Original published: K. H. Hoffmann, M. Hofmann, J. Lang, G. Riinger, and S. Seeger. Simulating anomalous diffusion on graphics processing
units. In Proceedings of the 11th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC-10),
pages 1-8. IEEE, 2010. Online available at http://dx.doi.org/10.1109/IPDPSW.2010.5470767.

Simulating Anomalous Diffusion on Graphics Processing Units

Karl Heinz Hoffmann®, Michael Hofmannil, Jens Langil, Gudula Rﬁngeri and Steffen Seeger*1
* Department of Physics, Chemnitz University of Technology, Germany
Email: {s.seeger,hoffmann}@physik.tu-chemnitz.de
¥ Department of Computer Science, Chemnitz University of Technology, Germany
Email: {mhofma,lajen,ruenger}@cs.tu-chemnitz.de

Abstract—The computational power of modern graphics
processing units (GPUs) has become an interesting alternative
in high performance computing. The specialized hardware of
GPUs delivers a high degree of parallelism and performance.
Various applications in scientific computing have been imple-
mented such that computationally intensive parts are executed
on GPUs. In this article, we present a GPU implementation of
an application for the simulation of diffusion processes using
random fractal structures. It is shown how the irregular com-
putational structure that is inherent to the application can be
implemented efficiently in the regular computing environment
of a GPU. Performance results are shown to demonstrate the
benefits of the chosen implementation approaches.

Keywords-GPU programming, CUDA, irregular algorithms,
random walk simulation, fractal structures.

1. INTRODUCTION

The use of graphics processing units (GPUs) to speed
up computations in scientific computing has received an
increasing popularity in recent months and years [/1]. Different
algorithms and applications from various scientific areas
have been implemented to run on general purpose GPUs
(GPGPUs). GPGPUs extend the design and functionality of
traditional GPU hardware and make the high performance
graphics capabilities available for non-graphics (general
purpose) computations. The architecture of a GPU aims
at very regular algorithms. The efficient implementation of
irregular algorithms on GPUs is an ongoing research effort.

The special feature of GPUs in comparison with CPUs is
their massive parallelism resulting from a large number of
processor cores. While recent multicore CPUs have only a few
tens of cores, modern GPUs usually have hundreds of cores.
Exploiting the high computing capabilities of GPUs requires
a parallelisation of algorithms and applications such that all
execution units of the GPU will be utilized equally. Major
disadvantages of GPUs are the limited memory on video
cards and the SIMD architecture of its parallel execution
units. Since the SIMD architecture is designed for regular
computations, it can be hard to achieve a comparably good
performance for irregular computations.

First attempts to GPU computing have used available
graphics APIs like OpenGL [2] or DirectX [3] to utilize accel-

'Supported by Bundesministerium fiir Bildung und Forschung (BMBF)
and Deutsche Forschungsgemeinschaft (DFG).

erating graphics hardware. Nowadays, special programming
frameworks are used, like CUDA [4]] for NVIDIA GPUs
or ATI Stream [5] for AMD/ATI GPUs. Another recent
development is OpenCL [6]], which leads to a platform-
and architecture-independent approach to GPU and CPU
programming.

This article presents a GPU implementation for the
simulation of diffusion processes in porous materials. The
application performs a random walk simulation on fractal
structures, so-called random Sierpinski carpets, using a master
equation approach [[7]. The random structure of the simulation
surface leads to irregular computations. We present three
different variants to implement the simulation application
on a GPU using the CUDA framework. The first variant is
a regular implementation that fits into GPU programming
by neglecting the irregular structure of the application.
The other two variants represent improved implementations
adapting to the irregular computations of the application while
maintaining a computational structure that is appropriate
for the specialized GPU hardware. The performance of the
different variants is demonstrated with performance results
using an NVIDIA GeForce 8800 GT video card and different
sets of input data.

The rest of this article is organized as follows. Section
presents related work. Section [[TI] introduces the algorithm of
the simulation application. Section [[V| gives a short overview
of the features of the GPU hardware and programming. In
Sect.[V] the three different implementation variants for GPUs
are described. Performance results are presented in Sect.[V]]
and Sect[VII] concludes the article.

