Original published: K. H. Hoffmann, M. Hofmann, J. Lang, G. Riinger, and S. Seeger. Accelerating physical
simulations using graphics processing units. it - Information Technology, 53(2):49-59, 2011. Online available at
http://dx.doi.org/10.1524/itit.2011.0625.

Accelerating physical simulations with
graphics processing units

Karl Heinz Hoffmann, Michael Hofmann, Jens Lang,
Gudula Riinger, Steffen Seeger

1st March 2011

Abstract

Graphics processors receive gaining popularity in all fields of application in which there
is a need for high computational power. Also, in scientific computing, using graphics
processing units to speed up simulations is an active field of research. In this article, a
graphics processor implementation of a simulation of anomalous diffusion is presented.

Furthermore, in this article the different frameworks for graphics programming such
as CAL, Brook+, CUDA and OpenCL with their specific properties, are compared. Ad-
ditionally, an overview of different physical applications that have been implemented on
graphics processors successfully is given.

Zusammenfassung

Grafikprozessoren erfreuen sich steigender Beliebtheit in allen Anwendungsbereichen,
in denen es auf hohe Rechenleistung ankommt. Auch im Wissenschaftlichen Rechnen
sind sie Gegenstand aktueller Forschung. In diesem Artikel wird eine Grafikprozessor-
Implementierung zur Simulation anomaler Diffusion in porésen Materialien vorgestellt.
Weiterhin werden in dem Artikel die verschiedenen Framework zur Grafikprozessorpro-
grammierung wie CAL, Brook+, CUDA und OpenCL mit ihren spezifischen Eigenheiten
kurz vorgestellt. Auferdem gibt der Artikel einen Uberblick iiber verschiedene physikali-
sche Anwendungen, die bereits erfolgreich auf Grafikprozessoren implementiert wurden.

1 Introduction

The fast increasing computational power of graphics processing units (GPU) offers new
possibilities for all kinds of parallel applications. Not only graphics-related computations
can be implemented on recent GPUs, but also general-purpose computation. Especially in
simulations of physical phenomena, which have a huge demand for computational power,
GPUs can be employed to speed up computations. Currently, the peak performance of

http://dx.doi.org/10.1524/itit.2011.0625

GPUs is approximately 5 to 10 times higher than of comparable CPUs. Furthermore, the
performance of GPUs is growing faster than of CPUs. Consequently, GPU algorithms
are becoming increasingly important in high-performance computing in the near future.

In the early times of general-purpose graphics computing, GPUs were programmed on
a low level via an assembler language [23|, or the capabilities of the OpenGL graphics
library have been used [6]. In 2008, Nvidia delivered its CUDA framework [17] for high-
level programming of Nvidia graphics processors. As CUDA made GPU programming
easy to handle, general-purpose GPU computing became popular very quickly. CUDA
and other comparable frameworks enable also non-experienced programmers to imple-
ment their algorithms on GPUs.

In this article, we give a short introduction to GPU programming and present an
overview on several popular physical simulations that were implemented for GPUs. Fur-
thermore, we present a GPU implementation of a specific application for the simulation
of anomalous diffusion in a GPU implementation [10].

The rest of this article is organised as follows. The specifics of GPU programming
including an overview on programming frameworks is presented in Sect.2] Section
gives an overview of a variety physical applications implemented on GPUs. In Sect.[d] an
implementation of the anomalous diffusion simulation is described. Section 5| concludes
the article.

2 GPU Programming

Programs that use general purpose GPU computing consist of two parts: a host part
that is executed on the CPU and a device part that is executed on the GPU. As the
GPU is unable to perform I/O operations, the input data needed has to be provided by
the CPU.

A GPU programming framework is a set of software libraries and programming tools
which aid the programmer to develop GPU programs. For the host part of the program,
the libraries provide functions to find out how many graphics devices are present on
the machine and what properties they have. Furthermore, they allow the copying of
data to and from the device memory and to call functions that are executed on the
GPU. These functions are called kernel functions. For the device program, a compiler is
provided. Additionally, in some cases, the framework includes a debugger or a profiler.
The runtime environment for device programs is usually provided by the graphics driver,
which is aware of the general purpose compute capability of the graphics device.

