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Abstract

Parallel programming models based on a mixture of task
and data parallelism have shown to be successful in ad-
dressing the increasing communication overhead of dis-
tributed memory platforms with a large number of proces-
sors. In these models, an application is decomposed into a
set of parallel tasks that can run on an arbitrary number of
processors. The communication between different tasks is
allowed only at the start and the end of a task, thus limit-
ing the possible communication patterns and the potential
granularity of the tasks.

In this paper, we consider an extended parallel program-
ming model that additionally supports communication be-
tween running parallel tasks. We describe a specification
language for applications in the new programming model
and propose a transformation framework for a step-wise
derivation of an executable message passing program from
the specification language. The advantages of the approach
are demonstrated for solution methods for ordinary differ-
ential equations.

1 Introduction

The scalability of data parallel scientific applications is
often limited by the communication overhead that increases
with the number of executing processors. A possible ap-
proach to overcome this limitation is to use a programming
model based on a combination of task and data parallelism
[3]. In these models, a parallel application is subdivided
into a set of parallel tasks that are often called multiproces-
sor tasks, malleable tasks or moldable tasks; for the pur-
pose of this paper we use the short term M-tasks. Each
M-task processes a different part of the application and can
be executed by an arbitrary number of processors. The in-
ternal communication overhead of an M-task can therefore
be kept low by running on a subset of the available pro-
cessors. To capture the computing power of all processors,
multiple M-tasks can be executed in parallel on disjoint pro-

cessor groups. M-tasks have input and output parameters;
an M-task can produce output parameters that serve as an
input of other M-tasks. Thus, dependencies between M-
tasks arise that limit the possible execution orders of the
tasks. These dependencies are represented by a coordina-
tion structure that is usually given in the form of a directed
acyclic graph (dag) or a series-parallel graph (SP-graph).
An example is the TwoL (two level) model[14].

The communication between M-tasks is restricted to the
beginning or the end of their execution, thus limiting the
possible granularity of the M-tasks. For example, in time
stepping methods that require a data exchange at the end
of each time step, M-tasks are limited to execute a single
time step. As a consequence, each time step involves the
overhead of starting the appropriate M-tasks and supplying
their input parameters in the correct data distribution. A
better way to structure such an application is to use tasks
that keep running over all time steps and use orthogonal
communication to exchange data in each step.

In this paper, we introduce the model of communicat-
ing M-tasks (CM-tasks) that comes as a natural extension
to existing M-task programming models. The CM-task
model additionally incorporates communication between
running tasks and is therefore able to represent more com-
plex communication patterns such as orthogonal commu-
nication. This also leads to a more complex coordination
structure, the CM-task graph, that describes possible exe-
cution orders of the included CM-tasks. In general, many
different execution schemes, i.e. schedules, are possible.
Which schedule achieves the best results depends on the
communication and computation performance of the target
platform and on the structure of the application itself.

To support the development of parallel applications in
the CM-task programming model, we propose a specifica-
tion language and a transformation framework. The speci-
fication language allows the definition of hierarchical CM-
task applications. The transformation framework generates
an executable coordination program based on the MPI mes-
sage passing library by employing a number of intermediate
transformation steps. These steps include an analysis of the



dataflow, scheduling and load balancing methods, inserting
communication operations and generating the output. The
framework supports a static compilation approach for ho-
mogeneous target platforms and a semi-dynamic approach
that enables the generated program to adapt to the target
platform.

This paper is organized as follows. Section 2 explains
the programming model of CM-tasks, Section 3 introduces
the specification language for CM-task applications and
presents an example. The transformation framework is de-
scribed in detail in Section 4. Section 5 presents runtime re-
sults for the example application. Related work is discussed
in Section 6 and Section 7 concludes the paper.

