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Abstract Many parallel applications from scientific computing use collective MPI communication oper-
ations to distribute or collect data. The execution time of collective MPI communication operations can be
significantly reduced by a restructuring based on orthogonal processor structures or by using specific point-to-
point algorithms based on virtual communication topologies. The performance improvement depends strongly
on numerous factors, like the collective MPI communicationoperation, the specific group layout, the message
size, the specific MPI library, and the architecture parameters of the parallel target platform. In this paper
we describe an adaptive approach to determine and select a specific processor group layout or communica-
tion algorithm for the realization of collective communication operations with the objective of minimizing the
communication overhead. In the case that a communication method is faster than the original implementation
of the collective MPI communication operation, the specificcommunication method is applied to perform the
communication operation.

1. Introduction

The execution of data or task parallel implementations of program applications can lead to scal-
ability problems, especially for target platforms with a large number of processors [2]. To reduce
the communication time of collective MPI communication operations different approaches can be
considered [5,6]. One of them is the use of orthogonal processor groups performing two or more
communication phases. An orthogonal processor group is obtained by arranging subsets of proces-
sors as two- or multi-dimensional grid. In [3] we have shown how the execution time of collective
MPI communication operations can be significantly reduced by orthogonal processor groups for
different target platforms and different MPI implementations. Performance improvements of 40%
up to 70% can be obtained for LAM-MPI communication operations, like aMPI Bcast() or
MPI Allgather(), on a Cray T3E-1200 and a Beowulf cluster.

Since only a specific collective MPI communication operation is replaced by two or more commu-
nication phases of orthogonal processor groups, the use of this approach is completely independent
of the computation or communication structure of the parallel program application. This means that
all applications using MPI operations for exchanging data can benefit from the improved communi-
cation method. The overhead caused by generating the processor groups is negligible and can easily
be done by using a specific communicator handle for the corresponding row or column group.

However, it is not known in advance whether a performance gain can be achieved by an orthogonal
processor layout and which of the numerous processor layouts may lead to an optimal performance
gain. The reason is that the performance improvement depends on numerous factors, like the specific
collective MPI communication operation, the message size,the total number of processors partic-
ipating in the operation, the specific MPI library, and the architecture characteristics of the target
machine [8,7]. In this paper we introduce an adaptive approach that determines and automatically
selects the processor layout depending on the message size,such that the best performance improve-
ment for a corresponding collective communication operation is achieved. In addition, we consider
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specific realizations of collective communication using point-to-point operations. The fastest real-
ization is then used in the parallel application program. The adaptive approach can be applied for
each collective MPI communication operation and each parallel target machine providing MPI.

2. Design of Orthogonal Groups and Communication Algorithms

For a collective MPI communication operation onp = p1 · p2 processors, an orthogonal group
layout of processors can be arranged as row groups withp1 processors and column groups with
p2 processors. The disjoint processor sets resulting from column groups are orthogonal to the row
groups. Using the orthogonal processor group a collective MPI communication operation is per-
formed in two phases. To perform more than two communicationphases the rearrangement can be
applied recursively to the row groups or the column groups, respectively. In [3] the generation and
use of orthogonal processor groups is described in more detail.

Another possibility to reduce the communication overhead of a collective communication oper-
ation is an implementation based on a series of non-blockingpoint-to-point MPI communication
operations. In this paper we consider a selection of the mostpromising algorithms. The algorithms
are based on specific virtual communication topologies, where the exact algorithm depends on the
specific collective MPI communication operation. These communication methods are integrated
into a program library which provides a large variety of different realizations for each collective
communication operation. Based on this library, a modelingtool can determine and select an opti-
mal communication method depending on the message size for agiven number of processors on a
specific execution platform. We consider a star, a hypercube, a binomial tree and a ring as virtual
communication topology to implement a corresponding collective MPI operation.

The user can perform the benchmark and the execution of the application program separately.
This reduces the overhead caused by the performance benchmark when a large number of program
starts of application programs is performed. The adaptive approach can easily be used by including
a specific header file and linking theC program library to the program application.

3. Implementation of the adaptive approach

The basic idea of the approach is to execute a specific benchmark program that contains different
implementations for each collective MPI operation with theobjective of determining the fastest
communication method for a specific interval of message sizes. As communication methods the
vendor-specific collective MPI communication operation, orthogonal realizations with all possible
two- and three-dimensional group layouts and two differentcommunication algorithms based on
virtual topologies are considered. Table 1 shows which communication topology is used for which
collective MPI operations. For each collective MPI operation two algorithmsP2P A andP2P B are
implemented using non-blocking point-to-point (P2P) MPI communication operations. Benchmark
programs of these algorithms are implemented as standaloneC program library and can be used for
each collective communication operation on each parallel target platform providing MPI. Based on
the benchmark results, the fastest communication method isdetermined in an evaluation phase which
has to be executed once for each combination of a target platform and an MPI implementation.

