
Task Pool Teams Implementation of the Master
Equation Approach for Random Sierpinski

Carpets

K.H. Hoffmann1, M. Hofmann2, G. Rünger2, and S. Seeger1

1 Department of Physics, Chemnitz University of Technology
2 Department of Computer Science, Chemnitz University of Technology

Abstract. We consider the use of task pool teams in implementation
of the master equation on random Sierpinski carpets. Though the ba-
sic idea of dynamic storage of the probability density reported earlier
applies straightforward to random carpets, the randomized construction
breaks up most of the simplifications possible for regular carpets. In
addition, parallel implementations show highly irregular communication
patterns. We compare four implementations on three different Beowulf-
Cluster architectures, mainly differing in throughput and latency of their
interconnection networks. It appears that task pool teams provide a pow-
erful programming paradigm for handling the irregular communication
patterns that arise in our application and show a promising approach
to efficiently handle the problems that appear with such randomized
structures. This will allow for highly improved modelling of anomalous
diffusion in porous media, taking the random structure of real materials
into account.

1 Introduction

Random fractal structures are used to model the random structural properties
found in many real materials such as aerogels, porous rocks or cements. There
we find a fractal structure on certain length scales (spanning about two or three
decades) [1], while on larger scales the structure looks rather homogeneous. One
feature of these materials is that diffusion is anomalous and the behaviour is
very well modeled by random walk processes on regular fractals like Sierpinski
carpets [2]. But, these regular fractal structures do not exhibit the transition to
normal diffusion found in the real materials. This transition could be captured
by performing the Sierpinski carpet construction only to some finite stage and
repeating the resulting structure, thereby obtaining a crystal like structure with
fractal unit cells. However, this does not capture the randomness of the local
fractal structure present in real materials, which has quite an influence on the
diffusion properties [3]. This randomness in local structure can be modeled by
using newly generated carpets instead of repeating one randomly generated unit
cell. While in regular (crystal) structures added disorder usually leads to a de-
crease in diffusion or transport properties, we find here that disorder can also

Original published: K. H. Hoffmann, M. Hofmann, G. Rünger, and S. Seeger. Task pool teams implementation of the master
equation approach for random Sierpinski carpets. In Proceedings of the 12th International Euro-Par Conference, volume 4128 of
LNCS, pages 1043–1052. Springer, 2006. Online available at http://dx.doi.org/10.1007/11823285_110.

http://dx.doi.org/10.1007/11823285_110

enhance diffusion on these structures. This is also observed in experiments on
ionic conduction in solid electrolytes [4].

In this paper we report how a master equation approach to simulating random
walks on random Sierpinski carpet structures may be implemented efficiently.
This method is an elegant way to calculate the evolution of the probability den-
sities of random walkers on such structures from a given initial distribution.
This initial distribution is assumed to have finite support, usually chosen to be
a delta distribution. Though we can apply some concepts developed for regular
Sierpinski carpets [2] in a straightforward manner, the randomness of the result-
ing structures poses some challenges not apparent when considering the simpler
regular case. This article describes strategies that can be used for an efficient
parallel implementation. An important problem that needs to be solved in order
to obtain an efficient parallelization is to develop a strategy for handling the ir-
regular communication patterns that arise due to the random, dynamic growth
of the carpet structure covered by the probability distribution. We show that the
concept of task pool teams [5] provides a suitable framework for handling these
issues.

2 Random Sierpinski Carpets

Given a set of M×M black-and-white patterns (the generators) and a probability
distribution for the choice among these patterns, the algorithm to construct
random Sierpinski Carpets described by Reis [6] and ben-Avraham [7] is as
follows:

1. start from a square (level 0).
2. divide each square into M ×M subsquares.
3. choose a generator pattern at random (according to its probability)
4. remove the subsquares corresponding to white markings in the selected gen-

erator
5. for the next level, repeat steps 2 – 4 for each remaining subsquare.

