys. The while loop is used to iterate over the bits
of the keys and performs an adaptive refinement in each
iteration. The while loop stops if there are no bits left for
further refinement or if the boundary position is found. The
refinement proceeds as follows: First, the number of keys
in the current range (given by pos and size) with a zero in
the r-th bit is determined (line 12). Then the local weight
of these keys is determined (line 13) and summed up with
a global reduction operation (ALL-REDUCE-SUM) over all
processes to determine their global weight ws (line 14). By
comparing the global weight ws to wmax and wmin, either
the keys with a zero bit are selected for further refinement
(line 15), or the other keys are selected for further refinement
(line 17). Otherwise, the current weight is between wmin and
wmax and the current position after the keys with a zero bit
is chosen as boundary position. All memory requirements
of the algorithm are exactly known in advance. The amount

1: function PARTITION(nlocal,K,W,wmin, wmax)
2: let: nlocal be the number of local keys
3: let: K be the local array of locally sorted keys
4: let: W be the local array of weights
5: let: wmin be the minimum weight for the boundary
6: let: wmax be the maximum weight for the boundary
7: /* initialization */
8: pos = 1 ; size = nlocal ; weight = 0 ; done = 0
9: r = highest bit position

10: /* search for the boundary position */
11: while r > 0 and done = 0 do
12: n0 = size−

∑size−1
i=0 GETBIT(K(pos+ i), r)

13: w0 =
∑n0−1

i=0 W (pos+ i)
14: ws = ALL-REDUCE-SUM(w0) /* comm. op. */
15: if weight+ ws > wmax then
16: size = n0

17: else if weight+ ws < wmin then
18: pos = pos+ n0

19: size = size− n0

20: weight = weight+ ws

21: else
22: pos = pos+ n0

23: done = 1
24: end if
25: r = r − 1
26: end while
27: return pos
28: end function

Figure 3. Simplified partitioning algorithm that divides the local sequence
of keys K of each process in two sub-sequences such that the total weight
of the first sub-sequences of all processes is between wmin and wmax.
Weights of the keys are given in W . GETBIT(k, r) retrieves the r-th bit of
key k and ALL-REDUCE-SUM(w) performs a global reduction operation
returning the sum of all values w over all process.

of communication required for the global summation of the
weights is constant in every iteration of the while loop. In
general, this leads a to lower memory and communication
requirement in comparison to the adaptive sampling strategy
of the original parallel sorting method in PEPC.

The algorithm in Fig. 3 illustrates the basic idea of the
partitioning algorithm. The entire implementation of the
partitioning algorithm searches all p− 1 boundaries at once
(instead of using the simplified algorithm p − 1 times).
To reduce the number of iterations of the while loop (and
therefore the number of communication operations), several
bits of the keys are used at once for refining the search.

C. Optimized Parallel Sorting in PEPC

The optimized parallel sorting method of PEPC uses the
partitioning algorithm of Sect. IV-B and combines the key
sorting of Step I and the particle data redistribution of Step
II into one particle data sorting step. This step requires only
one single all-to-all redistribution and proceeds as follows:

1. Sort the local sequence of keys to creating the sort
permutation (corresponds to Step Ia).

2. Permute the particles according to the sort permutation
and store them in a single intermediate array (corre-
sponds to Step IIa).

3. Use the partitioning algorithm of Sect. IV-B to deter-
mine the boundaries (corresponds to Step Ib).

4. Redistribute the particles with an all-to-all communi-
cation operation (combines Steps Ic and IIb).

5. Merge the keys to create the merge permutation (cor-
responds to Step Id).

6. Permute the received particles according to the merge
permutation and store them in the target arrays (cor-
responds to Step IIc).

These steps are performed by all processes in parallel. Only
Steps 3 and 4 include communication between the processes.

V. PERFORMANCE RESULTS

Performance results of the optimized parallel sorting have
been obtained on an IBM Blue Gene/P system. A single
compute node of the system consists of a 4-way SMP
processor with 2 GiB main memory. The virtual node mode
was used, leading to four processes on each compute node.