For the device part of the program, a special programming language is used. Often,
this programming language follows the C99 standard while some constructs such as static
variables or recursive function calls are forbidden.

GPUs usually have a large number of compute cores (several hundreds). They can
execute a large number (up to some tens of thousands) of data-parallel threads simul-
taneously. As these threads are very light-weight, tasks can be distributed in a very
fine-grained way. Often, a thread carries out only a very small task before being termi-
nated and a new thread being started. The calls of kernel function return immediately.

CPU GPU

CPU/ Yy VV V
thread

kernel functions

IRNRRRNEN]

GPU threads

Figure 1: Program flow of a GPU program: the main part is executed on the CPU as a
CPU thread (host); the computational part is executed on the GPU by kernel
functions (device).

Hence, the CPU and the GPU can work concurrently.

2.1 Hardware

A modern GPU as shown in Fig.[2 consists of several multiprocessors. Each multiprocessor
consists of a number of stream processors. These stream processors are the actual compute
cores. All stream processors within one multiprocessor execute the same code according
to the SIMD execution model.

All stream processors of a multiprocessor share a large number of registers (in the
order of magnitude of several thousands). Additionally, each of them is assigned a fast
private memory. For all stream processors of one multiprocessor, there is a single local
memory which can be used for fast data exchange. Furthermore, there is a large—but
slow—global memory on the device. On Nvidia graphics devices, there is no implicit
cache for the global memory. In contrast, on AMD graphics devices, memory accesses to
the global memory are cached.

Global memory read accesses and write accesses should be performed in coalesced
order. This means that consecutive threads should access consecutive memory addresses
instead of reading or writing randomly. Coalesced memory accesses bring a performance
gain as data can be retrieved from or stored on the memory in larger chunks. In contrary,
random accesses have to be processed independently and result in a stall of the execution
unit.

Due to their main purpose of graphics processing, GPUs had the shortcoming of being
able to process only floating point operations with single precision for a long time. Since
mid-2008, GPUs are able to execute double precision calculations. But these double
precision computations still do not achieve the same performance as single precision
computation. Hence, in some cases, it can be favourable to perform “mixed precision”
calculations as proposed in [13] which means that some less critical calculations are

Multiprocessor 3

Multiprocessor 2

Multiprocessor 1

Private Private Private Private
Memory Memory Memory Memory

Local Memoyy

Global Memory

Figure 2: Simplified layout of the hardware architecture of a GPU device.

executed with single precision while for the result, double precision accuracy is achieved.

2.2 CAL

CAL is a low-level API for AMD’s GPUs. It allows programming the GPUs in the so-
called Intermediate Language. The Intermediate Language is an assembler-like, hardware-
independent language. In this context, “hardware-independent” means that it is an ab-
straction from the real hardware of the specific AMD GPU, however it cannot be used
for other manufacturer’s GPUs.

2.3 Brook+

Brook+ is a the high-level language for AMD GPUs based on the Stanford University
project BrookGPU which ported the stream programming language Brook to graphics
hardware ,. Brook implements the stream programming concept. Brook+ is built on
top of CAL.

The basic elements of stream programming are streams and kernels. Streams can be
seen as infinite vectors of integer or floating point numbers. They are manipulated or
combined with other streams by kernel functions. This programming model makes it
easy for the programmer to formulate an algorithm in a way that can be parallelised
by the compiler. Kernel functions are executed by the GPU in parallel. Each stream
processor of the GPU is working on one vector entry.

Currently, Brook+ supports only AMD’s GPUs. Its predecessor BrookGPU addition-
ally supported OpenGL, DirectX and CPU backends.

2.4 CUDA

CUDA is Nvidia’s GPU programming framework. In Version 3.0, it comprises a compiler,
a debugger, and a profiler for GPU programs.

The model of CUDA follows the structure given by the hardware. The program is
divided into a host part and a multi-threaded device part. Different address spaces for
the different kinds of memory on the device are provided. A fixed number of threads
forms a thread block. For each kernel function that is called from the host the number
of threads to be executed and the size of the thread blocks has to be given.