2 Programming model

In the CM-task programming model, a parallel applica-
tion is represented by a set of communicating M-tasks (CM-
tasks), which exhibit an internal computational structure
that allows an execution on an arbitrary number of proces-
sors. CM-tasks can either be basic modules that are treated
as black-box codes or composed modules that can be de-
composed into another set of CM-tasks. Hence, a hierarchi-
cal task structure arises.

The CM-task model distinguishes two different types of
communication that are expressed by P-relations and C-
relations:
1) P-relation

A precedence relation (P-relation) between CM-tasks A
and B denotes that A produces output data required as
an input for B. A data re-distribution might be neces-
sary, when the executing processor groups of A and B
are different or A produces the data in a different dis-
tribution than expected by B. Therefore, A must have
finished and the data re-distribution needs to be carried
out before B can start its execution. The P-relation is
not symmetric and is represented by a directed edge.

2) C-relation
A communication relation (C-relation) between CM-
tasks A and B results from communication between A
and B during their execution. Therefore, to guarantee
a correct execution A and B have to run in parallel on
disjoint processor groups. The C-relation is symmetric
and is represented by a bidirectional edge.
These relations can be captured by a CM-task graph

G = (V, E) with the set of nodes V corresponding to CM-
tasks and the set of edges E, E = EP ∪ EC , where EP

contains the directed edges introduced by P-relations and
EC contains bidirectional edges resulting from C-relations.
Figure 1 shows an illustration of a CM-task graph. A CM-
task application can be represented by a set of CM-task-
graphs each corresponding to a composed module. The
graph GC = (V, EC) contains only the C-relations and

GP = (V, EP ) contains only the P-relations. If there is
a path from a node u ∈ V to a node v ∈ V in GP then
u and v have to executed one after another. Therefore, GP

has to be acyclic to allow a feasible execution order for the
tasks. If there is a path from u to v in GC then u and v
have to be executed concurrently on disjoint subsets of the
processors. As a consequence, there may not be both a path
in GP and a path in GC between a pair of nodes u and v.
If there is neither a path in GP nor in GC between u and
v then both, a sequential and a concurrent execution of the
corresponding CM-tasks are valid.
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Figure 1. Exam-
ple for a CM-task
graph with P-
relations and
C-relations.

A CM-task schedule S
assigns each CM-task c ∈ V
a processor group and a
starting time. A feasible
schedule has to follow all
observations made above
and furthermore has to guar-
antee that each processor
executes one CM-task at
most at any given point
in time and that all input
data are available before a
CM-task starts its execution,
i.e. all predecessor tasks
in GP have finished their
execution and all necessary
data re-distribution opera-
tions have been carried out.

3 Specification Language

The specification language describes the communication
structure of a hierarchical CM-task application and consists
of
• definitions of required data types and associated data

distribution types;
• interface definitions of external CM-tasks (as basic

modules) along with an estimation of the execution
time;

• descriptions of internal CM-tasks (as composed mod-
ules);

• a main module as a starting point for the execution of
the CM-task program.
Data types can be multi-dimensional arrays built up from

basic types (integer, double). These data types are adequate
for most regular scientific applications. Each data type is
associated with a list of possible data distribution types de-
scribing how the elements of the data types are distributed
across the available processors. Possible distribution types
range from a replicated storage on all processors to block-
cyclic distributions on arbitrary multi-dimensional proces-



Listing 1. Specification for one time-step of
an IRK method.

c o n s t s=3;

cmmain irk time step (x,h: d o u b l e :inout ,
it vector , old it vector :vector :inout:replic )

{
% l o c a l v a r i a b l e s
var vecs , oldvecs : vector [s];

var vecxchg : vector ;

p a r f o r (i = 0:s−1) {
stage vector (i, s, m, x, h, it vector ,

vecs , oldvecs )[ vecxchg ];

}

compute approx (h, it vector , vecs );

step control (x, h, it vector , old it vector ,

oldvecs , vecs);

}

sor grids.
The interface definition of a basic module includes two

parameter lists; an input/output list for parameters that can
be used to communicate along the P-relations; and a com-
munication list for parameters to communicate along the
C-relations. For each parameter, a data type and data dis-
tribution type is provided; the input/output list additionally
includes an access type (in, out, inout). The estimation of
the execution time is given as a formula depending on the
number of executing processors p.