Figure 1 shows an example of the first two refinement steps for a set of three
different generators. Note that with just a single generator we obtain regular
Sierpinski carpets as a subset of random Sierpinski carpets. The construction
procedure can be repeated ad infinitum, where the resulting structure is a ran-
dom Sierpinski carpet [6]. If we stop at some level l, the resulting pre-carpet
pattern of size M l ×M l is referred to as an iterator of level l.

These pre-carpet structures give a good model for the (in a statistical sense)
self-similar micro-structure of porous materials. We therefore use iterators as
basic unit in our algorithm to build larger structures by connecting single it-
erators. For instance, repeating a given iterator in all directions, we obtain a
‘crystal’ with random unit cell. Extending the carpet in all directions by ap-
pending newly created random iterators, we obtain a structure with the same
properties as real porous materials. The last method is certainly the most dif-
ficult to implement, as virtually no savings can be made in the description of

level 1 level 2

p1 =
1
3

p3 =
1
3

p2 =
1
3

Fig. 1. The first two construction steps for a random Sierpinski carpet constructed
from three different generators with equal probability.

the structure. We therefore discuss an algorithm that allows efficient simulation
for the last, most demanding case. However, it can easily be modified to handle
other cases well.

In order to iterate the master equation on the resulting structure, we intro-
duce the following terms and notations: Consider a random walker is allowed to
hop between the midpoints of the tiles (black subsquares) in a carpet. In one
discrete time step, the walker can move to one of the neighbouring tiles. De
Gennes [8] introduced the analogy of a random walker as an “ant in a labyrinth”
and with the so called myopic ant or blind ant algorithms, we obtain the prob-
abilities Wi j for a walker to arrive at tile i coming from tile j. Given some
probability p(t, i) to find a walker on tile i at time t, we can calculate the prob-
ability p(t + 1, i) by accounting for the gain and loss of probability by walkers
crossing the boundaries as

p(t + 1, i) = (1 − Li) p(t, i) +
∑

j∈<i>

Gi j p(t, j) . (1)

The sum is over the set of all neighbours < i > of tile i, Gi j = Wi j are
the gain factors and Li =

∑
j∈<i> Wj i is the overall loss of tile i. By iterating

the master equation (1) starting with a delta distribution at the starting point
we obtain a new distribution for every time t. This distribution determines the
mean square displacement accurately, free of the fluctuations pertinent to direct
simulation methods. From this, not only the random walk dimension of the
fractal can be determined, but also can this probability distribution be compared
with theoretical descriptions of anomalous diffusion, e.g. by fractional diffusion
equations.

Iteration of the master equation, however, requires a large amount of com-
puter RAM, as for every point in the carpet that can be reached by a random
walk in the considered time t, memory to store two probability values need to be

Fig. 2. Two adjacent iterators
of level 3 with their body tiles
(squares), boundary tiles (small
squares) and halo tiles (outlines).

allocated. This memory requirement grows considerably with simulation time t,
thus an efficient way of storing and updating these probability values is needed.

3 Data structures and Implementation

In [2] we have already reported on an efficient algorithm for regular carpets.
Though the basic idea of dynamic storage of p(t, i) applies straightforward to
random carpets, the randomized construction breaks up most of the simplifica-
tions possible for regular carpets. For instance, with a regular carpet an iterator
pattern of some level determines the whole carpet structure. This is not the case
for randomized carpets where each iterator is different. Also, with a dynami-
cally growing data structure the connections to neighbour iterators cannot be
predicted in advance of the simulation from analysis of the iterator. Instead, it
can only be determined once the carpet has actually been constructed and all
neighbour iterators are known.

Our basic unit of processing remains an iterator of level l. We start with
one iterator that contains the tile with the non-zero part of the initial delta
distribution. The carpet is described by a linked list of iterator descriptions,
that store topological information and the probability values at the current and
next time step. In every time step this list is traversed once in order to calculate
the probability values for the next time step. Within an iterator we have to
distinguish the following types of black tiles: body tiles are inside the iterator but
not adjacent to a boundary, boundary tiles are inside the iterator and adjacent to
a boundary, halo tiles are outside the iterator adjacent to a boundary tile. Figure
2 illustrates this situation showing two iterators with their body (), boundary
(), and halo () tiles.