II. RELATED WORK

An overview of GPU programming and especially the
CUDA framework is given in [8]] and [9]. Irregular problems
in computational physics have been implemented for GPUs
and their results were compared to CPU programs. In [10],
Gumerov and Duraiswami presented an implementation of
the Fast Multipole Method, an algorithm for the calculation of
forces between interacting particles, on graphics processors.
The runtime was decreased by a factor of 30-70 compared
to a sequential CPU version. Stock and Gharakhani showed
in [11] that for another algorithm for the solution of the
n-body problem the performance can be improved up to

http://dx.doi.org/10.1109/IPDPSW.2010.5470767

Figure 1. Set of three different generators of size 5 X 5 consisting of
accessible (black) and inaccessible (white) sites.

&

Figure 2. Example iterator of level 3, randomly constructed using the
three generators shown in Fig.m

factor 17 in comparison to a CPU version. In [12] a Monte
Carlo simulation of the Ising model was presented that is
used to examine the phase transition in ferromagnetic and
antiferromagnetic materials. The GPU accelerated version
was implemented to work on two- or three-dimensional lattice
grids and achieved an increase in performance of up to a
factor of 60.

III. RANDOM WALKS ON SIERPINSKI CARPETS

The subject of the simulation being presented in this
article is the anomalous diffusion of particles in porous
materials, e. g. the diffusion of pollutants in wetted porous
rock or sediment. The porous material is represented by a
random Sierpinski carpet [13]. Random walks on fractal
structures like random Sierpiniski carpets can be used to
simulate anomalous diffusion [14].

A random walk on a two-dimensional Cartesian grid pro-
ceeds as follows. The random walker starts at some starting
point (e. g. the site at the co-ordinate origin). To perform one
step, the walker selects one of the four directions at random
and moves to the adjacent site in the chosen direction. By
performing contiguous steps, the walker moves across the
grid and performs the random walk. Of special interest is the
time dependence of the mean square displacement (r?(t)),
where r(t) is the distance of the walker from the starting
point after time ¢. For anomalous diffusion (r2(¢)) is not
linear but satisfies a power law [[15], i.e. (r?(t)) ~ t7 with
0 < v <1 being the diffusion exponent.

To create a random Sierpifiski carpet, a set of generators
is needed. Figure [T| shows an example set with three different
generators of size 5 x 5. Each generator consists of sites
which can be accessible (black) or inaccessible (white).
The generators are used to construct so-called random

Figure 3. Example of a random Sierpinski carpet consisting of 3 X 3
random iterators of level 3 that can be used as simulation surface for the
random walk.

iterators which represent the basic elements of our random
Sierpinski carpet. The recursive construction of an iterator
starts with one generator selected at random in the first step.
In the following construction steps each accessible site is
replaced by a new randomly chosen generator. The number
of construction steps used to create an iterator denotes the
level of an iterator. Figure [2] shows an example for a random
iterator of level 3 with a total number of 5% x 53 sites.

The random Sierpiniski carpet used for the simulation
consists of multiple random iterators (of constant level) that
are put together to a large surface. Figure 3] shows an example
surface created from 3 x 3 random iterators. A random
Sierpinski carpet created in that way can be used to imitate the
macroscopic homogeneity and the microscopic heterogeneity
of porous materials like rock, aerogels or cements [13]]. It
consists of accessible and inaccessible sites and is used
as simulation surface for the random walk. The random
construction of the iterators results in irregular structures that
need special care for the programming.

The random walk simulation uses the master equation
approach [16] to calculate the probability distribution for the
location of the walker on the surface. The master equation

; 1 s—1 s—1 s—1 s—1
p() =7 (V0 + ol + 90+
(4=)P Y) M

can be used to calculate the probability pgfy for a walker
being located at site (x,y) after a walk of s steps with ng
being the number of accessible neighbour sites.

The random walker steps in each of the four directions
with a probability of i. Therefore, the probability of one
site at step s is calculated from the probabilities of its four

adjacent sites in the preceding step s — 1. Due to the irregular
structure of the surface, not all four adjacent sites need to
be accessible. This results in a certain probability for the
walker to rest on the current site, depending on the number
of accessible neighbours 7, , of this site.