All threads of one block are executed concurrently on one multiprocessor. The ex-
ecution order of the thread blocks is defined by the framework. As communication is
only possible between stream processors within one multiprocessor, no functionality for
communication between different blocks is provided. Likewise, synchronisation is only
possible between threads of one thread block. Not affected by this constraint is the use
of the global memory, for instance for reduction variables. For the synchronisation of
memory accesses, atomic functions such as atomicAdd() or atomicExch() are provided.

2.5 OpenCL

OpenCL is a manufacturer-independent standard for cross-platform parallel program-
ming. Although developed primarily for the programming of graphics processors, it is
also suitable for executing parallel programs on CPUs.

The main characteristics of OpenCL are similar to CUDA. An important difference
is that the device functions are only compiled at run time. In this way, the OpenCL
driver can fine-tune the compilation to the target platform while preserving platform
independence. Nevertheless, it is still possible to load precompiled device functions.

The generality of OpenCL that comes along with its platform independence might
lead to a performance penalty. Danalis et al. have developed a GPU benchmark [7]
and investigated this issue. It turned out that “artificial” kernels that measure low-level
hardware characteristics (such as device memory bandwidth or peak performance) have
an almost identical runtime in OpenCL and CUDA implementations. In contrast, non-
trivial kernels (such as FMM, sgemm matrix multiplication or sorting) are less efficient
when written in OpenCL. This indicates that the OpenCL compilers need to be further
improved.

3 Physical Simulations on GPUs

The specified peak performance of up to a few TFLOPS for a current GPU hardware is
clearly in favour of GPUs as general computing devices, especially when compared to the
peak performance of a few tens of GFLOPS for current desktop or server CPU hardware.
It is these two orders of magnitude in computing power, combined with a three to four

times larger memory bandwidth that make it worthwhile for scientists to consider GPUs
as a viable alternative to existing computing solutions.

The following subsections will discuss some of the many kinds of physical simulations
that can benefit from GPUs particularly well. But, not all types of applications may
benefit equally well as the ratio of computing power compared to random access memory
bandwidth (for large data sets) is worse by at least an order of magnitude. For that
reason, applications that are bound by memory bandwidth require even more careful
implementation on general purpose GPUs than on high performance desktop and server
CPUs.

The methods used in computational science can be classified according to many at-
tributes, but here we will mainly discuss stochastic vs. deterministic and continuous vs.
discrete methods.

3.1 Stochastic Methods

Stochastic methods calculate statistic properties of either a large random ensemble of
items or samples along some kind of trajectory of a system to calculate approximations to
quantities of interest. The laws of statistics imply that, given a proper random sampling
of the states of the system of interest, precision of the approximated quantities improves
with the number of random samples that make up the ensemble or trajectory. That is,
the uncertainty about the exact value of the quantities of interest decreases with larger
number of samples considered.

Thus, for the ensemble-based methods, a useful implementation strategy is to let each
processing element of a GPU handle evolution and calculation of the properties of a single
item of the ensemble and then use appropriate reduction methods to calculate ensemble
averages of interest.

For methods that need to follow a trajectory, such as Monte Carlo methods, efficient
use of the parallel architecture of GPUs is not a simple problem, as the next point on
the trajectory is usually calculated from the current state. This introduces a dependence
between the successive states which is best handled by a single processing element.

However, Monte Carlo methods have found widespread use to approximate values of
integrals or to provide samples of a system that represent a series of typical states of such
a system in contact with some heat bath of a given temperature. For such applications,
the main computing power has to be invested in evaluation of some kind of energy
function defined on the current ‘state’ of the system.

An example from physics is the Ising model of magnetic materials. The model uses a
2D or 3D lattice of “spins” which may have two orientations (up or down) indicating the
orientation of the magnetic moment of atoms in a material. The Ising model specifies
a particular model (the Hamiltonian or energy function) that describes the interaction
of (neighbouring or adajacent) spins. In each Monte Carlo step, the orientation of some
spins is altered according to some rule (the move-class) and the energy function has to be
evaluated, which can be the most time-consuming part of the simulation if spins interact
non-locally. Then, the new state is accepted as the next current state with a specified
acceptance probability, depending on the change in energy between the current and new

state considered.

