
Search-based Scheduling for Parallel Tasks on

Heterogenous Platforms

Robert Dietze�
Department of Computer Science

Chemnitz University of Technology

Chemnitz, Germany

dirob@cs.tu-chemnitz.de

Gudula Rünger
Department of Computer Science

Chemnitz University of Technology

Chemnitz, Germany

ruenger@cs.tu-chemnitz.de

To cite this version:
Dietze R., Rünger G.: Search-based Scheduling for Parallel Tasks on

Heterogenous Platforms. In: Euro-Par 2019: Parallel Processing Workshops,
pages 333–344. Springer, 2020. ISBN: 978-3-030-48340-1, The final

authenticated version is available online at
https://doi.org/10.1007/978-3-030-48340-1_26

Abstract

Scheduling is a widely used method in parallel computing, which as-
signs tasks to several compute resources of the parallel environments. In
this article, we consider parallel tasks as the basic entities to be scheduled
onto a heterogeneous execution platform consisting of multicores of dif-
ferent architecture. A parallel task has an internal potential parallelism
which allows a parallel execution for example on multicore processors of
different type. The assignment of tasks to different multicores of a het-
erogeneous execution platform may lead to different execution times for
the same parallel tasks. Thus, the scheduling of parallel tasks onto a het-
erogeneous platform is more complex and provides more choices for the
assignment and for finding the most efficient schedule. Search-based meth-
ods seem to be a promising approach to solve such complex scheduling
problems. In this article, we propose a new task scheduling method HP*
to solve the problem of scheduling parallel tasks onto heterogeneous plat-
forms. Furthermore, we propose a cost function that reduces the search
space of the algorithm. In performance measurements, the scheduling
results of HP* are compared to several existing scheduling methods. Per-
formance results with different benchmark tasks are shown to demonstrate
the improvements achieved by HP*.

1

https://doi.org/10.1007/978-3-030-48340-1_26


1 Introduction

The execution time of compute-intensive applications depends strongly on the
efficient utilization of compute resources. Task-based applications are parti-
tioned into a set of tasks each of which can be assigned to different execution
units. Independent tasks can be executed concurrently on the execution units
which may lead to a significant reduction of the execution time of the applica-
tion. For such a reduction of the execution time an efficient utilization of all
execution units is needed. A common approach to determine such an assignment
of tasks to compute resources is the use of task scheduling methods.

Parallel computing environments within or across institutions are often com-
posed of nodes with different capabilities. Achieving a high efficiency when ex-
ecuting parallel applications on such a heterogeneous system strongly depends
on the methods used to schedule the tasks of a parallel application. The hetero-
geneous compute resources considered in this article consist of several multicore
nodes. Each node may have a different architecture which leads to differences
in the performance. For the scheduling of parallel tasks two properties of the
compute nodes are particularly important, the number of processor cores and
the computational speed of each node.

Many proposed task scheduling methods focus on sequential tasks that are
assigned to exactly one processor of a compute node. Large applications that are
based on parallel programming models may be decomposed into a set of parallel
tasks. The term parallel task describes a task that can be executed on a single
compute node using an arbitrary number of processor cores. Since the tasks
are independent from each other, a flexible execution order and a concurrent
execution on one compute node are possible. The parallel execution time of each
parallel task depends on the number of cores utilized. Thus, for the assignment
of parallel tasks to heterogeneous platforms, the particular compute node and
the number of processor cores to be used on this node have to be determined for
each task. The resulting scheduling problem becomes increasingly complex due
to the increasing number of options for placing tasks. Consequently dedicated
scheduling methods are required.

Since task scheduling is a NP-complete problem, many of the proposed
scheduling methods are based on heuristics[1, 2, 4, 12, 18]. Heuristic scheduling
methods may find solutions that are acceptable for a specific use case but finding
an optimal solution is not guaranteed. In certain scenarios the optimal solution
of a scheduling problem is needed, e.g. for evaluating the quality of heuristic
scheduling methods. In the worst case, a search of the entire solution space is
required to find such an optimal solution. For the proposed scheduling problem,
the search space contains all possible assignments of tasks to compute nodes.
Additionally, for each node, all possible combinations for assigning tasks to a
number of processor cores have to be considered. Since the computation time
required to find an optimal solution can be extremely long, informed search-
based algorithms which prune the search space are advantageous. It has been
shown that informed search algorithms, such as the A* search algorithm [8],
find an optimal solution if an admissible and consistent cost function is used [5].