Before the first step, the walker is located at the origin
with a probability of one, all other probabilities are zero, i.e.
pon=1.p)=0for (£y) #(0.0) . @

)

After s steps, the probability distribution describes the
probabilities of all paths of length s. The probability of
inaccessible sites is defined as zero for all steps s.

After the construction of the random Sierpinski carpet, the
simulation of the random walk is performed as follows. First,
an array P,;4 is created that is used to store the probabilities
of all sites. The initial values of all sites are set to zero and
the site at the starting point of the random walk receives a
probability of one. Then, the simulation steps are performed.
In each simulation step, the path length s is increased by
one. For each accessible site, the probability of this site and
its neighbours is read from the array P,;4 and used in Eq.
(I) to compute the probability for the current step. The new
probabilities are stored in an auxiliary array P,.,. After
the probabilities of all sites are calculated, the two arrays
switch their roles and the next simulation step proceeds.
When the simulation has finished after a certain number of
steps, the result (e. g. the mean square displacement of the
random walker) can be extracted from the final probability
distribution. This results in the following pseudo code:

1: S = maximum number of steps
create the random Sierpinski carpet
create the initial distribution in P,
for s=1to S do
for each site (z,y) do
if (x,y) is accessible then
update P, [2,y] according to Eq.
end if
end for
switch roles of P,.,, and P,4
end for
retrieve results from P,y

D A S o

— = =
M2

IV. GPU PROGRAMMING SPECIFICS

The architecture of GPUs as well as the GPU programming
framework can require special adaptations of the algorithms
and applications. In the following, we describe the main
properties of GPU programming as they arise with the CUDA
framework.

A modern GPU (see Fig.[) consists of several unified
shader units, called multiprocessors in CUDA terminology.
Each multiprocessor consists of a number of stream pro-
cessors. All multiprocessors have read/write access to the
video memory and read access to the texture and constant
memory. The shared memory can be accessed only by the

Multiprocessor

| Multiprocessor

Multiprocessor

| Shared Memory |

Registeri Registerl Registerl Instruc-
Stream D Stream Stream D tior.‘ | |
Processor || Processor Processor Unit
T il T
Constant and | [
Texture Memory

i

Video Memory

Figure 4. Illustration of the hardware architecture of a GPU device (adapted
from [4]).

CPU GPU

W

kernel functions

IRRNRRNEN]

GPU threads

host 1~ l
part

Figure 5. Program flow for a GPU program: The main part is executed on
the CPU (host), the computational part is executed on the GPU (device).

stream processors of one multiprocessor. The registers are
dedicated to the single stream processors.

In GPU programming with CUDA, the application program
is split into a host part, which is executed on the CPU, and
a device part, which is executed on the GPU. A typical
program flow is shown in Fig.[5] The device part consists
of kernel functions that are called in the host part of the
program, but are executed on the GPU by multiple threads
in parallel. All data that is needed by kernel functions has to
be transferred from the main memory to the video memory
beforehand. A call to a kernel function returns immediately
so that the host part can continue while the kernel function
is executed by the GPU. A barrier function is available to
wait for the completion of the GPU computations. Kernel
functions write the results of their computations to the video
memory from where they can be transferred back to the main
memory afterwards.

When calling a kernel function from the host part, it is

necessary to specify the required number of thread blocks
and the number of threads per block. Each thread executes
the kernel function. All threads of one block are executed
by one multiprocessor in parallel according to the SIMD
principle. The shared memory and a barrier operation can be
used for communication and synchronisation between threads
within one block. The processing of the blocks is scheduled
by the graphics processor.

The blocks are organized in a three-dimensional grid and
the threads of one block are organized in a two-dimensional
grid. A kernel function can access the block ID and the
thread ID of the thread that executes the function. These
IDs can be used to distinguish the different instances of the
kernel function, e.g., to assign them different parts of the
data that is processed. With these IDs, it is also possible to
calculate a global thread ID that is unique over all threads.

