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Abstract Many parallel applications from scientific computing usdexdive MPI communication oper-
ations to distribute or collect data. The execution time afective MPI communication operations can be
significantly reduced by a restructuring based on ortholgmmeessor structures or by using specific point-to-
point algorithms based on virtual communication topolsgiehe performance improvement depends strongly
on numerous factors, like the collective MPI communicatiperation, the specific group layout, the message
size, the specific MPI library, and the architecture paransedf the parallel target platform. In this paper
we describe an adaptive approach to determine and seleetcHisprocessor group layout or communica-
tion algorithm for the realization of collective commurtica operations with the objective of minimizing the
communication overhead. In the case that a communicatidhadés faster than the original implementation
of the collective MPI communication operation, the speaficmmunication method is applied to perform the
communication operation.

1. Introduction

The execution of data or task parallel implementations of@m applications can lead to scal-
ability problems, especially for target platforms with age number of processors [2]. To reduce
the communication time of collective MPI communication gi®ns different approaches can be
considered [5,6]. One of them is the use of orthogonal psmregroups performing two or more
communication phases. An orthogonal processor group &radd by arranging subsets of proces-
sors as two- or multi-dimensional grid. In [3] we have showwtthe execution time of collective
MPI communication operations can be significantly reducgdatthogonal processor groups for
different target platforms and different MPI implementats. Performance improvements of 40%
up to 70% can be obtained for LAM-MPI communication openagiolike aMPl _Bcast () or
MPI _Al | gat her (), ona Cray T3E-1200 and a Beowulf cluster.

Since only a specific collective MPI communication openmatgreplaced by two or more commu-
nication phases of orthogonal processor groups, the usesadpproach is completely independent
of the computation or communication structure of the palalfogram application. This means that
all applications using MPI operations for exchanging data leenefit from the improved communi-
cation method. The overhead caused by generating the garag®ups is negligible and can easily
be done by using a specific communicator handle for the quoreting row or column group.

However, it is not known in advance whether a performance cgan be achieved by an orthogonal
processor layout and which of the numerous processor layoay lead to an optimal performance
gain. The reason is that the performance improvement demandumerous factors, like the specific
collective MPI communication operation, the message siEetotal number of processors partic-
ipating in the operation, the specific MPI library, and thehgtecture characteristics of the target
machine [8,7]. In this paper we introduce an adaptive agprdlaat determines and automatically
selects the processor layout depending on the messagsistbethat the best performance improve-
ment for a corresponding collective communication operais achieved. In addition, we consider
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specific realizations of collective communication usingnpdo-point operations. The fastest real-
ization is then used in the parallel application programe @baptive approach can be applied for
each collective MPI communication operation and each [gtarget machine providing MPI.

2. Design of Orthogonal Groupsand Communication Algorithms

For a collective MPI communication operation pn= p; - p, processors, an orthogonal group
layout of processors can be arranged as row groups ayighrocessors and column groups with
p2 processors. The disjoint processor sets resulting fromneolgroups are orthogonal to the row
groups. Using the orthogonal processor group a collecti® &bmmunication operation is per-
formed in two phases. To perform more than two communicgiltases the rearrangement can be
applied recursively to the row groups or the column grougspectively. In [3] the generation and
use of orthogonal processor groups is described in mord.deta

Another possibility to reduce the communication overhefd collective communication oper-
ation is an implementation based on a series of non-blogikoigt-to-point MPlI communication
operations. In this paper we consider a selection of the proshising algorithms. The algorithms
are based on specific virtual communication topologies,revbige exact algorithm depends on the
specific collective MPI communication operation. These gumication methods are integrated
into a program library which provides a large variety of €iffnt realizations for each collective
communication operation. Based on this library, a modeiowg can determine and select an opti-
mal communication method depending on the message sizegiwea number of processors on a
specific execution platform. We consider a star, a hypercali@nomial tree and a ring as virtual
communication topology to implement a corresponding ctille MPI operation.

The user can perform the benchmark and the execution of thcaton program separately.
This reduces the overhead caused by the performance bericiviman a large number of program
starts of application programs is performed. The adapi{iyeaach can easily be used by including
a specific header file and linking tiieprogram library to the program application.

3. Implementation of the adaptive approach

The basic idea of the approach is to execute a specific bemkhprayram that contains different
implementations for each collective MPI operation with tiigective of determining the fastest
communication method for a specific interval of messagessiZes communication methods the
vendor-specific collective MPI communication operatiorthogonal realizations with all possible
two- and three-dimensional group layouts and two diffemrhmunication algorithms based on
virtual topologies are considered. Table 1 shows which camaation topology is used for which
collective MPI operations. For each collective MPI opematiwo algorithmd$?2P_A andP2P_B are
implemented using non-blocking point-to-poi2P) MPI communication operations. Benchmark
programs of these algorithms are implemented as stand@l@negram library and can be used for
each collective communication operation on each paraltgkt platform providing MPI. Based on
the benchmark results, the fastest communication metratesmined in an evaluation phase which
has to be executed once for each combination of a targebptatind an MPI implementation.