2



In this article, we propose a new task scheduling method HP* for assigning
parallel tasks to heterogeneous platforms which is based on the A* search algo-
rithm. The goal of HP* is to find an assignment that provides a total execution
time that is as low as possible. Furthermore, a cost function is proposed that is
able to reduce the solution space searched by HP*. Experiments with programs
from the SPLASH-3 benchmark suite [14] used as parallel tasks are performed
on a heterogeneous compute cluster and show the competitive behavior of HP*.

The rest of the article is organized as follows: Section 2 defines a scheduling
problem for parallel tasks and describes the modeling of the task execution
times. Section 3 proposes a the new search-based scheduling algorithm HP*
for parallel tasks and the cost function used. Section 4 presents experimental
results. Section 5 discusses related work and Section 6 concludes the article.

2 Scheduling of Parallel Tasks on Heterogeneous
Platforms

In the following, the considered scheduling problem for the execution of parallel
tasks on heterogeneous platforms is described. Furthermore, a cost model for
parallel tasks with unknown program structure is presented.

2.1 Scheduling Problem

The scheduling problem considered in this article comprises of nT parallel tasks
Ti, i = 1, . . . , nT that are independent from each other. A parallel task can be
executed on a single compute node utilizing an arbitrary number of processor
cores. The number of cores used by each task is fixed during the task execution.
The tasks are non-preemptive, i.e. their execution can not be interrupted. For
each task Ti, i ∈ {1, . . . , nT }, its parallel execution time using p cores of compute
node Nj , j ∈ {1, . . . , nN} is denoted by ti,j(p).

The considered heterogeneous platform consists of nN multicore compute
nodes N1, . . . , NnN

. The heterogeneity of the platform results from the different
architectures of each node. Thus, each compute node Nj , j ∈ {1, . . . , nN}
might have a different computational speed and a different number of processor
cores pj . It is also stated that each processor core can execute only one task at
a time. Thus, each parallel task might be executed on 1 to pj cores of a node
Nj , j ∈ {1, . . . , nN}. However, several tasks can be executed on a node at the
same time depending on the number of cores utilized on a compute node.

A solution for the scheduling problem described above is an assignment of the
tasks Ti, i = 1, . . . , nT to the compute nodes Nj , j = 1, . . . , nN . For each task
Ti, i ∈ {1, . . . , nT }, the resulting schedule S provides the following information:

• the compute node and the number of cores to be utilized,

• the calculated start time si and finish time ei.

3



The total execution time T (S) of a schedule S is the difference between the ear-
liest start time and latest finish time of all tasks. We assume that the execution
of the first task starts at time 0, thus, the total execution time is identical to
the latest finish time of all tasks. This can be expressed as T (S) = max

i=1,...,nT

ei.

The goal is to determine a schedule S such that the total execution time T (S)
is minimized.

2.2 Cost Model for Parallel Tasks

The decisions made by scheduling methods are usually based on predictions
of the execution times of single tasks. These predictions can be completely
determined by benchmark measurements or can be calculated using a specific
cost model. Since the program structures of the parallel tasks are unknown,
existing cost models for parallel programming, such as PRAM[7], BSP[16], or
LogP[3], can not be used for the considered scheduling problem. Thus, we
use the following runtime formula to model the execution time ti,j of each task
Ti, i = 1, . . . , nT on a compute node Nj , j = 1, . . . , nN depending on the number
of utilized processor cores p:

ti,j(p) = fj · (ai/p+ bi + ci · log p) (1)

The parameter fj denotes the performance factor of node Nj that describes the
computational speed of the compute node Nj . It is defined as the ratio between
the sequential execution time of a task on a reference node Nr and the compute
node Nj . The remaining part of Eq. (1) represents the execution time of task
Ti on the reference node Nr. The structure of this part was chosen to cover the
runtime behavior of typical parallel tasks. It consists of a parallel computation
time ai that decreases linearly with the number of cores p, a constant sequential
computation time bi and a parallelization overhead ci that increases logarithmi-
cally with the number of cores p (e.g. for synchronization or communication).
To determine the parameters ai , bi and ci of a task Ti, first, the execution times
are measured on the reference node with different numbers of cores. Then the
concrete values of the parameters are calculated based on a least squares fit of
these execution times. Table 1 summarizes the notations used to describe the
scheduling problem.