Figure 4 shows runtimes of the partitioning algorithm
of Sect. IV-B depending on the number of processes for
different total numbers of keys. The experiments use ran-
dom keys with constant weights. The keys are partitioned
equally allowing an imbalance of less than 1 %. The runtime
results of the partitioning algorithm can be divided into two
phases. Starting with a low number of processes, the runtime
decreases as the number of processes is increased. This is
caused by the decreasing number of keys per process that
lead to fewer local operations. However, with increasing
numbers of processes, also the number of boundaries that
need to be found by the partitioning algorithm increases.
This increases the work of the partitioning algorithm and
leads to increasing runtimes for large numbers of processes.
With lower numbers of keys this increase in runtime starts
earlier, but the runtime behavior of the partitioning algorithm
is independent from the numbers of keys. With more than
4096 processes the benefits due to lower numbers of local
keys on each processes vanish and the differences in runtime
for different numbers of keys become rather small.

The optimized particle sorting with partitioning as de-
scribed in Sect. IV-C was integrated in PEPC. The parti-
tioning algorithm uses the computational load values given
by PEPC as weights and partitions the particle data equally
allowing an imbalance of less than 1 %. The following
results were obtained using the molecular dynamics program
version of PEPC (PEPC-E) for benchmark simulations with
three time steps and with 6.4 and 25.6 million particles.

Figure 5 shows runtimes for particle data sorting in the
3rd time step depending on the number of processes using
the original and the optimized parallel sorting, respectively.

 0.001

 0.01

 0.1

 1

 10

 4 16 64 256 1024 4096 16384

ru
n
ti
m

e
 [
s
e
c
o
n
d
s
]

number of processes

Runtimes for the partitioning algorithm with random keys

0.25 mil.
1 mil.
4 mil.

16 mil.
64 mil.

256 mil.

Figure 4. Runtime results of the partitioning algorithm depending on
the number of processes with random keys and different total numbers of
keys. Results for 4 processes with 256 million keys are missing, because
the memory requirements exceeded the memory of the compute nodes.

 0.01

 0.1

 1

 10

 64 256 1024 4096 16384

ru
n
ti
m

e
 [
s
e
c
o
n
d
s
]

number of processes

Particle data sorting runtimes in PEPC

6.4 mil. particles, original
6.4 mil. particles, optimized
25.6 mil. particles, original
25.6 mil. particles, optimized

Figure 5. Runtime results of particle data sorting in PEPC (3rd time step)
depending on the number of processes. Runtimes are shown for the original
parallel sorting (Steps I and II) and the optimized parallel sorting (Steps
1-6) with 6.4 and 25.6 million particles. Results for 64 and 128 processes
with 25.6 million particles are missing, because the memory requirements
exceeded the memory of the compute nodes.

The optimized method achieves a significant improvement
in comparison to the original method for all numbers of
processes. With more than 1024 processes, the runtimes of
both methods start to increase. The influence of the number
of particles vanishes for increasing numbers processes.

Figure 6 shows runtimes of the adaptive sampling (original
parallel sorting) and of the partitioning (optimized parallel
sorting) for particle data sorting in PEPC (3rd time step,
6.4 million particles) depending on the number of processes.
The results show that for low numbers of processes, both
adaptive sampling and partitioning require only a small part
of the runtime. In these cases, the major part of the runtime
of particle data sorting is spend in other steps (e.g., local
sort, local merge, and all-to-all redistribution). However,
for increasing numbers of processes, the shares of adaptive

 0.01

 0.1

 1

 10

 100

64 256 1024 4096 16384

ru
n
ti
m

e
 [
s
e
c
o
n
d
s
]

number of processes

Adaptive sampling and partitioning runtimes in PEPC

original parallel sorting (Steps I and II)
original adaptive sampling (Step Ib)
optimized parallel sorting (Steps 1-6)
optimized partitioning (Step 3)