Due to the SIMD characteristics of the GPU hardware,
branches should be avoided inside kernel functions. Even if
a branch is taken only by a few threads of one block, the
instructions of both paths of the branch have to be executed
by all threads of the block. The instructions of a path that is
not taken according to a previous branch are executed, but
their results are discarded (i.e. these instructions have no
effect for the particular thread).

V. GPU IMPLEMENTATION OF THE RANDOM WALK
SIMULATION

In the following, we present three different implementation
variants for performing the random walk simulation on
random Sierpinski carpets on a GPU. Variant A represents a
first straightforward implementation neglecting the irregular
structure of the computations. Variants B and C represent
gradual improvements that take into account the structure of
the irregular application and the specifics of GPU program-
ming.

A. Implementation Variant A

The first implementation variant ignores the irregular
structure of the simulation surface and treats them as a fully
occupied regular data structure. The host part and the kernel
function of Variant A are shown in Fig.[} The construction
step of the random Sierpiriski carpet as described in Sect.[IT]|
is performed at the beginning in the host part of the program.
Inaccessible sites are marked with a negative probability
value in the initial distribution. Two arrays for storing the
probabilities are allocated as two-dimensional arrays in the
video memory and the initial probability distribution is copied
from the main memory to the video memory.

In each simulation step, a kernel function is called by the
host program so that a separate thread is started to update
each site of the random Sierpiniski carpet. The block and
thread IDs are used to determine the x and y co-ordinates of
the site that the thread is assigned to. These co-ordinates are
used to access the probability values in the two-dimensional

arrays directly. A negative value for the probability of a site
shows that this site is inaccessible and leads to an immediate
termination of the corresponding thread. Otherwise the new
probability for the site is calculated from Eq. () and stored
in the auxiliary array Pjeqp.

Figure 6. Pseudo code for implementation Variant A.

: // host part

S = maximum number of steps

: create random Sierpinski carpet

. allocate Py[—S...S5,—S... 5]

. allocate P,j4[—S...S,—S...5] (in video memory)
. allocate Pyew[—S ... S, —S...S] (in video memory)
. create initial distribution in P,

: copy Pp to Pyig

: for s=1to S do

// kernel function call

for each i =1to (25 +1)? do

12: call A(Pold7 Pnew)

13: end for

14: wait for completion of the kernel functions

15: swap Pyq and Py

16: end for

17: copy Pyq to Py

18: retrieve results from P

© 0 NN AW~

—_ =
—_— O

20: // device part

21: kernel function A(P,;4, Prew)

22: determine (x,y) from the block and thread IDs
23: if Pold[l', y] > 0 then

24: p=0n=0

25: for (z,9) = (—1,0),(1,0),(0,—1),(0,1) do
26: if Pyg[z + &,y + §] > 0 then

27: p += Poalr + 2,y + 9]

28: n++

29: end if

30: end for

31 Pne'wh:?/] = (p+(4_n)'P01d[zay])/4

32: end if

33: end kernel function

The host program waits for the completion of all threads
executing the kernel function. After that, the array with
the old probabilities and the auxiliary array with the new
probabilities are swapped and the next simulation step
proceeds.

As previously mentioned in Sect.[[V] branches inside the
kernel function (e.g., as in line@ should be avoided due to
the SIMD architecture of the GPU. However, an alternative
version of the kernel function which avoids this branch
using a computation step that is executed by all threads
has led to a slight decrease in performance. In this case, the
branch avoidance introduced additional memory accesses that

3 1
2 23| 4
1 5(6((7([8]|9

0110|11|12|13|14|15| 16

1 1718 19| 20|21
2 22 (23|24
3 25

Figure 7. Numbering of sites for implementation Variant B for the
assignment of threads to sites in the third simulation step (s = 3).

overcompensated the performance benefits from the omitted
branches.

B. Implementation Variant B

Variant A starts a separate thread for each site in every
simulation step. With the initial probability distribution (see
Eq. ()) the walker is located at the origin and all other sites
have a probability of zero. Since the walker is only allowed
to move to a neighbouring site in one simulation step, all
sites that are far away from the origin keep their probability
of zero in the beginning. Only sites that are within the range
of the longest currently considered path of the walker can
have a non-zero probability and need to be computed.