3 Search-based Scheduling Algorithm

In this section, we propose a new task scheduling method HP* for assigning
parallel tasks to heterogeneous platforms, which is based on the A* search al-
gorithm. First, a short description of the A* search algorithm is given.

3.1 The A* Search Algorithm

The A* search algorithm is commonly used to find the shortest path in a directed
graph with positive edge weights. The goal of the algorithm is to find the

4



Table 1: Notation of the scheduling problem
Notation Meaning
nT Number of parallel tasks
T1, . . . TnT

Independent shared memory tasks
nN Number of compute nodes in the heterogeneous cluster
N1, . . . NnN

Compute nodes of the cluster
pj Number of processor cores of compute node Nj , j = 1, ..nN
fj Performance factor of compute node Nj

ti,j(p) Parallel execution time of task Ti on p cores of node Nj

T (S) Total execution time of schedule S

shortest path in a graph G from a start node s to a nonempty set of goal nodes
T . For its search, the algorithm uses a function f(n) representing the cost of
a path from s to a goal node via node n. The function f(n) consists of two
parts: the actual cost g(n) from s to n and the estimated cost h(n) from n to
a goal node. The cost function f(n) = g(n) + h(n) is called admissible if the
heuristic function h(n) underestimates the exact cost h*(n) for each node n, i.e.
h(n) ≤ h*(n). For any pair of adjacent nodes x and y with edge weight d(x, y),
f(n) is called consistent if the following holds:

h(x) ≤ d(x, y) + h(y) (2)

In [5], it was shown that using an admissible and consistent function f(n) the
A* search algorithm is guaranteed to find an optimal solution.

Algorithm 1 shows the pseudocode of the A* search algorithm presented
in [8]. First, the start node s is marked ‘open‘ and the cost function f(s) is
evaluated. Then, the ‘open‘ node n with the smallest cost f(n) is selected and
marked ‘closed‘. Each unmarked successor u of n is marked ‘open‘ and f(u) is
calculated. Nodes u that are ‘closed‘ are marked ‘open‘ if the current cost f(u)
is lower than the cost when they were marked ‘closed‘. The algorithm continues
selecting the next node n with the smallest cost f(n) (line 2) until a goal node
is reached.

3.2 Scheduling Parallel Tasks with HP*

For the scheduling of parallel tasks onto heterogeneous platforms, we propose a
new scheduling method HP* (Heterogeneous Parallel task scheduling
based on A*) based on the A* search algorithm. As in the A* search algo-
rithm, a directed graph with positive edge weights is used as an input for HP*.
Therefore, the considered scheduling problem described in Sect. 2.1 is trans-
formed into such a graph where each node n represents a partial schedule Sn.
The initial node s is an empty schedule, i.e. where no tasks have been scheduled
yet. The successors of a node are created by adding all possible assignments of
a task to the respective schedule. The weight d(n, u) of the edge between a node
n and its successor u is the difference between the total execution times of the

5



Algorithm 1: A* search algorithm.

1 Mark s ’open’ and calculate f(s)
2 Select the open node n with the smallest value f(n)
3 if (n ∈ T ) then Mark n ’closed’ and terminate the algorithm
4 else
5 Mark n ’closed’
6 for (each successor u of n) do
7 Calculate f(u)
8 if (u is not marked ’closed’) then Mark u ’open’
9 else if (the current value of f(u) is lower as when u was ’closed’)

then
10 Mark u ’open’
11 end if

12 end for
13 Proceed with line 2

14 end if

Time f(n) f(n)

CoreCore
1 2 3 4 5 6 1 2 3 4 5 6

Time

g(n)

h(n)

g(n){
{{

Figure 1: Illustration of the calculation of the cost function f(n) with scheduled
tasks (gray) and remaining workload (blue) that is lower (left) or greater (right)
than the computational capacity.

corresponding schedules Sn and Su, i.e. d(n, u) = T (Su) − T (Sn). Each com-
plete schedule is a goal node in terms of the A* search algorithm. A schedule
is called complete if all tasks are assigned to compute nodes.