For each collective MPI communication operation the infation gathered in the evaluation
phase is stored in an information table, such that a speaifgvial of message sizes is mapped
to the fastest communication method. This mapping can ket tosselect the fastest communication
method in the execution phase in which the application @nmgecontaining one or more collective
MPI operations is executed.



MPI operation | P2PA P2PB
MPI _Bcast () | binomial tree binomial tree (scatter) +
hypercube (allgather)
Gat her () star binomial tree
Scatter() star binomial tree
Reduce() star binomial tree
Al'l reduce() | binomial tree (reduce) +hypercube
binomial tree (bcast)
Al | gat her () |ring hypercube

Table 1: Two communication algorithr®2P_A andP2P_B are implemented to perform a collective
MPI communication operation. The algorithms use non-blugkoint-to-point MPI operation.

4. Parallel Target Platformsand Experimental Results

This section gives an overview of the hardware charactesist the parallel target platforms that
are used to investigate and evaluate the performance loetwd\dollective MPI operations with and
without optimized communication methods. Section 4.2 ga&summary of the performance results
on these platforms achieved by optimized communicatiorhotkin isolation.

4.1. Target Platforms
The runtime experiments are performed on a Beowulf clu§teir®), a dual Xeon cluster, a Cray
T3E and a IBM Regatta p690+ cluster, which have the follovahgracteristics.

e The Beowulf ClusterCLi C (ChemnitzerLi nux Cluster’) is built up of 528 Pentium Il processors
clocked at 800 MHz. The processors are connected by a fastiiét network which can be used by
LAM MPI 6.5.6 and MPICH 1.2.5.2.

e TheDual Xeon Cl ust er is built up of 16 nodes consisting of two Xeon processorskedcat 2
GHz each. The nodes are connected by a fast-Ethernet nedwadik high performance interconnection
network that uses Dolphin SCl interface cards. The SCI nétigaconnected as two-dimensional torus
and can be used by the ScaMPI (SCALI MPI) library [1]. The-fasternet based network is connected
by a switch and can be used by two portable MPI libraries, LAMIM.5.6 and MPICH 1.2.5.2.

e TheCray T3E- 1200 uses a bidirectional three-dimensional torus network tmeot the nodes each
containing a DEC Alpha 21164 processor with 600 MHz. The sixuaunication links of each node
are able to simultaneously support hardware transfer cdt@80 MB/s.

e TheJUMP (JUelich Multi Processor) is a IBM Regatta p690+ cluster, that is built uploSMP nodes;
each node consists of 32 Power4+ processors clocked at 1z7 Gi¢ nodes are interconnected by a
High Performance Switch (HPS). As Message-Passing litagmoprietary implementation of MPI is
used for all runtime experiments, that is part of the PdrBiteironment v4.1 developed by IBM.

4.2. Experimental resultsin isolation

A specific set of different orthogonal group layouts depeadghe total number of available
processors of a parallel target platform. In general, wargye the processor groups into all pos-
sible two-dimensional or three-dimensional grid layoussdxa on the total number of processors
participating in the communication operation. On the T3k #me CLIiC, 96 processors have
been used for the experimental evaluation leadingOtalifferent two-dimensional group layouts
(2 x 48,3 x 32,4 x 24,6 x 16,8 x 12,12 x 8,16 x 6,24 x 4,32 x 3,48 x 2). Additional perfor-
mance tests with a total number of 48 processors all@ifferent two-dimensional group layouts
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Figure 1. Summary of the performance improvements achieyelfferent communication methods
for collective MPI operations. The diagrams show the improents obtained with LAM-MPI (left)
and with MPICH (right) on the Beowulf cluster CLiC. The baepresent the minimum, average,
and maximum performance improvements over all message feiza total number of 48 processor
(upper bar) and 96 processors (lower bar) for each MPI oiperat

(2 x 24,3 x16,4 x 12,6 x 8,8 x 6,12 x 4,16 x 3,24 x 2) on both platforms. On the JUMP, runtime
tests with 64 processors are considered; 32 processorsailabte on the dual Xeon cluster. The
message sizes for the runtime tests are between 1 KByte @4dKRyte.