The area of sites with non-zero probability is diamond-
shaped and centred at the origin. The area is growing by one
site in each direction in each simulation step. To consider
all paths of the length s, only the sites (z,y) with

s < |x| + |yl 3

have to be taken into account. In implementation Variant B
threads are started only for sites that fulfil this inequation.
We use a row-wise numbering of the sites from the top
to the bottom in the diamond-shaped area to assign each
thread with its global thread ID to one site. Figure[7] shows
an example for the assignment of threads to sites in the
third simulation step. The = and y co-ordinates of a site are
calculated from the global thread ID ¢ as follows:

.) ifi<(s+1)2,
J= 2 e ()2)
282 +s+1)—i ifi>(s+1)*,
-1 ifi< 1)?
A)
1 ifi>(s+1)?,

v =k (Vi + (Vi =102 =3) . ©
y=—k([Vil-s-1) . @)

The calculation differs for the upper and the lower half of
the surface. This results in the case differentiation in the
definition of the auxilary variables j and k.

Figure 8. Pseudo code for implementation Variant B.

: // host part
S = maximum number of steps
: create random Sierpiniski carpet
. allocate Py[—S...S5,—S... 5]
. allocate Pyjg[—S...S,—S...S5] (in video memory)
. allocate Pyew[—S ... S, —S...S] (in video memory)
. create initial distribution in P,
: copy Py to Pyig
: for s=1to S do
// kernel function call
for each i =1t s>+ (s+1)? do
call B(Polch Pnew)
end for
wait for completion of the kernel functions
swap P,q and P,eq
: end for
: copy Pog to Py
. retrieve results from Py

I N T e
SV X IDINERDN 2

: // device part
21: kernel function B(P,;4, Pew)
22: 1 =global thread ID

23: determine (z,y) according to Eq. (EI)—(EI)
24: if Pold[xa y] > 0 then

25: p=0,n=0

26: for (2,9) = (—1,0),(1,0),(0,-1),(0,1) do
27: if Pyglx + 2,y + ¢] > 0 then

28: p += Pyalx + &,y + 9]

29: n++

30: end if

31 end for

32: Poewlz,yl = (p+ (4 —n) - Pyalz,y])/4

33: end if

34: end kernel function

The total number of threads required in simulation step s
corresponds to the number of sites inside the diamond-shaped
area and is equal to s + (s + 1)2. The execution time of
one thread increases by the time required for the calculation
of the site co-ordinates according to the equations (@)—(7).
Figure[§] shows the modified version of the program.

C. Implementation Variant C

In the implementation Variants A and B, inaccessible sites
are recognized by their negative probability values. This
causes an immediate termination of the kernel function.
Because of the SIMD principle of the GPU, threads of
inaccessible sites require the same amount of time as threads
of accessible sites. Since the probabilities of inaccessible
sites are zero during the whole simulation, the costs for
calculating these sites can be avoided.

3 14
2 15| 6 [25
1 16| 7|2 (13|24

o117| 8| 3| 1|5 (12|23

1 18| 9 (4 |11|22
2 19|10 21
3 20

Figure 9. Numbering of sites for implementation Variant C for the
assignment of threads to sites in the third simulation step.

Implementation Variant C stores the carpet site-wise in
a one-dimensional array omitting all inaccessible sites. The
inaccessible sites are randomly located on the surface. If only
accessible sites are stored in the array, it is not possible any
more to determine the positions of neighbouring sites from the
array positions. Therefore, the adjacency relationship between
the sites has to be stored separately in an array containing
the indices of the sites’ neighbours. Inaccessible neighbours
are marked by a special index, e.g. NOT_PRESENT. This
array is set up during the creation of the random Sierpiriski
carpet by the CPU and transferred to the video memory at the
beginning of the simulation. As the carpet does not change
its structure during the simulation, the content of this array
is constant.