According to the A* search algorithm the cost function f(n) = g(n) + h(n)
consists of two parts:

• g(n) which is the total execution time T (Sn) of the schedule Sn corre-
sponding to node n,

• h(n) which is a heuristic for the total execution time of the remaining
tasks.

For the calculation of the function h(n) it is assumed that the remaining tasks
can be distributed ’optimally’ to all cores. It is also assumed that in a node n
the tasks Tx, ..., TnT

|x ∈ {1, ..., nT } have not been scheduled yet. The remaining

6



sequential workload Ws is then calculated as

Ws =

nT∑
i=x

ti,r(1) (3)

using Eq. (1) considering the reference node Nr. The computational capacity
available on all cores of the compute nodes regarding to a schedule Sn is defined
as

K(Sn) =

nN∑
j=1

pj∑
k=1

(T (Sn)− max
Ti∈Cj,k

ei). (4)

For a compute node Nj , j = 1, . . . , nN , the set Cj,k denotes all tasks that have
been assigned to core k of this node. For each node n, the function h(n) can be
computed as follows:

h(n) =

(Ws −K(Sn))/
nN∑
j=1

(pj · fj), if Ws > K(Sn)

0, otherwise

(5)

If the remaining workload is bigger than the available computational capacity,
then h(n) is set to the difference divided by the total compute power, i.e. the
sum of pj · fj over all nodes Nj , j = 1, . . . , nN . Otherwise, there is enough
computational capacity available for the remaining workload which leads to
h(n) = 0. Figure 1 shows an illustration of the calculation of the proposed
cost function f(n) = g(n) + h(n) with tasks scheduled already (gray) and the
remaining workload (blue). In this example, the remaining workload is either
lower (left) or greater (right) than the computational capacity.

In Algorithm 2 the pseudocode of the HP* method is shown. HP* maintains
two lists, Lopen and Lclosed. Lopen contains all nodes that have been created
but not visited yet. The list Lclosed is used to avoid that nodes are revisited.
At the beginning, both lists are empty and the initial node sinit represents an
empty schedule. f(sinit) is calculated and the node is added to Lopen. In each
step of the main loop (lines 4–19), the node scur with the smallest value f(scur)
is selected and removed from Lopen. If scur represents a complete schedule, the
solution is found and the algorithm terminates. If scur is already part of Lclosed,
scur is skipped and the algorithm continues with the next node. Otherwise, scur
is added to Lclosed and a task T is selected that has not been scheduled in scur
yet. For each possible assignment of task T , a new node s is created. This is
done by an iteration over all compute nodes Nj , j = 1, . . . , nN and all numbers
of cores p from 1 to pj . In each step of this iteration, all possible assignments
of task T to p cores of node Nj are generated. Each assignment is added to the
schedule used in scur and the resulting schedule is represented by a new node
s. Then value f(s) of this new node s is calculated and s is added to Lopen.

7



Algorithm 2: Pseudocode of the HP* method.

1 Let Lopen and Lclosed be empty lists
2 Let sinit be a node with an empty schedule
3 Add sinit to Lopen and calculate f(sinit)
4 while (Lopen is not empty) do
5 Let scur be the node in Lopen with the smallest value f(scur)
6 Remove scur from Lopen

7 if (scur is a complete schedule) then Terminate the algorithm
8 if (scur /∈ Lclosed) then
9 Select an unscheduled task T

10 Add scur to Lclosed

11 for (j = 1, . . . , nN and p = 1, . . . , pj) do
12 for (each assignment of task T to p cores of compute node Nj) do
13 Create a new node s as a copy of scur
14 Add the assignment to s and calculate f(s)
15 Add s to Lopen

16 end for

17 end for

18 end if

19 end while

4 Experimental Results with Parallel Tasks on
a Heterogeneous Compute Cluster

In the following, we present experimental results of the scheduling method for
the execution of parallel tasks on a heterogeneous compute cluster.