Figure 6. Runtime results of particle data sorting in PEPC (3rd time step,
6.4 million particles) depending on the number of processes. Runtimes are
shown for the original parallel sorting (Steps I and II) with the original
adaptive sampling and the original adaptive sampling (Step Ib) in isolation
as well as the optimized parallel sorting (Steps 1-6) with the optimized
partitioning and the optimized partitioning (Step 3) in isolation.

sampling and partitioning increase and they become the
major reason of the increasing runtimes in particle data
sorting in PEPC. Additionally, the results show that the dif-
ferences in runtime between the original and the optimized
parallel sorting mainly result from the lower runtimes of
the partitioning algorithm. This can be attributed to lower
costs for searching the boundaries during the partitioning
algorithm in comparison to the costs for managing large
numbers of sample keys during the adaptive sampling.

Figure 7 shows total runtimes of PEPC simulating three
time steps depending on the number of processes using the
original and the optimized parallel sorting, respectively. The
results show that PEPC itself scales well up to about 4096
processes. Additionally, the optimized parallel sorting leads
to a significant improvement in runtime especially for high
numbers of processes. The biggest reductions in runtime
of about 30 % (with 6.4 million particles) and 26 % (with
25.6 million particles) are achieved with 16,384 processes.
However, also with fewer processes a reduction of the total
runtime is achieved with the optimized parallel sorting.

Figure 8 shows the reductions in the total runtime of PEPC
(simulating three time steps) and in the particle data sorting
runtime depending on the number of processes. The results
show that in most cases, the reduction of the total runtime
exceeds the reduction in the particle data sorting runtime.
This shows that, besides the improved particle data sorting,
further improvements in the computations of PEPC are
achieved. This is caused by an improved load balancing due
to a more balanced distribution of the particles with respect
to their computational loads. The partitioning algorithm was
instructed to allow only 1 % of imbalance. The adaptive
sampling of the original particle sorting misses a feasible
control of the imbalance and leads to higher load imbalance.

 10

 100

 1000

 64 256 1024 4096 16384

ru
n
ti
m

e
 [
s
e
c
o
n
d
s
]

number of processes

Total runtimes of PEPC with three time steps

6.4 mil. particles, original
6.4 mil. particles, optimized
25.6 mil. particles, original
25.6 mil. particles, optimized

Figure 7. Total runtimes of PEPC simulating three time steps depending
on the number of processes using the original and the optimized parallel
sorting.

 0

 2

 4

 6

 8

 10

 12

 14

64 256 1024 4096 16384

ru
n
ti
m

e
 r

e
d
u
c
ti
o
n
 [
s
e
c
o
n
d
s
]

number of processes

Runtime reduction in PEPC for three time steps

total reduction
particle data sorting reduction

Figure 8. Reductions in the total runtime of PEPC (simulating three time
steps) and in the particle data sorting runtime depending on the number of
processes. Results represent the differences between using the original and
the optimized particle data sorting method.

VI. SUMMARY

In this article, the use of parallel sorting within parti-
cle simulations has been considered. Various application-
specific demands on parallel sorting algorithms were dis-
cussed. Using parallel sorting in particle simulations is a
challenging task but provides various opportunities for adap-
tations and optimizations. As an example for a successful
optimization, we presented an improved parallel sorting
method based on partitioning with weights for the PEPC
application. The results showed that the improved parallel
sorting method achieved a performance increase for the
parallel sorting step itself as well as for the rest of the
application due to an improved load balancing. Especially
with large numbers of processes, there was an increasing
difference between the original and the optimized parallel
sorting method.

ACKNOWLEDGMENT

The measurements were performed at the John von Neu-
mann Institute for Computing, Forschungszentrum Jülich,
Germany. http://www.fz-juelich.de/nic

REFERENCES

[1] R. W. Hockney and J. W. Eastwood, Computer simulation
using particles. Taylor & Francis, 1988.

[2] D. E. Knuth, The Art of Computer Programming, Volume 3:
Sorting and Searching (2nd ed.). Addison-Wesley, 1998.