For body tiles we can perform the update calculation without any additional
information other than that stored for the iterator required. For boundary tiles,
we do not know the surrounding carpet topology in the beginning. Furthermore
we need to know the probability value(s) at the adjacent halo tile(s) in order to
perform the update for a given tile. Fortunately, the corresponding terms in (1)
vanish initially because we have zero probability that walkers are at those posi-
tions. Only as soon as the master equation predicts a non-zero probability value
at a boundary tile for the next iteration step we need to make sure the neigh-
bouring iterators are present and the data structures are consistent. Halo tiles
are not updated according to (1) but by copying the values after updating the

corresponding boundary tiles from the neighbour iterator. Doing so allows the
task of iterating the master equation to be distributed among multiple processes
by distributing the iterators.

4 Parallel Implementation

For the parallel implementation we use a master-worker scheme. The master
is responsible of overall program control as well as to keep track of the global
carpet topology. With the data structures described above, the workers receive
a number of iterator descriptions for the iterators they have to process. Thus
the global list of iterators to process is split among the workers and each worker
has its local list. A load balancing mechanism is implemented by assigning new
iterators to the least-busy workers where load is determined by the number of
tiles that need to be updated per iteration.

The processing of one time step is organized in three phases:

1. The master informs all workers to start processing their local list of iterators
for updating the probability values of the body and boundary tiles. How-
ever, it may happen that workers arrive with non-zero probability at bound-
ary tiles, thereby making a carpet extension necessary. If this happens, the
worker reports this event to the master and processes the next iterator until
it has finished traversing its local list. The master collects messages about
carpet extensions necessary.

2. After all workers have finished processing their local iterator list, the master
extends the carpet as necessary by assigning newly created iterators to the
workers and notifying the workers of the changed carpet topology.

3. Finally, as the last phase in every iteration the boundary values are ex-
changed. Once this has been finished, results may be collected or a new
iteration is started.

For the simulation of about 32000 time steps, the runtimes of the three
phases for a straightforward implementation are shown in Figure 3. The carpet
increases up to about 2300 iterators, each of size 53 × 53. The implementation
uses MPI to send the various control and data messages. The master and every
worker process is assigned to a single cluster node. Measurements have been
performed on three different Beowulf-type clusters: (A) the Chemnitzer Linux
Cluster CLiC with 512 nodes with single Pentium III/800MHz CPUs, 512MB
RAM and FastEthernet interconnect and a Xeon cluster with dual Xeon/2GHz
CPUs, 1GB RAM and either (B) GigabitEthernet or (C) SCI interconnects. For
the Fast- and GigabitEthernet interconnects, the LAM-MPI implementation and
for SCI interconnect the optimized SCAMPI implementation has been used.

As can be seen from Figure 3, the amount of wall-time spent in the first
phase decreases as the number of nodes is increased. The carpet extension phase
has a fairly constant and rather small amount of execution time, because the
carpet extension is handled by the master only. The longest time, however, is
spent in the third phase performing the boundary update. While with the SCI

8 16 24

10
3

10
4

10
5

r
u
n
t
i
m
e

[
s
]

1. phase

2. phase

3. phase

cluster A

4 8 12 16
number of nodes

cluster B

4 8 12 16

cluster C

Fig. 3. Runtimes (in wall-time seconds) of the three phases of the main loop: 1)
iteration of (1) for each iterator, 2) carpet extension and fixup where new iterators are
appended, 3) update of boundary values (possibly between processors).

interconnect (cluster C) a slight speedup can be observed, the amount of time
spent in boundary update remains fairly constant for GigabitEthernet (cluster
B). For FastEthernet (cluster A) communication time actually increases with
the number of nodes. This is because the communication scheme used in the
reference implementation results in many short messages, resulting in high la-
tency times adding up. Another drawback is the highly irregular communication
scheme arising from sending and receiving the boundary updates. Because for
a single-threaded worker the resulting irregular communication protocol cannot
be proven deadlock-free, the third phase is serialized: each worker either sends
messages to other workers or waits for incoming messages. The best improve-
ment can therefore be achieved with a better implementation of the boundary
update phase.