4.1 Experimental Setup

The heterogeneous compute cluster used consists of 3 nodes with a total of 16
processor cores. Table 2 lists the properties of these compute nodes. The com-
pute node sb1 is used as reference node for the determination of the parameters
described in Sect. 2.2. The scheduling method described in Sect. 3.2 is imple-
mented in C++ using the gcc compiler with optimization level 2. Additionally,
we have implemented three existing heuristic scheduling methods which are
suitable for the scheduling of parallel tasks on heterogeneous platforms:

HCPA: The Heterogeneous Critical Path and Allocation method
[11] transforms a heterogeneous compute cluster with individual computa-
tional speeds of the processors into a ”virtual” homogeneous cluster with
equal speed. Then, an existing method for homogeneous compute clusters
(i.e., CPA [13]) is used for the scheduling.

∆-CTS: The ∆-Critical Task Set method [17] is an extension of an existing

8



Table 2: List of nodes of the utilized heterogeneous compute cluster.

Nodes Processors number of cores total RAM GHz

skylake1 Intel i7-6700 4 16 GB 3.40
hw1 Intel i7-4770K 4 16 GB 3.50
sb1 Intel Xeon E5-2650 8 32 GB 2.00

scheduling method for sequential tasks on heterogeneous compute clusters
(i.e., HEFT [19]) to parallel tasks. In each step, the method selects a set of
tasks with similar sequential execution time. For each of these particular
tasks, the compute node and number of cores are determined separately
such that the earliest finish time of the task is minimized. The maximum
number of cores to be used by each task depends on the number of selected
tasks.

WLS: The Water-Level-Search method [6] combines list scheduling with
a search based approach. The method uses a limit for the predicted total
execution time that must not be exceeded by the finish time of any task.
First, a list scheduling approach is applied several times while the limit
is increased until all tasks are scheduled. All computed finish times of all
tasks are collected in a set of limits. Then a binary search on this list is
performed to find the smallest limit where all tasks can be scheduled.

A separate front-end node of the compute cluster is responsible for the
scheduling and for starting the task execution using SSH connections to the
compute nodes. The tasks are executed according to the determined schedule
and the total execution time is measured. The measurements are performed five
times and the average result is shown.

As parallel tasks two application tasks and two kernel tasks from the SPLASH-
3 benchmark suite [14] are used. Unless otherwise stated, the default parame-
ters or the provided ”parsec-simlarge” parameter sets are used for the different
benchmark tasks. The following application and kernel tasks were selected:

• BARNES (application): Simulation of a particle system using the
Barnes-Hut algorithm. The number of particles is set to 218.

• FMM (application): Simulation of a particle system using the Fast
Multipole Method. The number of particles is set to 219.

• CHOLESKY (kernel): Cholesky factorization of a sparse matrix. The
input matrix ”tk29.O” of size 13 992× 13 992 is used.

• LU (kernel): LU factorization of a dense matrix. The size of the input
matrix is set to 4096× 4096.

9



4.2 Performance Results with Benchmark Tasks

In the following, the search-based scheduling method (HP*) proposed in Sect.
3.2 and the scheduling methods (HCPA, ∆-CTS, WLS) described in the pre-
vious subsection are investigated in several measurements. These methods are
used to determine schedules for the execution of the SPLASH-3 benchmark
tasks on a heterogeneous cluster. The heterogeneous cluster used for the follow-
ing measurements consists of all compute nodes listed in Table 2.

Fig. 2 (top) shows the measured total execution times of the BARNES
application tasks (left) and FMM application tasks (right) of the SPLASH-3
benchmark depending on the number of tasks. For both types of application
tasks the measured times using the HP* method are lower or equal than the
results of the three heuristic scheduling methods (HCPA, ∆-CTS, WLS). The
results of WLS and HP* show a more steady increase compared to HCPA and
∆-CTS. Especially for ∆-CTS, a strong increase of the execution times for 7
and 13 tasks can be observed. This behavior might be caused by the heuristics
used by ∆-CTS. Using HP* leads to slightly lower or equal measured execution
times compared to WLS, except for 7 and 8 tasks where HP* achieves up to
23% lower execution times.