Tomov et al. implemented the Ising model on graphics processors [24] using OpenGL.
Preis et al. presented a CUDA implementation for the 2D and the 3D Ising model [18].
In order to synchronize the updates, both used a checkerboard algorithm to partition
the system into non-interacting domains. During the first half-step, all “white” sites of
the checkerboard update their spins, during the second half-step all “black” sites do the
update.

Martinsen et al. presented a method for simulating photon transport including scatter-
ing and absorption in turbid media [15]. Their main issue was to prevent race conditions
that arise when different absorption events occur simultaneously. With using separate
memory places in the global memory, their GPU implementation was about 70 times
faster than the CPU implementation. Molnar Jr. et al. presented a simulation which
models the flow of pollution particles in the air by advection and turbulent diffusion [12].

Meredith et al. [16] evaluated implementing different functions of a quantum Monte
Carlo application on GPUs. They also studied whether using single precision floating
point arithmetic has an influence on the accuracy of the result. They found that for a
number of real science problems, single precision arithmetic is sufficient.

3.2 Deterministic Methods

In contrast to stochastic methods, deterministic methods try to calculate the evolution
of a system (e.g. a system of N particles) from deterministic equations that constitute
the laws of motion for that system.

Depending on the particular problem, some form of either time stepping or determi-
nation of a stationary state is performed. Given a current state, explicit time-stepping
methods need to calculate forces that will change this state and then perform an in-
tegration step to determine the state at a certain time shortly after the current time.
Implicit methods attempt to solve a system of equations derived by discretisation of the
equations of motion. The state at some later time is calculated as the solution to a
set of ‘constraint’ equations imposed by current state and forces. Though usually more
difficult, this may give advantages in numerical stability and overall time to solution, as
e.g. considerably larger and thereby less total time steps may be used.

The main computational load is typically due to a large number of particles considered
(e.g. molecular dynamics simulations) and /or processing of a large dataset that describes
the current state of the system. Therefore, efficient use of GPUs for these kind of sim-
ulations (e.g. fluid dynamics simulations or many-particle problems) poses a non-trivial
problem, too.

As an example, we discuss the issues that arise with molecular dynamics simulations.
Applications of these methods range from life sciences (e.g. protein folding) to material
sciences (e.g. self-assembly of nano particles). Molecular dynamics simulations calculate
the time evolution of a large number N of particles. To do so, one iteratively determines
the interaction between the particles and then integrates the equations of motion for
each particle. These are simple first order differential equations where each processing
element may perform integration independently, provided the force terms are known.

Calculation of the forces is, however, the crucial step. This is mainly due to the
large number of interactions that need to be considered. In the most exact (quantum
mechanical) modelling, the interaction between two particles may depend on the state of
all other particles. A considerable reduction in complexity can often be achieved if only
pairwise interaction need to be considered. For direct methods, interactions between all
pairs of particles are evaluated, resulting in an O(N?) effort for evaluation of the forces
in each time step.

Fast methods apply several strategies to reduce that effort. The first step is to split the
interaction into a short-range and a long-range part where the long-range part is either
neglected (cut-off) or handled semi-analytically (e.g. by Ewald summation). The second
step is, for each particle, to evaluate only the interaction with particles in the immediate
proximity. If the particles close to a particular particle considered can be determined
with constant effort (e.g. due to a sorted tree structure), the overall time complexity will
be considerably lower than O(N?).

Hamada and Iitaka proposed a method for the direct calculation of interactions on
GPUs [9] that inspired many other authors: the Camomile Scheme. The interactions
between the particles are calculated block-wise with adapting the block size to the size
of the shared memory of the GPU (cf. Fig.[2). The block-wise calculation also brings
the possibility to calculate interactions between a larger amount of particles than the
amount that can be held in the GPU memory. Belleman et al. [4] and Schive et al. [19]
presented further applications and improvements of the Camomile Scheme.