For each collective MPI communication operation the information gathered in the evaluation
phase is stored in an information table, such that a specific interval of message sizes is mapped
to the fastest communication method. This mapping can be used to select the fastest communication
method in the execution phase in which the application program containing one or more collective
MPI operations is executed.
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MPI operation P2PA P2PB
MPI Bcast() binomial tree binomial tree (scatter) +

hypercube (allgather)
Gather() star binomial tree
Scatter() star binomial tree
Reduce() star binomial tree
Allreduce() binomial tree (reduce) +

binomial tree (bcast)
hypercube

Allgather() ring hypercube

Table 1: Two communication algorithmsP2P A andP2P B are implemented to perform a collective
MPI communication operation. The algorithms use non-blocking point-to-point MPI operation.

4. Parallel Target Platforms and Experimental Results

This section gives an overview of the hardware characteristics of the parallel target platforms that
are used to investigate and evaluate the performance behavior of collective MPI operations with and
without optimized communication methods. Section 4.2 gives a summary of the performance results
on these platforms achieved by optimized communication method in isolation.

4.1. Target Platforms
The runtime experiments are performed on a Beowulf cluster (CLiC), a dual Xeon cluster, a Cray

T3E and a IBM Regatta p690+ cluster, which have the followingcharacteristics.

• The Beowulf ClusterCLiC (ChemnitzerLinux Cluster’) is built up of 528 Pentium III processors
clocked at 800 MHz. The processors are connected by a fast-Ethernet network which can be used by
LAM MPI 6.5.6 and MPICH 1.2.5.2.

• TheDual Xeon Cluster is built up of 16 nodes consisting of two Xeon processors clocked at 2
GHz each. The nodes are connected by a fast-Ethernet networkand a high performance interconnection
network that uses Dolphin SCI interface cards. The SCI network is connected as two-dimensional torus
and can be used by the ScaMPI (SCALI MPI) library [1]. The fast-Ethernet based network is connected
by a switch and can be used by two portable MPI libraries, LAM MPI 6.5.6 and MPICH 1.2.5.2.

• TheCray T3E-1200 uses a bidirectional three-dimensional torus network to connect the nodes each
containing a DEC Alpha 21164 processor with 600 MHz. The six communication links of each node
are able to simultaneously support hardware transfer ratesof 600 MB/s.

• TheJUMP (JUelichMulti Processor) is a IBM Regatta p690+ cluster, that is built up of 41 SMP nodes;
each node consists of 32 Power4+ processors clocked at 1.7 GHz. The nodes are interconnected by a
High Performance Switch (HPS). As Message-Passing librarya proprietary implementation of MPI is
used for all runtime experiments, that is part of the Parallel Environment v4.1 developed by IBM.

4.2. Experimental results in isolation
A specific set of different orthogonal group layouts dependson the total number of available

processors of a parallel target platform. In general, we arrange the processor groups into all pos-
sible two-dimensional or three-dimensional grid layouts based on the total number of processors
participating in the communication operation. On the T3E and the CLiC, 96 processors have
been used for the experimental evaluation leading to10 different two-dimensional group layouts
(2 × 48, 3 × 32, 4 × 24, 6 × 16, 8 × 12, 12 × 8, 16 × 6, 24 × 4, 32 × 3, 48 × 2). Additional perfor-
mance tests with a total number of 48 processors allow8 different two-dimensional group layouts
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Figure 1. Summary of the performance improvements achievedby different communication methods
for collective MPI operations. The diagrams show the improvements obtained with LAM-MPI (left)
and with MPICH (right) on the Beowulf cluster CLiC. The bars represent the minimum, average,
and maximum performance improvements over all message sizes for a total number of 48 processor
(upper bar) and 96 processors (lower bar) for each MPI operation.

(2 × 24, 3 × 16, 4 × 12, 6 × 8, 8 × 6, 12 × 4, 16 × 3, 24 × 2) on both platforms. On the JUMP, runtime
tests with 64 processors are considered; 32 processors are available on the dual Xeon cluster. The
message sizes for the runtime tests are between 1 KByte and 1024 KByte.