4.2.1. Beowulf cluster CLiC

The standard implementations of MPICH and LAM-MPI have treenback that an unsuitable use
of communication protocols may lead to significant perfanceadegradations on several execution
platforms. This can be observed, e.g., for the origival _Gat her (), MPl _Scatter () and
MPI _Al | gat her () operation on the CLIC. Different communication protoctlks the eager and
the rendezvous protocol, are used to optimize the dataghpmu for smaller and larger message
sizes. The performance degradations are caused by aneadseiection of the specific message
size at which the system switches to a different commurngirotocol. This disadvantage can be
compensated using orthogonal processor groups. The resstbah an orthogonal realization use the
significantly faster rendezvous protocol for larger messag the second communication phase, in
comparison to the slower eager protocol for smaller messaged by the original MPI operation.

We have measured the performance improvements achieveldebgptimized communication
methods for all message sizes considered. Figure 1 showsitheum, average, and maximum
performance improvements obtained. The figure depictatipeavements for a total number of 48
and 96 processors on the CLiC using LAM-MPI (left) and MPIGHglt). Since the adaptive ap-
proach determines the most efficient communication metbiosdparate intervals of message sizes,
the figures give a good survey of the expected reduction atdh@nunication overhead in the con-
text of parallel program applications on the CLIC. Finallg wotice that for anPl Bcast () and
anMPI _Al | gat her () operation, a point-to-point based algorithm usually l¢adke best perfor-
mance enhancements in contrast toMP¢ _Gat her (), MPl _Scat t er () andMPl _Reduce()
operation, where an orthogonal realization often lead ¢édost improvements.

4.2.2. Dual Xeon Cluster
The network interconnection based on the Fast-Ethernetlatd can be used by the LAM-MPI
and the MPICH implementation. Since the same portable MPaly and network system are in-
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Figure 2. The left figure shows the throughput of differ®Rt _Gat her () communication meth-
ods with 32 processors on the dual Xeon cluster using the 8tlank. The grey areas depict the
throughput achieved by orthogonal processor groups reptieg the fastest and the slowest group
layout with two communication phases (orthogonal procegsaupsOPG 2D) and three commu-
nication phases (orthogonal processor grodB& 3D). The right figure shows a summary of the
performance improvements achieved by optimized commtiaitanethods for all collective MPI
communication operations on the dual Xeon cluster with SEHS$1CI for 32 processors.

vestigated for the same collective MPI communication oj@na, similar experimental results are
obtained as on the CLIC. The performance improvements\aathiey the optimized communication

methods are also significant for most of the collective MR#ragions corresponding to the smaller
total number of 32 processors.

In spite of the fact that the collective communication opieres in ScaMPI are optimized for the
SCI network architecture, a clear performance improvemesut be obtained for all collective MPI
operations using different communication methods, sear€ig (right) for all collective MPI op-
erations. Figure 2 (left) shows the throughout of differemplementations of th&PIl _Gat her ()
operation with ScaMPI1/SCI in detall.

4.2.3. Cray T3E-1200

An optimized proprietary message-passing library is mtesli on the Cray T3E-1200 to use
collective MPI communication operations. But neverthgltfse orthogonal realizations show
significant performance improvements for various collectoperations on this platform. Ex-
cept for the single-accumulation operatigBl _Reduce() and the multi-accumulation operation
MPI _Al | reduce() consistent improvements are obtained for all other called¥IPI operations.
As examples, Figure 3 shows the data throughput for diftereplementations to perform a single-
broadcast operation (left) and a scatter operation (righbth point-to-point communication algo-
rithms lead to a performance gain for thiél _Bcast () operation. Figure 4 (left) shows a summary
of the performance improvements for all collective MPI ggiems on the T3E.

4.2.4. JUMP Cluster

Similar to the T3E, a proprietary message-passing librarglbped by IBM is provided as part of
the Parallel Environment V 4.1 to perform a collective MPhgounication operation on the JUMP.
But also for this implementation all collective MPI commaaiion operations show performance
improvements in the average using orthogonal realizagodgpoint-to-point algorithms over a wide
range of message sizes for a total number of 32 and 64 prasgsee Figure 4 (right).
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Figure 3. Throughput of differentPl Bcast () (left) andMPI _Scatter () communication
methods (right) with 48 processors on the Cray T3E-1200.
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Figure 4. Summary of the performance improvements achibyexgbtimized communication meth-
ods for collective MPI communication operations. The figushow the minimum, average and
maximum improvements over all message sizes obtained o@rne T3E-1200 (left) for a total
number of 48 processors and on the IBM Regatta cluster Jrigha total number of 32 processors
(upper bar) and 64 processors (lower bar).