A GPU implementation of the fast multipole method was presented by Gumerov et
al. [8]. It runs completely on the GPU and achieves a speedup factor of 72 compared
to a serial CPU implementation. Yotoka et al. presented an algorithm that is also fully
implemented on the GPU |26|, and can also be executed on a cluster of GPUs. Further,
they show that, on GPUs, the pseudo-particle method [1,|14] performs similarly to the
fast multipole method, being an alternative for fast particle simulations.

Stone et al. |20] extended the popular, highly-tuned parallel molecular dynamics pro-
gram NAMD by GPU-based non-bonded force calculation. Hardware interpolation of
textures is used to evaluate distance-dependend functions in this implementation. All
atoms are sorted into bins so that only atoms in neighbouring bins have to be loaded
to the GPU. The atoms in all other bins are outside the cut-off radius and interactions
with them can be neglected. They achieved a speedup factor of about 5.

Van Meel et al. [25] and Anderson et al. |2| simultaneously published a method for
implementing molecular dynamics entirely on GPUs. Both use cell lists to determine
which cells are inside the cut-off radius of a certain particle and hence do interact with
it and which cells are beyond the cut-off radius. They differentiate in how the cell lists
are organized. Van Meel et al. use an “array of place holders” where a virtual particle
is placed at each position on which no real particle is situated. If a real particle moves
to a virtual particle’s position, the latter is removed. Anderson et al., however, use
space-filling curves in order to preserve the space locality of the particles in memory.

Sunarso et al. |21] presented a method for the study of macroscopic flows of liquid
crystal molecules. To their knowledge, this was the first work on molecular dynamics
simulation to deal with non-spherical particle systems. They use the cell-list method

%

Figure 3: Example set of three generators of size 5 x 5 consisting of accessible (black) or
inaccessible (white) sites.

to ensure that interactions with particles outside the cut-off radius are not calculated.
As the cells move due to the macroscopic flow, a special method for the generation of
cell lists had to be found. Furthermore, they discussed the best trade-off between use of
memory and use of stream processors.

An important point of all GPU implementations of molecular dynamics is to find an
efficient method for handling the irregular computations of short-range interactions, e.g.
due to the cut-off radius. A second point is to maximize GPU usage. Both, the number
of computing cores and the amount of memory can be a bottleneck. So, a good trade-off
has to be found. Furthermore, it has to be decided how much of the calculation is to
be performed by the GPU. While in the early days, it was common to only perform
the computationally intensive force calculations on the GPU, nowadays often the whole
simulation is carried out on the graphics device.

4 Simulating Anomalous Diffusion

In this section, a simulation of anomalous diffusion of liquids in porous materials and
its implementation on a GPU is presented. Compared to normal diffusion, anomalous
diffusion moves slower as the liquid is being obstructed by different structures on all
length scales. In the real world, there are numerous processes where anomalous diffusion
can be observed. Examples are the diffusion of oil in porous materials or of water in
sediments.

4.1 Random Walks on Fractal Structures

As shown in [22|, Random Sierpiriski Carpets model the structure of porous media with
the demand of obstacles on several length-scales quite well. Random walks on fractal
structures like Random Sierpinski carpets can be used to simulate anomalous diffusion.
For performing the simulation, the Random Sierpinski carpet is represented by a two-
dimensional Cartesian grid that consists of accessible and inaccessible sites. A random
walk starts with a random walker that is located at an initial starting site. To perform one
step, the walker selects one of the four directions at random and moves to the adjacent
site in the chosen direction. By performing contiguous steps, the walker moves across
the grid and performs the random walk.

To create a Random Sierpiniski carpet, a set of generators is needed. Figure [3| shows
an example set with three different generators of size 5 x 5. Each generator consists of
sites which can be accessible (black) or inaccessible (white). The generators are used to
construct so-called random iterators. The recursive construction of an iterator starts with

Figure 4: Final Random Sierpinski Carpet of 3 x 3 iterators of level 3.

one generator selected at random and then replacing the accessible sites by randomly
chosen generators in the following construction steps. The Random Sierpinski carpet
used for the simulation consists of multiple random iterators (of equal size) that are put
together to a large surface. Figure [4|shows an example surface created from 3 x 3 random
iterators.