4.2.1. Beowulf cluster CLiC
The standard implementations of MPICH and LAM-MPI have the drawback that an unsuitable use

of communication protocols may lead to significant performance degradations on several execution
platforms. This can be observed, e.g., for the originalMPI Gather(), MPI Scatter() and
MPI Allgather() operation on the CLiC. Different communication protocols,like the eager and
the rendezvous protocol, are used to optimize the data throughput for smaller and larger message
sizes. The performance degradations are caused by an unsuited selection of the specific message
size at which the system switches to a different communication protocol. This disadvantage can be
compensated using orthogonal processor groups. The reasonis that an orthogonal realization use the
significantly faster rendezvous protocol for larger messages in the second communication phase, in
comparison to the slower eager protocol for smaller messages used by the original MPI operation.

We have measured the performance improvements achieved by the optimized communication
methods for all message sizes considered. Figure 1 shows theminimum, average, and maximum
performance improvements obtained. The figure depicts the improvements for a total number of 48
and 96 processors on the CLiC using LAM-MPI (left) and MPICH (right). Since the adaptive ap-
proach determines the most efficient communication method for separate intervals of message sizes,
the figures give a good survey of the expected reduction of thecommunication overhead in the con-
text of parallel program applications on the CLiC. Finally we notice that for anMPI Bcast() and
anMPI Allgather() operation, a point-to-point based algorithm usually leadsto the best perfor-
mance enhancements in contrast to theMPI Gather(), MPI Scatter() andMPI Reduce()
operation, where an orthogonal realization often lead to the best improvements.

4.2.2. Dual Xeon Cluster
The network interconnection based on the Fast-Ethernet standard can be used by the LAM-MPI

and the MPICH implementation. Since the same portable MPI-library and network system are in-
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Figure 2. The left figure shows the throughput of differentMPI Gather() communication meth-
ods with 32 processors on the dual Xeon cluster using the SCI network. The grey areas depict the
throughput achieved by orthogonal processor groups representing the fastest and the slowest group
layout with two communication phases (orthogonal processor groupsOPG 2D) and three commu-
nication phases (orthogonal processor groupsOPG 3D). The right figure shows a summary of the
performance improvements achieved by optimized communication methods for all collective MPI
communication operations on the dual Xeon cluster with ScaMPI/SCI for 32 processors.

vestigated for the same collective MPI communication operations, similar experimental results are
obtained as on the CLiC. The performance improvements achieved by the optimized communication
methods are also significant for most of the collective MPI operations corresponding to the smaller
total number of 32 processors.

In spite of the fact that the collective communication operations in ScaMPI are optimized for the
SCI network architecture, a clear performance improvements can be obtained for all collective MPI
operations using different communication methods, see Figure 2 (right) for all collective MPI op-
erations. Figure 2 (left) shows the throughout of differentimplementations of theMPI Gather()
operation with ScaMPI/SCI in detail.

4.2.3. Cray T3E-1200
An optimized proprietary message-passing library is provided on the Cray T3E-1200 to use

collective MPI communication operations. But nevertheless the orthogonal realizations show
significant performance improvements for various collective operations on this platform. Ex-
cept for the single-accumulation operationMPI Reduce() and the multi-accumulation operation
MPI Allreduce() consistent improvements are obtained for all other collective MPI operations.
As examples, Figure 3 shows the data throughput for different implementations to perform a single-
broadcast operation (left) and a scatter operation (right). Both point-to-point communication algo-
rithms lead to a performance gain for theMPI Bcast() operation. Figure 4 (left) shows a summary
of the performance improvements for all collective MPI operations on the T3E.

4.2.4. JUMP Cluster
Similar to the T3E, a proprietary message-passing library developed by IBM is provided as part of

the Parallel Environment V 4.1 to perform a collective MPI communication operation on the JUMP.
But also for this implementation all collective MPI communication operations show performance
improvements in the average using orthogonal realizationsand point-to-point algorithms over a wide
range of message sizes for a total number of 32 and 64 processors, see Figure 4 (right).
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Figure 4. Summary of the performance improvements achievedby optimized communication meth-
ods for collective MPI communication operations. The figures show the minimum, average and
maximum improvements over all message sizes obtained on theCray T3E-1200 (left) for a total
number of 48 processors and on the IBM Regatta cluster (right) for a total number of 32 processors
(upper bar) and 64 processors (lower bar).