Similarly to Variant B, it is necessary to choose an appro-
priate numbering of the (accessible) sites inside the diamond-
shaped area to assign them to the threads. The row-wise
numbering from the top to the bottom is disadvantageous,
because it leads to a renumbering of the sites in every
simulation step. This would require an expensive rebuild
of the neighbours array that stores the adjacency relationship
between the sites. Instead, we use a numbering of the sites
that starts in the origin and increases while moving outwards.
Figure[d] shows an example for the chosen numbering. With
this numbering, all sites have constant indices during the
whole simulation. Figure[I0| shows the modified version of
the program.

The sites are assigned directly to the threads using their
thread IDs as indices. A translation between the indices and
the co-ordinates of the sites is only necessary during the
creation of the carpet. The number of threads required in one
simulation step now depends on the number of accessible
sites. Due to the irregular structure, it cannot be determined
when calling the kernel function. Instead, it is calculated in
advance during the creation of the carpet.

Omitting inaccessible sites requires less memory for storing
the probabilities values. However, storing the adjacency
relationship requires additional memory. The total memory
consumption of implementation Variant C depends on the
amount of accessible sites. In general, we expect a reduction

Figure 10. Pseudo code for implementation Variant C.

: // host part
S = maximum number of steps
: create random Sierpiniski carpet
: determine adjacency relationship
t[1...S] = number of threads required in each step
M = total number of accessible sites
. allocate Py[M]
. allocate Pyjg[M], Phew|[M] (in video memory)
. allocate neighbours[M,4] (in video memory)
. create initial distribution in P,
: copy Py to Py
: copy adjacency relationship to neighbours
: fors=1to S do
// kernel function call
for each i =1 to t[s| do
call C(P,4, Ppew,neighbours)
end for
wait for completion of the kernel functions
swap Pyq and Pey,
: end for
: copy Poig to Py
. retrieve results from P,

R RN = e e s e e e e e
A U T S T

24: // device part

25: kernel function C(P,;q, Pyew, neighbours)
26: 1 = global thread ID

27 p=0,n=0

28: for j=1to4do

29: if neighboursli, j| # NOT_PRESENT then
30: p += Pya[neighboursli, j]]

31: n++

32: end if

33: end for
34 Paewli] = (p+ (4 —n) - Pygli])/4
35: end kernel function

in memory consumption which makes it possible to store
larger carpets in the limited video memory.

VI. PERFORMANCE RESULTS

The generator set shown in Fig.[T] was used to compare
the performance of the different implementation variants.
The mean occupancy rate of a random Sierpinski carpet
specifies the amount of accessible sites in relation to the
total number of sites. For the three sample generators,
the number of accessible sites (out of 25) is 13, 9 and
12, respectively. The iterators were constructed with 3
recursion steps. The resulting mean occupancy rate with
these settings is (%)3 ~ 0.093 =~ 0.1. This means
that approximately one out of ten sites is accessible. Since
the number of accessible sites can have an influence on the

10000

1000

100

Variant A, 0.093
Variant B, 0.093
Variant C, 0.093 ——
Variant A, 0.35

execution time t [seconds]
>
) ll)

Variant B, 0.35

Variant C, 0.35 —&—

Variant A, 0.59

Variant B, 0.59

Variant C, 0.59 —&—

001 L L L I L
0 1000 2000 3000 4000 5000

path length s

0.1

Figure 11. Execution times for implementation Variants A, B and C using
three generator sets with different occupancy rates.

performance, two additional generator sets with occupancy
rates 0.35 and 0.59 were used.

The simulation program was executed on a quad-core
Opteron system with an NVIDIA GeForce 8800 GT video
card. In Fig.[T]] the execution times for the three implemen-
tations with the given generator sets are shown as a function
of the path length s. Only the execution times of the main
computational loop are shown. The additional time required
for initialization, copying the data structures to and from the
video memory and for the analysis of the data was less than
2 % of the total execution time for larger path lengths s. The
initialization in Variant C was about 5-10 times faster than
the initializations in Variants A and B. This can be attributed
to the higher amount of data that has to be transferred to the
video memory in Variants A and B.