The random walk simulation uses the following master equation to calculate the prob-
ability distribution for the location of the walker on the surface:

1 s—1 s—1 s—1 s—1 Ss—
(;(H,L + piﬂ,@), + pi,yf)l + pi,y+)1 + (4= nay) P, ”) : (1)

Pl = 1

The random walker steps in each of the four directions with a probability of %. The
probability pﬁfg for the walker being located at site (x,y) after step s is calculated from
the probabilities of the four adjacent sites in the preceding step s—1. Due to the irregular
structure of the surface, not all four adjacent sites need to be accessible. This results in
a certain probability for the walker to rest on the current site, depending on the number
of accessible neighbours n, ,. The simulation starts with the walker being located at the

origin with a probability of one, all other probabilities are zero:

p(()?% =1, pg(ﬁ% =0 for (z,y) # (0,0) . (2)

After s steps, the probability distribution describes the probabilities of all paths of
length s. The probability of inaccessible sites is defined as zero for all steps s.

4.2 GPU Implementation

In |10] we have presented different GPU implementations for the simulation of random
walks on fractal structures via the master equation approach. Due to the irregular
structure of the Random Sierpinski Carpet, the random walk cannot be implemented
straightforward on GPUs as they are designed for very regular computations. However,
neglecting the irregular fractal structures and treating them as simplified regular ones
introduces a large amount of computational overhead. In the following, we describe an
improved implementation for GPUs that exploits the irregular structure of the Random

10

__global__ void calculate(float* pold, float* pnew,
int4* neighbours)

{
int i = getThreadId();

float pold_i = poldl[il;
float pnew_i = 4 * pold_i;

if (neighbours[i].w != INACCESSIBLE)

pnew_i += pold[neighbours[i].w] - pold_i;
if (neighbours[i].x != INACCESSIBLE)

pnew_i += pold[neighbours[i].x] - pold_i;
if (neighbours[i].y != INACCESSIBLE)

pnew_i += pold[neighbours[i].y] - pold_i;
if (neighbours[i].z != INACCESSIBLE)

pnew_i += pold[neighbours[i].z] - pold_i;

pnew[i] = pnew_i * 0.25;

Figure 5: CUDA kernel function for updating the probability of a single site according
to the master equation.

Sierpinski Carpets to minimize the total amount of computations that are necessary for
the random walk simulation.

The probability distribution of the previous and the current simulation step are stored
in two one-dimensional arrays. The probabilities of all inaccessible sites are omitted,
because they are zero in every simulation step. The structure of the fractal surface is
stored in a neighbour array, that contains for each site the indices of its four adjacent sites.
A special index value marks inaccessible neighbours. Creating the Random Sierpinski
Carpet as well as preparing the neighbour array and the initial probability distribution is
performed by the CPU in the host part of the program. Before the start of the simulation,
these arrays are copied to the global GPU memory so that they can be accessed by the
device part of the program that is executed on the GPU.

In each simulation step, the probabilities of all accessible sites that are currently in
range of the walker are updated. The new probabilities of the current simulation step
are calculated according to the master equation (Eq.) using the old probabilities from
the previous simulation step. This update is performed by the GPU using a kernel
function that is executed by a separate thread for every site. The kernel function uses
pointers to the neighbour array and to the arrays with the old and new probabilities as
input parameters. When the update of the current simulation step is finished, the next
simulation step is performed using the same kernel function, but switching the arrays
with the old and new probabilities.

The outline of the kernel function is as follows: First, each thread determines its
thread ID to select a site that needs to be updated. Then, it is checked whether each

11

10000

1000
D
. 100
£
5 10
=
[&]
2 1
()

o1l CPU, 1 thread —— -

CPU, 8 threads
GPU —»—
0.01 Il Il Il '} Il

0 2000 4000 6000 8000 10000 12000
simulation steps

Figure 6: Execution times for a parallel CPU implementation (1 and 8 threads) in com-
parison to the GPU implementation using the generator set of Fig..

neighbour site is accessible or not. If a neighbour site is accessible, then its old probability
value is used to compute the new probability value of the selected site. Finally, the
new probability value is stored in the array that is used to store the new probability
distribution of the current simulation step. Figure [5| shows the corresponding CUDA
kernel function. The neighbour array uses the CUDA specific data structure int4 to
benefit from coalesced memory accesses.