4.1 Optimized Boundary Updates

For parallelizing the boundary update phase by handling the irregular commu-
nication we use task pool teams. The task pool concept uses a decomposition of
the computational work into tasks. A task pool stores the tasks and threads
are responsible for the execution of tasks. Task pool teams are an approach for
extending the idea of task pools to the use of parallel platforms with distributed
memory. They combine task pools on single cluster nodes with explicit communi-
cation. We use the implementation of task pool teams for SMP cluster presented
in [5], which uses Pthreads for SMPs and MPI for communication between SMP

nodes. A specific communication thread and a number of worker threads run on
each SMP node. Thus, each worker of the master-worker scheme is now actu-
ally realized as a collection of internal worker threads and one communication
thread. An advantage of task pool teams is to support irregular communication
requirements.

In order to speedup the boundary updates we focused on three additional
implementations:

– As a first implication from the strong impact of the latency, we start to
collect single boundary update messages for each worker until a sufficiently
large message can be sent. This avoids many small messages in favour of
larger messages thereby reducing the high impact of the latency to start
communication. We will refer to this as the boundary collect mechanism.

– To achieve a parallel update with task pool teams we use the communi-
cation thread to handle update requests from other workers. At the same
time a worker thread is able to process the local iterator list performing the
boundary updates. The messages are sent using the specific asynchronous
communication which is mapped to MPI operations by the task pool teams
implementation. This provides individual point-to-point communication be-
tween pairs of workers whenever messages need to be transferred. We will
refer to this as the asynchronous parallel update.

– Another method for parallel update with task pool teams uses the specific
communication for notifying the workers to perform a boundary update.
After this notification all workers participate in sending their messages syn-
chronous by all-to-all communication operation. We refer to this method as
the synchronous parallel update.

Both parallel update methods use the boundary collect mechanism for send-
ing larger messages instead of many small ones.

As can be seen from Figure 4, the boundary collect mechanism provides a
saving in runtime of about an order of magnitude. This is caused by avoiding
many small messages between nodes handling adjacent iterators. Especially for
the high latency Fast- and GigabitEthernet (on clusters A and B) this provides
the most substantial savings. The additional use of the parallel update scheme
leads to different results with the different architectures. For the uniprocessor
cluster (A) using only a small number of nodes the runtimes remain fairly un-
changed. However, with an increasing number of nodes there is a slight saving in
runtime. These rather fair improvements can be attributed to the use of multi-
threaded programming on uniprocessor architectures. Using the asynchronous
and synchronous method makes no difference. Much better results are obtained
with the SMP cluster (B and C). Using the parallel update we observe a gain
of another order of magnitude in execution time. This is achieved by using the
task pool teams concept for handling the irregular communication. Additional
benefits are achieved by overlapping of communication and computation through
the parallel execution of communication and worker thread. The results for the
asynchronous parallel update are shown only for the SCI interconnect (cluster

8 16 24

10
2

10
3

10
4

10
5

r
u
n
t
i
m
e

[
s
]

reference
boundary collect

async. par. update

sync. par. update

cluster A

4 8 12 16
number of nodes

cluster B

4 8 12 16

cluster C

Fig. 4. Runtimes of various implementations of the boundary update phase: reference
implementation, boundary collect mechanism and task pool teams with asynchronous
and synchronous parallel boundary updates.

C). In comparison with the synchronous method the savings in execution time
are rather small. The runtime results for the GigabitEthernet interconnect with
the LAM-MPI implementation in the multi-threaded environment are diverse
and not shown in the diagram.

4.2 Optimized Iterator Updates and Overall Runtimes

Due to the good results using the task pool teams with the SMP cluster, we
extend their usage to another computational expensive part of the simulation.
The processing of the local iterator list in the first phase can easily be split
into independent tasks. These tasks are executed in parallel by different worker
threads.