The description of composed modules includes a pa-
rameter list for input/output parameters similar to the ba-
sic modules, a list of local variables to store intermediate
results and a structural description of the internal computa-
tions similar to imperative programming languages. The
structural description consists of activations of CM-tasks
(basic or composed modules) and constructs for the condi-
tional execution of CM-tasks (if-statement), the repeated ex-
ecution with dependencies between loop iterations (while-
loop, for-loop) and without dependencies between loop iter-
ations (parfor-loop). These constructs may be nested within
each other. The P-relations and C-relations forming a CM-
task graph are defined implicitly using the parameter lists of
the activated CM-tasks.

Example

Examples for CM-task applications are solution methods
for ordinary differential equations (ODEs). In particular,
we consider iterated Runge-Kutta (IRK) methods which are
explicit solution methods for initial value problems of non-
stiff ODEs that offer potential for a parallel execution[17,
13]. In each time step, s stage vectors are computed by
using m fixed point iteration steps. The values of s and m

Figure 2. Task graph for IRK with s = 3 stage vectors
and m = 4 fixed point iteration steps in the CM-task
programming model. Each orthogonal communication
is illustrated by a separate edge.

are determined by the employed RK method and known at
compile time. At the end of each time step, the computed
stage vectors are combined to form the new approximation
vector and the step size for the next time step is computed.

A parallel execution of an IRK method can make use of
s processor groups each computing a single stage vector us-
ing a block-wise distribution of the elements. The compu-
tations of the stage vectors are not completely independent
from each other; the execution of a fixed point iteration de-
pends on all s stage vectors. Therefore, a data exchange be-
tween all participating processor groups is required before
each fixed point iteration step. This data exchange can be
realized by orthogonal communication meaning that only
processors with the same rank in their group communicate
with each other. This requires all s groups to contain the
same number of processors.

Using the CM-task programming model the computa-
tion of one stage vector can be implemented as a CM-task
stage vector and the orthogonal communication can
be modelled as C-relations. Figure 2 shows an illustration
of the emerging task graph for one time step where each
bidirectional edge represents an orthogonal communication
step. The modelling of orthogonal communication is not
possible using previous programming models based on M-
tasks; the computation of the stage vectors has to be split
into m tasks each computing one fixed point iteration. Fig-
ure 3 shows a possible task graph in such a programming
model.

The resulting CM-task specification program for one
time step is shown in Listing 1. The input of the time
step is the current time x, and the current step size h. The
current and previous approximation vectors (it vector
and old it vector) supply input data from the previous
time step are updated in the current time step and are pro-



Figure 3. Task graph for IRK with s = 3 stage vectors
and m = 4 fixed point iteration steps in the M-task
programming model.

vided for the next time step, and are therefore declared as
inout parameters. The data type vector and the data
distribution type replic representing a replicated storage
on all available processors have been declared previously.
Local variables are required to store the computed stage
vectors (vecs, oldvecs) and to perform orthogonal com-
munication (vecxchg). The parallel loop (parfor) creates
s independent instances of the CM-task stage vector.
The CM-task compute approx determines the new ap-
proximation vector based on the computed stage vectors
and the CM-task step control calculates the new step
size based on the current and previous approximation vec-
tors and the values of the stage vectors computed in the last
two fixed point iteration steps.