4.3 Results

The GPU implementation was compared to a multi-threaded CPU version of the random
walk simulation based on task pools [11]. Updating the sites of the iterators is represented
by tasks that stored in a task pool. In each simulation step, a number of threads is used to
execute the tasks in parallel. The simulation surface is dynamically extended by adding
new iterators if the probabilities at the borders of the surface become greater than zero.

The GPU version was run on a Nvidia GeForce 8800 GT video card with 1 GiB of RAM.
Here, only the execution times for updating the probabilities with the GPU program are
shown. The CPU version was run on an eight-core (4xdual-core) AMD Opteron 865
(1.8 GHz) machine with 4 GiB of RAM.

Figure [6] shows execution times of the GPU implementation and of the task pool
CPU implementation with a single thread and with 8 threads. The GPU implementa-
tion achieves a speedup of 32 in comparison to the single-threaded results of the CPU
implementation. In comparison to the multi-threaded results with 8 threads, still a
performance increases of about a factor of 11 is achieved.

12

10000 F T T T T T T 3
— 1000 ¢ 9
()
(0]
£
_5 100 ¢
5
(&)
[0}
)

10 ¢

non-coalesced ——
1 . coalesced

0 2000 4000 6000 8000 10000 12000
simulation steps

Figure 7: Execution times for GPU implementations with and without using coalesced
memory access (using the int4 and a user-defined record).

A reasonable performance increase was achieved by using the CUDA built-in int4 data
structure for the neighbour array to benefit from coalesced memory accesses. Figure
shows the execution times with and without coalescing. The optimized memory accesses
lead to a performance increase by a factor of 2. However, extending the usage of coalesced
memory accesses to the arrays that store the old and the new probability distribution
has not lead to significant further improvements.

5 Summary

GPUs, nowadays, are used for all kinds of applications. Also, in scientific computing
and for physical simulations, they are employed and often lead to a significant speedup.
Despite their architecture for very regular computations, also irregular problems such
as the simulation of diffusion on fractal structures presented in this article or the fast
multipole method can be implemented on GPUs. They run efficiently on GPUs and
perform better than on single-core or even multi-core CPUs. Special attention has to be
given to the memory access. Coalesced memory access should be used wherever possible
as this leads to a huge performance increase.

The most popular programming framework seems to be CUDA, probably because of
its user-friendliness and its early presence. CAL, however, is not encouraged to be used
by non-experienced programmers and, hence, not widely used. Instead, AMD proposes
its Brook-+ framework. Though, it appears not to receive the attention by the developer
community it might deserve. In the near future, OpenCL might be the solution which
receives more and more attention. Due to its platform and manufacturer independence
it is a good solution for portable general purpose GPU programming.

13

References

1]

2]

13]
4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

C. Anderson. An implementation of the fast multipole method without multipoles.
SIAM J Sci Stat Comput, 13(4):923-947, 1992.

J. Anderson, C. Lorenz, and A. Travesset. General purpose molecular dynam-
ics simulations fully implemented on graphics processing units. J Comput Phys,
227(10):5342-5359, 2008.

ATI. ATI Stream Computing. User Guide.

R. G. Belleman, J. Bédorf, and S. F. Portegies Zwart. High performance direct
gravitational N-body simulations on graphics processing units II: An implementation
in CUDA. New Astron, 13(2):103-112, 2008.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for GPUs: stream computing on graphics hardware. In ACM SIG-
GRAPH 2004 Papers, page 786. ACM, 2004.

D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck. CryptoGraphics: Secret
key cryptography using graphics cards. In Proc. of the RSA Conf., Cryptographer’s
Track (CT-RSA), pages 334-350. Springer, 2005.

A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, Ph. C. Roth, K. Spafford, V. Tip-
paraju, and J. S. Vetter. The scalable heterogeneous computing (shoc) benchmark
suite. In GPGPU ’10: Proc. of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, pages 63-74. ACM, 2010.