Fig. 2 (bottom) shows the measured total execution times of CHOLESKY
kernel tasks (left) and LU kernel tasks (right) depending on the number of tasks
using all compute nodes of Table 2. For the CHOLESKY tasks, the execution
times using HCPA are up to 87% higher than the best results. A reason for these
significant differences might be that HCPA favors a parallel task execution that
uses many cores for each task. However, the execution times of the CHOLESKY
tasks are too small to achieve a proper reduction of the parallel execution time
for increasing numbers of cores. The other methods achieved very similar results,
except for task numbers between 3 and 7 where ∆-CTS leads to execution times
that are up to 42% higher. For the LU tasks, the differences between the results
of the methods used are smaller. The execution times using HCPA and ∆-CTS
are slightly higher than for WLS and HP* with large increases for 7 and 13
tasks. As for the application tasks, the execution times for 7 and 8 tasks are
up to 11% lower using HP* compared to WLS. All in all, HP* leads to lower
or equal execution times with a more steady increase compared to the other
methods.

5 Related work

Search-based approaches have been applied to many task scheduling problems.
A comparison of search-based and heuristic approaches for scheduling indepen-
dent tasks onto heterogeneous systems can be found in [2]. An experimental
comparison of several scheduling algorithms including A*, genetic algorithms,
simulated annealing, tabu search as well as popular list scheduling heuristics is
given in [9]. The work considers the problem of mapping sequential tasks with
dependencies onto a homogeneous cluster. A few algorithms for solving the task

10



2

4

6

8

10

12

14

1 2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

18

20

1 2 4 6 8 10 12 14 16

M
ea

su
re

d
ru

n
ti

m
e

[s
ec

o
n
d
s]

Number of tasks

Execution time of BARNES tasks

HP*
WLS
∆-CTS
HCPA

M
ea

su
re

d
ru

n
ti

m
e

[s
ec

o
n
d
s]

Number of tasks

Execution time of FMM tasks

HP*
WLS
∆-CTS
HCPA

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

1 2 4 6 8 10 12 14 16

M
ea

su
re

d
ru

n
ti

m
e

[s
ec

o
n
d
s]

Number of tasks

Execution time of CHOLESKY tasks

HP*
WLS
∆-CTS
HCPA

M
ea

su
re

d
ru

n
ti

m
e

[s
ec

o
n
d
s]

Number of tasks

Execution time of LU tasks

HP*
WLS
∆-CTS
HCPA

Figure 2: Top: Measured total execution times of BARNES application tasks
(left) and FMM application tasks (right) depending on the number of tasks
using all compute nodes of Table 2. Bottom: Measured total execution times of
CHOLESKY kernel tasks (left) and LU kernel tasks (right) depending on the
number of tasks using all compute nodes of Table 2.

scheduling problem based on the A* search algorithm have been reported in the
literature. Kwok and Ahmad [10] proposed a scheduling algorithm for the as-
signment of sequential tasks to homogeneous platforms based on the A* search
algorithm. A number of pruning techniques to reduce the search space as well as
a parallelization of the algorithm are presented. Sinnen [15] proposed a schedul-
ing algorithm based on the A* search algorithm using an improved cost function
along with several pruning techniques to reduce the search space. In contrast
to these works, we consider the scheduling of parallel tasks to heterogeneous
platforms.

11



6 Conclusion

In this article, we have proposed a task scheduling method HP* for assigning
parallel tasks to heterogeneous platforms, which is based on the A* search algo-
rithm. In addition, a cost function has been proposed that is able to reduce the
search space of our algorithm. Measurements with benchmark tasks have been
performed and the scheduling results of HP* have been compared to several
existing scheduling methods. Our performance results demonstrate that the
use of HP* can lead to a reduction of the total execution times of the resulting
schedules in comparison with known algorithms.

Acknowledgments

This work was supported by the German Ministry of Science and Education
(BMBF) project ”SeASiTe”, Grant No. 01IH16012A/B and the German Re-
search Foundation (DFG), Federal Cluster of Excellence EXC 1075 ”MERGE”.