4 Transformation Framework

To support the development of CM-task programs, a
compiler framework is provided that transforms CM-task
programs given in the non-executable platform-independent
specification language from Section 3 into executable par-
allel MPI programs. The framework integrates scheduling
and load balancing methods, data distribution methods, as
well as a generation process for the final MPI program. For
the generation of parallel programs two approaches are sup-
ported. The static approach generates a parallel program at
compile-time with a fixed schedule and all required data re-
distribution operations. It is especially suited for dedicated
homogeneous platforms and requires detailed knowledge
about the target platform (number of processors, commu-
nication and computational performance) and about a spe-

Figure 4. Overview of the transformation framework.

cific problem instance, e.g. the input data size. The semi-
dynamic approach aims at an execution on a non-dedicated
heterogeneous platform. A parallel program with an initial
schedule is generated and a load balancing library adapts
the schedule to the dynamic execution progress. A data re-
distribution library ensures a correct data placement at run-
time.

Figure 4 gives an overview of the framework. Each of the
transformation steps generates new information and outputs
it as an augmented specification program. Support tools are
provided that visualize the specification program and help
the programmer to change the specification, e.g. to modify
decisions of the framework. Each transformation step in-
cludes a parser that builds up the required symbol tables
and internal structures from the specification. Currently,
the transformation framework produces coordination code
in the C programming language but can be extended easily
to support other target languages.

Dataflow Analyzer The first transformation step ana-
lyzes the dependencies between the statements of a com-
posed CM-task arising from using the same variables and
inserts corresponding P-relations and C-relations into the
specification. First, a syntax tree describing the hierarchical
structure is created for each composed CM-task. The root
node of the tree corresponds to the composed module itself
and the leaf nodes (call nodes) are activations of other CM-
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Figure 5. Syntax tree for the IRK method.

tasks. The inner nodes correspond to control constructs of
the specification language, i.e. for, while, parfor and if.
The subtree below a parfor node is replicated according to
the number of loop iterations. The if node comprises two
distinct subtrees for the if-branch and for the else-branch.
The children of a node are ordered according to the ordering
in the specification program, i.e. the left sibling of a syntax
tree node refers to the preceding statement in the specifi-
cation program. This order plays a role when determining
the data dependencies. Figure 5 shows a syntax tree for the
IRK-method using s = 3 stage vectors.

Secondly, the P-relations are determined. In the syntax
tree, P-relations can connect two sibling nodes or a parent-
child pair. The insertion of the P-relations is based on the
input and output parameters of the child nodes of a subtree.
For each inner node representing a subtree, the output pa-
rameter set consists of all variables used by any child node
as output parameter. The input parameter set contains all
variables that are used as input parameter by any child node
within the corresponding subtree for which there is no pre-
ceding write access to the variable within the same subtree.

Based on the input and output parameters, the P-relations
are inserted by a top-down run over the syntax tree, captur-
ing the dependencies that occur because different CM-tasks
use the same variable as input or output parameter. If such a
dependence occurs, the corresponding CM-tasks have to be
executed in a specific order to ensure the correct computa-
tion. If a CM-task A writes a variable and another CM-task
B later reads the same variable, it may be necessary to per-
form a re-distribution operation for that variable between
the execution of A and B. Such a re-distribution is nec-
essary if A and B use a different distribution type for the
common variable or if different processor groups are used
for the execution of A and B. The re-distribution operations
are inserted by the static data manager.

Finally, the C-relations are computed by another top-
down run on the syntax tree. C-relations connect two or
more sibling nodes that are all call nodes which access a
common communication parameter (defined in a second pa-
rameter list in square brackets). The C-relations are anno-
tated at the appropriate inner nodes. Each C-relation is a list
of the connected nodes.
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Figure 6. Example for the insertion of data
re-distribution operations for a synthetic CM-task
graph(left) with a valid schedule(middle) resulting in
an augmented schedule(right).

Scheduler The scheduling itself is carried out on CM-
task graphs which are built up from the syntax tree and
the P-relations and C-relations. The schedule of a CM-task
graph assigns each node an executing processor group, a
starting time and a finishing time. To determine a schedule,
the C-relations are eliminated from the graph by grouping
all nodes that are connected by a C-relation into clusters
and replacing each cluster with a single node. The result-
ing task graph can be scheduled using M-task scheduling
techniques[5]. The created scheduling information is stored
at the corresponding nodes of the syntax tree.