5. Runtime Tests of Parallel Program Applications

We consider the optimized communication methods in theecarmtf complex program applica-
tions in order to verify the performance improvements addein isolation. For this purpose we
apply the adaptive approach to reduce the communicatiorhead of a Jacobi iteration and a so-
lution method of ordinary differential equations on thegrplatforms described in Section 4.1.
Section 5.1 presents the runtimes of different program émgintations of the Jacobi iteration and
Section 5.2 considers the parallel Adams methods PAB andvRAB

5.1. Parallel Jacobi Iteration

We consider three different ways to implement the Jacofatiten in a data parallel way based on
a row-wise and a column-wise distribution of the matfixFor both distributions the computational
work for computing the new entries of the next iteration veat”) is the same and is equally
allocated to the processors. For systems of sizach processor perforrﬁ%j x n multiplications
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Figure 5. The left diagram shows runtime improvements ftfecknt implementations of the parallel
Jacobi iteration achieved by optimized communication meshfor different system sizes on the
CLIiC (LAM-MPI) for 96 processors. The right figure shows merhance improvements of the
parallel PAB Method achieved by an adaptive selection dable communication methods of the
MPI _Al | gat her v() operation on the CLiC (LAM and MPICH) for 96 processors. Atuial

performance improvements are depicted for identical aysiees on the JUMP for 64 processors.

and about the same number of additions in each iteration.bBcdiuse each processor computes
different parts and each processor needs the entire natidievectorz*) in the next iteration step,
different communication operations are required for thplementations.

The row-wise realization usesPl _Al | gat her () operation to distribute the intermediate
result of vector:®) to all processors participating in the computation. Forablemn-wise realiza-
tion, either avPl _Al | r educe() andMPI _Al | gat her () operation or &Pl _Reduce() and
MPI _Bcast () operation can be used to distribute the intermediate rebudéictorz. Figure 5 (left)
shows the performance improvements of different impleaigms of the parallel Jacobi iteration
using the adaptive approach to select a suitable commiuoncatethod on the CLIiC (LAM-MPI)
for 96 processors. In most cases, the adaptive approadttsel@nt-to-point algorithms for per-
forming the collective communication operations, sina@sthalgorithms lead the best performance
improvements. On the target platforms considered, thetyioipoint algorithms are slightly faster
than the orthogonal realizations for the most system sizes.

5.2. Parallel Adams-Bashford Methods

Parallel Adams methods are variants of general linear ndstfar solving ordinary differential
equations (ODEsy’'(t) = f(t,y(t)) proposed in [4]. The name was chosen due to a similarity of
the stage equations with classical Adams formulas. Geliaeglr methods compute several stage
valuesy,, ; in each time step which correspond to numerical approximations/Qf = y (.. + a;h)
with abscissa vectdw;), i = 1, ..., K, and stepsizé = ¢, — t,.,1. The stage values of one time step
are combined in the vect®,, = (y..1, ..., Y«x). For an ODE system of size this vector has size
n- K.

A MPI _Al | gat her v() operation is used to distribute the intermediate resulfjuié 5 (right)
shows the average performance improvements that are etithynan adaptive selection of com-
munication methods to perform tidPl _Al | gat her v() operation on the CLIiC and the JUMP.
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On the CLIC the runtime results are investigated for bothgide MPI implementations LAM and
MPICH for a total number of 96 processors and different syssezes. Using LAM-MPI a per-
formance gain of up to 90% can be observed. Based on the MRt(@lementation, also a signifi-
cant reduction of the communication overhead is obtainggjugptimized communication methods.
Furthermore, the good performance results could be cordiats® for a propietary MPI implemen-
tation on the JUMP cluster for 64 processors, see also Figyright). Again, the point-to-point
realizations are selected by the adaptive approach, diese are about 10% faster than the orthog-
onal realizations for the system sizes considered.

6. Conclusions

In this paper we have considered an adaptive approach i seitable orthogonal group layouts
and point-to-point communication algorithms with the alijee of reducing the execution time of
collective MPI communication operations. An adaptive sebm is crucial in reducing the commu-
nication overhead, since the resulting performance imgmrants depend on numerous factors. The
resulting overhead in the evaluation phase of the adapppeach is small compared to the possible
performance gain. Especially for implementations of adile operations of portable MPI libraries,
like LAM or MPICH, significant improvements of the commurniicen time are obtained, since these
operations are not optimized for the underlying hardwachitgcture of the target platforms. But
also for optimized collective communication operationpfprietary MPI libraries significant per-
formance improvements are achieved by an adaptive apprd&ehexperimental results show that
the adaptive selection of different communication methaglsending on the message size leads to
average performance improvements for most of the colledi??l operations, since at least one of
the optimized communication methods is almost always ffdlséa the vendor implementation.
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