The results in Fig.[TT] show that the execution time of all
variants increases for an increasing path length. Variant B
is faster than Variant A for all occupancy rates because the
threads for sites that are further away from the origin than the
longest currently considered path are not started any more.
This saves a great amount of execution time. Variant C was
even faster than Variant B. Here, the execution times for
threads of inaccessible sites were saved. The occupancy rate
of the generator sets also has an influence on the execution
time. Figure [TT] shows that the execution time decreased
significantly with a lower occupancy rate.

For a simulation with s random walker steps, a maximum
area of (2s+ 1)? sites is needed. Thus, for s steps, no more
than s(2s + 1)? € O(s®) updates of the probabilities of the
sites are needed. The upper bound for the execution time is
determined by this number of updates. To get a more accurate
view of the influence of the occupancy rate on the execution
time, the results of the experiments were approximated with
the function

t(s) = as® 8)

1000 = L) I L) I L) I L) I L=
100 |~
- L
e}
c
s L
]
3 10 =
- L
£ N
=
K} 1k
S =
3 L
[}
x
(o} =
0.1 |~ -]
L CPU, single threaded E
CPU, 16 threads --X--
o GPU —x—
0.01 1 I 1 I 1 I 1 I 1
0 1000 2000 3000 4000
path length s
Figure 12. Execution times for a parallel CPU version (1 and 16 threads)

in comparison to the GPU version (Variant C) using a generator set with
occupancy rate of 0.093.

Table I
VALUES FOR a - 109 IN EQ. FROM EXPERIMENTAL RESULTS AND
LEAST-SQUARES FIT.

Occupancy Rate | 0.093 0.35 0.59
Variant A 6.742 9.71 15.94
Variant B 2.684 4.14 7.24
Variant C 0.21671 0.5310 1.1898

using the least-squares method. The resulting values for a are
shown in Table[ll The value of a determines the asymptotic
behaviour of the execution time. Higher values for a represent
a larger increase of the execution time.

The results show that for low occupancy rates the execution
time of Variant B was about one third of the execution time
of Variant A. Variant C is about an order of magnitude faster
than Variant B. The advantage of Variant C in comparison to
Variant B decreases from factor 12 to factor 6 when using
generators with a higher occupancy rate. The reason for this
is that the number of threads that are saved on the transition
from Variant B to Variant C decreases with an increasing
occupancy rate.

The total size of the video memory limits the maximum
size of the simulation surface. The largest number of
simulation steps was about 5000 for Variants A and B and
about 9500 for Variant C.

In [17]], an implementation of this application for SMP
clusters is presented that handles the irregular carpet similarly
to Variant C. This CPU version uses a coarse-grained
approach that operates on entire iterators. The calculation of
one simulation step on one iterator represents one task. The
tasks are distributed to the threads via a task pool. Figure[I2]
shows results for the execution time of Variant C on the GPU
and for the parallel CPU version with 1 and 16 threads. The
CPU version was executed on a multicore system with 16
cores (4 x AMD Opteron 8347 processors, 1.9 GHz). The

GPU version turned out to be much faster. The times indicate
a performance increase of about an order of magnitude. This
compares to the results in [[10]] and [[12]].

The overall results show that for solving problems with
irregular, sparse data structures on GPUs, it is necessary
to preprocess the input data in a way that allows a regular
computation. Avoiding branches inside the GPU program
to comply with the SIMD architecture of GPUs does not
automatically lead to a performance increase. The application
presented in this article is a memory bandwidth bounded
code with only a few instructions in the branches of the
kernel function. For this kind of application, it can be
favourable to retain the branches if they help to prevent
unnecessary memory accesses. The programming model of
the GPU allows a very fine-grained parallelisation of irregular
applications. The light weight threads of the GPU eliminate
the need for partitioning the data in a way that there exists
a sufficient computational load per thread. While the GPU
version of our application assigns every single site to a
separate thread, this would cause too much overhead on a
CPU. An efficient and balanced partitioning of the data, which
can be a major challenge, especially for irregular problems,
can be achieved very easily in this case. Additionally, memory
bandwidth bounded codes, like the application used in this
article, with only few computations per data element, can
benefit from the superior memory bandwidth of GPUs in
comparison to CPUs.