5. Runtime Tests of Parallel Program Applications

We consider the optimized communication methods in the context of complex program applica-
tions in order to verify the performance improvements achieved in isolation. For this purpose we
apply the adaptive approach to reduce the communication overhead of a Jacobi iteration and a so-
lution method of ordinary differential equations on the target platforms described in Section 4.1.
Section 5.1 presents the runtimes of different program implementations of the Jacobi iteration and
Section 5.2 considers the parallel Adams methods PAB and PABM.

5.1. Parallel Jacobi Iteration
We consider three different ways to implement the Jacobi iteration in a data parallel way based on

a row-wise and a column-wise distribution of the matrixA. For both distributions the computational
work for computing the new entries of the next iteration vector x(k) is the same and is equally
allocated to the processors. For systems of sizen each processor performspn

p
q × n multiplications
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Figure 5. The left diagram shows runtime improvements for different implementations of the parallel
Jacobi iteration achieved by optimized communication methods for different system sizes on the
CLiC (LAM-MPI) for 96 processors. The right figure shows performance improvements of the
parallel PAB Method achieved by an adaptive selection of suitable communication methods of the
MPI Allgatherv() operation on the CLiC (LAM and MPICH) for 96 processors. Additional
performance improvements are depicted for identical system sizes on the JUMP for 64 processors.

and about the same number of additions in each iteration. Butbecause each processor computes
different parts and each processor needs the entire new iteration vectorx(k) in the next iteration step,
different communication operations are required for the implementations.

The row-wise realization uses aMPI Allgather() operation to distribute the intermediate
result of vectorx(k) to all processors participating in the computation. For thecolumn-wise realiza-
tion, either aMPI Allreduce() andMPI Allgather() operation or aMPI Reduce() and
MPI Bcast() operation can be used to distribute the intermediate resultof vectorx. Figure 5 (left)
shows the performance improvements of different implementations of the parallel Jacobi iteration
using the adaptive approach to select a suitable communication method on the CLiC (LAM-MPI)
for 96 processors. In most cases, the adaptive approach selects point-to-point algorithms for per-
forming the collective communication operations, since these algorithms lead the best performance
improvements. On the target platforms considered, the point-to-point algorithms are slightly faster
than the orthogonal realizations for the most system sizes.

5.2. Parallel Adams-Bashford Methods
Parallel Adams methods are variants of general linear methods for solving ordinary differential

equations (ODEs)y′(t) = f(t,y(t)) proposed in [4]. The name was chosen due to a similarity of
the stage equations with classical Adams formulas. Generallinear methods compute several stage
valuesyκ,i in each time stepκ which correspond to numerical approximations ofyκ,i = y(tκ + aih)
with abscissa vector(ai), i = 1, ..., K, and stepsizeh = tκ − tκ+1. The stage values of one time step
are combined in the vectorYκ = (yκ,1, ...,yκ,K). For an ODE system of sizen, this vector has size
n · K.

A MPI Allgatherv() operation is used to distribute the intermediate result. Figure 5 (right)
shows the average performance improvements that are obtained by an adaptive selection of com-
munication methods to perform theMPI Allgatherv() operation on the CLiC and the JUMP.
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On the CLiC the runtime results are investigated for both portable MPI implementations LAM and
MPICH for a total number of 96 processors and different system sizes. Using LAM-MPI a per-
formance gain of up to 90% can be observed. Based on the MPICH implementation, also a signifi-
cant reduction of the communication overhead is obtained using optimized communication methods.
Furthermore, the good performance results could be confirmed also for a propietary MPI implemen-
tation on the JUMP cluster for 64 processors, see also Figure5 (right). Again, the point-to-point
realizations are selected by the adaptive approach, since these are about 10% faster than the orthog-
onal realizations for the system sizes considered.

6. Conclusions

In this paper we have considered an adaptive approach to select suitable orthogonal group layouts
and point-to-point communication algorithms with the objective of reducing the execution time of
collective MPI communication operations. An adaptive selection is crucial in reducing the commu-
nication overhead, since the resulting performance improvements depend on numerous factors. The
resulting overhead in the evaluation phase of the adaptive approach is small compared to the possible
performance gain. Especially for implementations of collective operations of portable MPI libraries,
like LAM or MPICH, significant improvements of the communication time are obtained, since these
operations are not optimized for the underlying hardware architecture of the target platforms. But
also for optimized collective communication operations ofproprietary MPI libraries significant per-
formance improvements are achieved by an adaptive approach. The experimental results show that
the adaptive selection of different communication methodsdepending on the message size leads to
average performance improvements for most of the collective MPI operations, since at least one of
the optimized communication methods is almost always faster than the vendor implementation.
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