N. A. Gumerov and R. Duraiswami. Fast multipole methods on graphics processors.
J Comput Phys, 227(18):8290-8313, 2008.

T. Hamada and T. litaka. The chamomile scheme: An optimized algorithm for n-
body simulations on programmable graphics processing units. arXiv ePrint: astro-
ph/0703100v1, 2007.

K. H. Hoffmann, M. Hofmann, J. Lang, G. Riinger, and S. Seeger. Simulating
Anomalous Diffusion on Graphics Processing Units. In Proc. of the 11th IEEE
Int. Workshop on Parallel and Distributed Scientific and Engineering Computing
(PDSEC-10). IEEE, 2010.

K. H. Hoffmann, M. Hofmann, G. Riinger, and S. Seeger. Task Pool Teams Im-
plementation of the Master Equation Approach for Random Sierpinski Carpets. In
Proc. of the 12th Int. Euro-Par Conf., volume 4128 of LNCS, pages 1043-1052.
Springer, 2006.

F. Molnér Jr., T. Szakaly, R. Mészaros, and . Lagzi. Air pollution modelling using
a graphics processing unit with cuda. Comput Phys Comm, 181(1):105-112, 2010.

14

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

J. Kurzak and J. Dongarra. Implementation of mixed precision in solving systems of
linear equations on the cell processor: Research articles. Concurr. Comput. : Pract.
Exper., 19:1371-1385, 2007.

J. Makino. Yet another fast multipole method without multipoles—pseudoparticle
multipole method. J Comput Phys, 151(2):910-920, 1999.

P. Martinsen, J. Blaschke, R. Kiinnemeyer, and R. Jordan. Accelerating Monte
Carlo simulations with an NVIDIA graphics processor. Comput Phys Comm,
180(10):1983-1989, 2009.

J. S. Meredith, G. Alvarez, T. A. Maier, T. C. Schulthess, and J. S. Vetter. Accuracy
and performance of graphics processors: A quantum monte carlo application case
study. Parallel Comput, 35(3):151-163, 2009.

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with CUDA. Queue, 6(2):40-53, 2008.

T. Preis, P. Virnau, W. Paul, and J. J. Schneider. GPU accelerated Monte Carlo
simulation of the 2D and 3D Ising model. J Comput Phys, 228(12):4468-4477, 2009.

H.-Y. Schive, C.-H. Chien, S.-K. Wong, Y.-C. Tsai, and T. Chiueh. Graphic-card
cluster for astrophysics (gracca) — performance tests. New Astron, 13(6):418-435,
2008.

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and
K. Schulten. Accelerating molecular modeling applications with graphics processors.
J Comput Chem, 28(16):2618-2640, 2007.

A. Sunarso, T. Tsuji, and S. Chono. GPU-accelerated molecular dynamics simulation
for study of liquid crystalline flows. J Comput Phys, 229(15):5486-5497, 2010.

S. Tarafdar, A. Franz, Ch. Schulzky, and K. H. Hoffmann. Modelling porous struc-
tures by repeated Sierpinski carpets. Physica A, 292(1-4):1-8, 2001.

C. J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architectures for
general-purpose computing: A framework and analysis. In Proc. of the 35th Annual
ACM/IEEE Int. Symp. on Microarchitecture, 2002.

S. Tomov, M. McGuigan, R. Bennett, G. Smith, and J. Spiletic. Benchmarking and
implementation of probability-based simulations on programmable graphics cards.
Comput Graph, 29(1):71-80, 2005.

J. A. van Meel, A. Arnold, D. Frenkel, S. F. Portegies Zwart, and R. G. Belleman.
Harvesting graphics power for md simulations. Mol Simulat, 34(3):259-266, 2008.

R. Yokota, T. Narumi, R. Sakamaki, S. Kameoka, S. Obi, and K. Yasuoka. Fast
multipole methods on a cluster of GPUs for the meshless simulation of turbulence.
Comput Phys Comm, 180(11):2066-2078, 2009.

15

	Introduction
	GPU Programming
	Hardware
	CAL
	Brook+
	CUDA
	OpenCL

	Physical Simulations on GPUs
	Stochastic Methods
	Deterministic Methods

	Simulating Anomalous Diffusion
	Random Walks on Fractal Structures
	GPU Implementation
	Results

	Summary