VII. SUMMARY

In this article, we have presented three implementation
variants of an algorithm for random walk simulations via

the master equation approach on random Sierpifiski carpets.

We have shown that such irregular algorithms can be
implemented efficiently on GPUs. The original algorithm
was adapted with respect to the SIMD architecture of the
GPU to achieve a uniform utilization of the parallel execution
units. We have exploited the irregular structure of the random
Sierpinski carpet to reduce the total amount of computations
that are necessary to perform the random walk. The resulting
irregular computations were implemented such that they
can be executed appropriately on a GPU. The presented
performance results demonstrate the benefits of the chosen
approaches. The GPU variant of the simulation program
achieved an increase in performance of about one order of
magnitude in comparison to a single threaded CPU version.

REFERENCES
[1] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and
J. Phillips, “GPU Computing,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 879-899, 2008.
[2] “www.opengl.org.”

[3] “www.microsoft.com/windows/directx.”

[4] NVIDIA CUDA — Programming Guide, version 2.3.1.

[5] ATI Stream Computing — User Guide, april 2009.

[6] Khronos OpenCL Working Group, The OpenCL Specification,
version 1.0.

[71 A. Franz, C. Schulzky, N. A. Do Hoang, S. Seeger,
J. Balg, and K. H. Hoffmann, “Random Walks on
Fractals,” in Parallel Algorithms and Cluster Computing.
Springer, 2006, vol. 52, pp. 303-313. [Online]. Available:
http://www.springerlink.com/content/v3654631p5k268u?

[8] O. Schenk, M. Christen, and H. Burkhart, “Algorithmic
performance studies on graphics processing units,” Journal
of Parallel and Distributed Computing, vol. 68, no. 10, pp.
1360-1369, 2008.

[9] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel
computing experiences with CUDA,” IEEE Micro, vol. 28,
no. 4, pp. 13-27, 2008.

[10] N. A. Gumerov and R. Duraiswami, ‘“Fast multipole methods
on graphics processors,” Journal of Computational Physics,
vol. 227, no. 18, pp. 8290-8313, 2008.

[11] M. J. Stock and A. Gharakhani, “Toward efficient GPU-
accelerated n-body simulations,” in 46th AIAA Aerospace
Sciences Meeting and Exhibit. AIAA, January 2008.

[12] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU
accelerated Monte Carlo simulation of the 2D and 3D ising
model,” Journal of Computational Physics, vol. 228, no. 12,
pp. 4468-4477, 20009.

[13] S. Tarafdar, A. Franz, C. Schulzky, and K. H. Hoffmann,
“Modelling porous structures by repeated Sierpinski carpets,”
Physica A: Statistical Mechanics and its Applications, vol.
292, no. 1-4, pp. 1-8, 2001.

[14] R. Metzler and J. Klafter, “The random walk’s guide to
anomalous diffusion: a fractional dynamics approach,” Physics
Reports, vol. 339, no. 1, pp. 1-77, 2000.

[15] K. H. Hoffmann and J. Prehl, “Anomalous Transport on Disor-
dered Fractals,” in Anomalous Transport, 1st ed., G. Radons,
R. Klages, and I. M. Sokolov, Eds. Berlin: Wiley-VCH, July
2008, pp. 397-428.

[16] H. Gould, J. Tobochnik, and W. Christian, An Introduction
to Computer Simulation Methods, 3rd ed. Addison-Wesley,
March 2006.

[17] K. H. Hoffmann, M. Hofmann, G. Riinger, and S. Seeger,
“Task Pool Teams Implementation of the Master Equation
Approach for Random Sierpinski Carpets,” in Proc. of the
12th International Euro-Par Conference, ser. LNCS, vol. 4128.
Springer, 2006, pp. 1043-1052.

http://www.springerlink.com/content/v3654631p5k268u7

	Introduction
	Related work
	Random Walks on Sierpinski Carpets
	GPU Programming Specifics
	GPU Implementation of the Random Walk Simulation
	Implementation Variant A
	Implementation Variant B
	Implementation Variant C

	Performance Results
	Summary
	References