References

[1] Arabnejad, H., Barbosa, J.G.: List scheduling algorithm for heterogeneous
systems by an optimistic cost table. IEEE Transactions on Parallel and
Distributed Systems 25(3), 682–694 (March 2014)

[2] Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M.,
Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund,
R.F.: A comparison of eleven static heuristics for mapping a class of inde-
pendent tasks onto heterogeneous distributed computing systems. Journal
of Parallel and Distributed Computing 61(6), 810 – 837 (2001)

[3] Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E.,
Subramonian, R., von Eicken, T.: LogP: Towards a realistic model of paral-
lel computation. In: Proc. of the 4th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (PPOPP’93). pp. 1–12. ACM (1993)

[4] Daoud, M.I., Kharma, N.: A high performance algorithm for static task
scheduling in heterogeneous distributed computing systems. Journal of Par-
allel and Distributed Computing 68(4), 399 – 409 (2008)

[5] Dechter, R., Pearl, J.: Generalized best-first search strategies and the op-
timality of a*. J. ACM 32(3), 505–536 (Jul 1985)

[6] Dietze, R., Hofmann, M., Rünger, G.: Water-level scheduling for parallel
tasks in compute-intensive application components. J. of Supercomputing
pp. 1–22 (2016)

[7] Fortune, S., Wyllie, J.: Parallelism in random access machines. In: Proc.
of the 10th Annual ACM Symp. on Theory of Computing. pp. 114–118.
ACM (1978)

12



[8] Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics 4(2), 100–107 (July 1968)

[9] Jin, S., Schiavone, G., Turgut, D.: A performance study of multiprocessor
task scheduling algorithms. J. Supercomput. 43(1), 77–97 (Jan 2008)

[10] Kwok, Y.K., Ahmad, I.: On multiprocessor task scheduling using efficient
state space search approaches. J. Parallel Distrib. Comput. 65(12), 1515–
1532 (Dec 2005)

[11] N’Takpé, T., Suter, F.: Critical path and area based scheduling of parallel
task graphs on heterogeneous platforms. In: Proceedings of the 12th Inter-
national Conference on Parallel and Distributed Systems (ICPADS 2006).
vol. 1, pp. 3–10. IEEE (2006)

[12] Radulescu, A., van Gemund, A.J.C.: Low-cost task scheduling for
distributed-memory machines. IEEE Transactions on Parallel and Dis-
tributed Systems 13(6), 648–658 (June 2002)

[13] Radulescu, A., Van Gemund, A.: A low-cost approach towards mixed task
and data parallel scheduling. In: Proceedings of the International Confer-
ence on Parallel Processing. pp. 69–76. IEEE (2001)

[14] Sakalis, C., Leonardsson, C., Kaxiras, S., Ros, A.: Splash-3: A properly
synchronized benchmark suite for contemporary research. In: Proceedings
of the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS 2016). pp. 101–111. IEEE (2016)

[15] Sinnen, O.: Reducing the solution space of optimal task scheduling. Com-
puters & Operations Research 43, 201 – 214 (2014)

[16] Skillicorn, D.B., Hill, J., McColl, W.: Questions and answers about bsp.
Scientific Programming 6(3), 249–274 (1997)

[17] Suter, F.: Scheduling δ-critical tasks in mixed-parallel applications on a na-
tional grid. In: Proc. of the 8th IEEE/ACM Int. Conf. on Grid Computing.
pp. 2–9. IEEE (2007)

[18] Topcuoglu, H., and, S.H.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Transactions on Parallel
and Distributed Systems 13(3), 260–274 (March 2002)

[19] Topcuoglu, H., Hariri, S., Wu, M.Y.: Task scheduling algorithms for hetero-
geneous processors. In: Proc. of the 8th Heterogeneous Computing Work-
shop (HCW’99). pp. 3–14. IEEE (1999)

13


	Introduction
	Scheduling of Parallel Tasks on Heterogeneous Platforms
	Scheduling Problem
	Cost Model for Parallel Tasks

	Search-based Scheduling Algorithm
	The A* Search Algorithm
	Scheduling Parallel Tasks with HP*

	Experimental Results with Parallel Tasks on a Heterogeneous Compute Cluster
	Experimental Setup
	Performance Results with Benchmark Tasks

	Related work
	Conclusion