As can be seen from Figure 5, the multi-threaded implementation of the
task pool teams leads to another saving in runtime. For the multiprocessor ar-
chitecture this is the expected behaviour. However, for the uniprocessor cluster
there appears also a slight decrease in execution time as the number of nodes in-
creases. On the multiprocessor cluster no additional benefits are achieved using
more worker threads than CPUs per node available.

Finally, in Figure 6 we compare the overall runtimes of the optimizations us-
ing task pool teams and the reference implementation. On three different clusters
the reference implementation shows a different behaviour in parallel execution.
Savings in runtime with an increasing number of nodes are only achieved with
the SCI interconnect (cluster C) while using Fast- and GigabitEthernet (cluster

4 8 12 16 20 24
number of nodes

10
3

10
4

10
5

r
u
n
t
i
m
e

[
s
]

uniprocessor cluster A, single-threaded

uniprocessor cluster A, multi-threaded

multiprocessor cluster B, single-threaded

multiprocessor cluster B, multi-threaded

Fig. 5. Runtimes of the first phase updating the iterators according to (1) with single-
threaded implementation and multi-threaded using task pool teams with 2 worker
threads.

A and B) the runtimes increase or remain constant. With the optimizations this
behaviour completely change and first of all becomes more independent from the
different interconnects. The most significant results are achieved using task pool
teams on multiprocessor clusters (B and C). For those an increased number of
nodes still leads to a decrease in execution time.

5 Conclusions

We have considered an implementation of the master equation approach to sim-
ulating diffusion on random Sierpinski carpets. As iterating the master equation
requires a huge amount of computer RAM, we have favoured a parallel imple-
mentation. However, due to the randomness in the construction of the struc-
tures, a parallel implementation shows highly irregular communication patterns
that demand adequate strategies for implementing efficient boundary updates.
In comparison with a reference implementation that uses MPI communication
operation directly, we have analyzed four implementations. The first introduces
the boundary collect strategy, collecting small messages and sending them as
one large MPI message. The second two use the concept of task pool teams to-
gether with synchronous and asynchronous communication operations. The last
extends the use of task pool teams to a more computational expensive part of the
algorithm. We observe that on high latency communication networks, such as
Fast- and GigabitEthernet, the savings due to the boundary collect strategy are
most important. However, with an increasing number of nodes and taking SMP

8 16 24

10
3

10
4

10
5

r
u
n
t
i
m
e

[
s
]

reference
task pool teams

cluster A

4 8 12 16
number of nodes

cluster B

4 8 12 16

cluster C

Fig. 6. Overall runtimes of the reference implementation and with the optimizations
using task pool teams.

clusters into account, the use of task pool teams can result in a further reduction
of the boundary update time of about an order of magnitude. Altogether, using
the task pool teams concept we achieved a highly efficient implementation for
the utilization of multiprocessor clusters.

References

1. Mandelbrot, B.B.: Fractals - Form, Chance and Dimension. W. H. Freeman, San
Francisco (1977)

2. Franz, A., Schulzky, C., Seeger, S., Hoffmann, K.: An efficient implementation of
the exact enumeration method for random walks on Sierpinski carpets. Fractals
8(2) (2000) 155–161

3. Anh, D.H.N., Hoffmann, K.H., Seeger, S., Tarafdar, S.: Diffusion in disordered
fractals. accepted by Europhys. Lett. (2005)

4. Chandra, S.: Superionic Solids: Principles and Applications. North-Holland, Ams-
terdam (1981)

5. Hippold, J., Rünger, G.: Task pool teams: A hybrid programming environment for
irregular algorithms on smp clusters. to appear in: Concurrency and Computation:
Practice and Experience (2006)

6. Reis, F.D.A.A.: Diffusion on regular random fractals. J. Phys. A: Math. Gen. 29(24)
(1996) 7803–7810

7. ben Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered
Systems. Cambridge University Press, Cambridge, UK (2000)

8. de Gennes, P.G.: La percolation: Un concept unificateur. La Recherche 7(72) (1976)
919–927

	Task Pool Teams Implementation of the Master Equation Approach for Random Sierpinski Carpets