The scheduling is based on cost information. The costs
for basic CM-tasks are supplied by the user together with
the specification. The costs for composed CM-tasks are
calculated according to the task structure. For the for and
while nodes the costs are computed as the product of exe-
cuted loop iterations and the execution time of the schedule
for the corresponding subtree. The costs for an if node are
the maximum of the execution times of the schedules gen-
erated for the if-branch and for the else-branch. The parfor
node costs are equal to the execution time of the schedule
of the corresponding subtree. Data re-distribution costs for
P-relations are computed by determining the size of trans-
mitted data and using a platform dependent startup time and
byte transfer time that are defined in a separate machine
specification file. This file additionally defines the number
of processors of the target platform.

The Static Data Manager inserts data re-distribution
nodes into the syntax tree of a CM-task application. This
transformation step ensures a dataflow with correct data dis-
tributions for the final CM-task program. In general, a sin-
gle re-distribution operation may haveN disjoint source pro-
cessor groups and M disjoint target processor group. This is
illustrated for the example CM-task graph in Figure 6(left).
In this example, the CM-task A produces output data for the
independent CM-task B, C, D and E. For the valid sched-
ule shown in Figure 6(middle), two re-distributions oper-
ations are required: one from CM-task A to CM-tasks B
and C and one from CM-tasks B and C to CM-tasks D
and E. The example with data re-distribution operations is
shown in Figure 6(right). This example also demonstrates



that the sources of the data re-distribution operations may
differ from the sources of the P-relations.

In the first step, the static data manager determines the
data distribution types at the inner nodes of the syntax tree
by a bottom up run over the syntax tree. For each input/out-
put parameter, the data distribution type of that child node is
used which is computed first/last according to the schedul-
ing information. For parameters that are in both, the in-
put and the output parameter set, two different distributions
may result.

The second step comprises the computation of the re-
distribution operations for the P-relations. Each inserted
data re-distribution node is annotated with the variable
name, the source and target CM-tasks and a point in time
where the operation should be performed. The target CM-
tasks are equal to the target CM-tasks of the P-relations.
The source CM-tasks and the execution point in time is de-
termined using the scheduling information.

Static Code Generator The final transformation step
compiles the specification program with all previously gen-
erated annotations into an executable coordination program
which uses the MPI message passing library and a user sup-
plied library that contains implementations of the basic CM-
tasks. The coordination program consists of an initialization
function that sets up all required MPI communicators, a co-
ordination function for each composed CM-task and a final-
ization function that disposes the created communicators.

The code for a coordination function is constructed us-
ing the annotated syntax tree and a depth-first approach. For
a given inner node the children are sorted with respect to
their starting time according to the scheduling information;
children with a lower starting time come first and in case of
equal starting times the child with the lower processor num-
bers is considered first. The children are visited according
to this list and depending on the type of the node one of the
following code fragments are inserted:
• When entering the root node, the function header, the

local variable declarations and memory allocation code
is inserted. When leaving the root node, code for freeing
the allocated memory is created. For the main composed
module, additional code to execute the initialization and
finalization function is inserted.

• For if, while and for nodes, the corresponding control
construct in the target programming language is created.

• For parfor nodes, no action is performed because the
expressed parallelism is already included in the schedul-
ing information.

• For call nodes, a function call with the parameters ac-
cording to the specification is generated. This function
call is enclosed in a condition that ensures that it is exe-
cuted by the processors according to the schedule.

• For data re-distribution nodes, either a re-distribution
library function is called or the framework generates a
re-distribution function that is inserted into the coordi-
nation program.