[3] S. Akl, Parallel Sorting Algorithms. Academic Press, 1990.

[4] D. Bitton, D. J. DeWitt, D. K. Hsaio, and J. Menon, “A
taxonomy of parallel sorting,” ACM Comput. Surv., vol. 16,
no. 3, pp. 287–318, 1984.

[5] D. Richards, “Parallel Sorting - A Bibliography,” SIGACT
News, vol. 18, pp. 28–46, 1986.

[6] E. Solomonik and L. V. Kale, “Highly Scalable Parallel
Sorting,” in Proc. of the IPDPS 2010. IEEE, 2010.

[7] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani, “AA-
Sort: A New Parallel Sorting Algorithm for Multi-Core SIMD
Processors,” in PACT ’07: Proc. of the 16th Int. Conf. on
Parallel Architecture and Compilation Techniques. IEEE,
2007, pp. 189–198.

[8] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog,
Y.-K. Chen, A. Baransi, S. Kumar, and P. Dubey, “Efficient
implementation of sorting on multi-core SIMD CPU archi-
tecture,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1313–1324,
2008.

[9] Y. Xiaochun, F. Dongrui, L. Wei, Y. Nan, and P. Ienne, “High
Performance Comparison-Based Sorting Algorithm on Many-
Core GPUs,” in Proc. of the IPDPS 2010. IEEE, 2010.

[10] N. Leischner, V. Osipov, and P. Sanders, “GPU sample sort,”
in Proc. of the IPDPS 2010. IEEE, 2010.

[11] “PEPC: A Multi-Purpose Parallel Tree-Code,” http://www.
fz-juelich.de/jsc/pepc.

[12] IBM Blue Gene Team, “Overview of the IBM Blue Gene/P
Project,” IBM J. Res. Dev., vol. 52, no. 1-2, pp. 199–220,
2008.

[13] S. Pfalzner and P. Gibbon, Many-Body Tree Methods in
Physics. Cambridge University Press, 1996.

[14] J. Barnes and P. Hut, “A hierarchical O(N log N) force-
calculation algorithm,” Nature, vol. 324, pp. 446–449, 1986.

[15] L. Greengard and V. Rokhlin, “A fast algorithm for particle
simulations,” J. of Comput. Phys., vol. 73, pp. 325–348, 1987.

[16] M. F. Mokbel, W. G. Aref, and I. Kamel, “Analysis of Multi-
Dimensional Space-Filling Curves,” Geoinformatica, vol. 7,
no. 3, pp. 179–209, 2003.

[17] M. S. Warren and J. K. Salmon, “A portable parallel particle
program,” Comput. Phys. Commun., vol. 87, no. 1-2, pp. 266–
290, 1995.

[18] H. Dachsel, M. Hofmann, and G. Rünger, “Library Support
for Parallel Sorting in Scientific Computations,” in Proc. of
the 13th Int. Euro-Par Conf. Springer, 2007, pp. 695–704.

[19] A. Tridgell and R. Brent, “A General-Purpose Parallel Sorting
Algorithm,” Int. J. High Speed Com., vol. 7, no. 2, pp. 285–
301, 1995.

[20] H. Shi and J. Schaeffer, “Parallel Sorting by Regular Sam-
pling,” J. Parallel Distrib. Comput., vol. 14, no. 4, pp. 361–
372, 1992.

http://www.fz-juelich.de/nic
http://www.fz-juelich.de/jsc/pepc
http://www.fz-juelich.de/jsc/pepc

	Introduction
	Efficient Particle Simulations
	Particle Simulation Methods
	A library for long-range interactions
	PEPC: A Multi-Purpose Parallel Tree-Code

	Parallel Sorting for Particle Simulations
	Sorting Data Elements
	Memory Requirements
	Weighted Data Elements

	Optimizing Parallel Sorting in PEPC
	Original Parallel Sorting in PEPC
	Optimized Sorting by Partitioning
	Optimized Parallel Sorting in PEPC

	Performance Results
	Summary
	References