Semi-dynamic Data Manager In the semi-dynamic ap-
proach, the processor group layout is allowed to change
at runtime possibly leading to complex changes of the re-
quired re-distribution operations. Therefore, the framework
decides at compile-time, which variable accesses are per-
formed to the original variable and which accesses are made
to an auxiliary variable that has to be provided through
copying the original variable. Write accesses are always
performed to the original variable ensuring that it always
contains the most recent values. The original variable can
be accessed by one CM-task at most at any given point in
time. Independent CM-tasks that may be executed in paral-
lel always use different auxiliary variables. This approach
ensures that only the re-distribution operations of a single
CM-task A need to be considered if the processor group of
A is changed at runtime.

Additionally, this transformation step marks the posi-
tions for performing the load balancing. These positions are
points in time where all processors are available to perform
a global restructuring of the processor groups and within se-
quential loops to use the executing results of previous loop
iterations to adapt to the execution behavior. The user can
add additional positions or delete positions suggested by the
framework.

Semi-dynamic Code Generator The semi-dynamic code
generator creates a coordination program that uses the MPI
message passing library, a load balancing library and a data
re-distribution library. The coordination program includes a
coordination function for each defined CM-task-graph that
creates the required processor groups and executes the CM-
tasks with the according communicators. The code gener-
ation for a composed CM-task is performed similar to the
static code generator.

The load balancing library is initialized at program start
with the CM-task-graph representing the whole application.
The library may influence the execution of the CM-task pro-
gram at the points in time specified by the previous trans-
formation step. Therefore, calls to the library are inserted
which provide information about the current execution sta-
tus of the application, the current processor groups, the cur-
rent execution order of the CM-tasks and measured run-
times of previous executions of CM-tasks. If the library
detects a suboptimal execution of the application, e.g. load
imbalances, it may output new processor groups and a new
execution order for the CM-tasks.

The data re-distribution library is invoked each time a
CM-task finishes its execution. It determines and carries



out all necessary copy and re-distribution operations for the
current processor group layout.

5 Runtime Results

Benchmark tests were executed to evaluate the advan-
tages of an orthogonal implementation based on CM-tasks
over a task parallel version based on M-tasks and a classical
data parallel computation scheme for the IRK methods used
as an example application in Subsection 3. The presented
runtime results are obtained for ODE systems that result
from a spatial discretization of the 2D Brusselator equation
[7]. The resulting ODE systems are sparse: each compo-
nent of the right-hand side function f of the ODE system
has a fixed evaluation time that is independent of the size
of the ODE system; thus, the evaluation time for the entire
function f increases linearly with the size of the ODE sys-
tem. The presented figures show the execution time of one
time step, obtained by dividing the total execution time by
the number of time steps performed. A typical integration
may consist of tens of thousands of time steps, thus leading
to a large overall execution time.
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Figure 7. Runtimes of the IRK method with s = 5
stage vectors for Brusselator on CHiC with Infiniband
network.

Figure 7 shows the execution times of one time step of
the IRK method on the CHiC cluster. This cluster consists
of 538 nodes each equipped with two Opteron 2218 proces-
sors with a clock rate of 2.6 GHz. The nodes are intercon-
nected by a 10 GBit/s infiniband network and MVAPICH2
was used as an MPI library. As basic RK method, the Lo-
battoIIIC8 method with s = 5 stage vectors and m = 7
fixed point iteration steps was used. The results show that
the orthogonal program version is considerably faster than

both, the data parallel and the standard task parallel version
for a higher number of processors. A data parallel execution
achieves better results only for p = 5 processors, because
the overhead of the communication operations is still small
and the additional re-distribution operations required for a
task parallel execution can be avoided.
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Figure 8. Runtimes of the IRK method with s = 4
stage vectors on IBM Regatta.

The runtimes for a Regatta p690 system are shown in
Figure 8 for the RadauIIA7 method which uses s = 4 stage
vectors and m = 6 fixed point iteration steps. The sys-
tem consists of 41 nodes with 32 IBM Power 4+ processors
clocked at 1.7 GHz each connected by a high performance
switch with a bandwidth of 1400 MB/s. The runtimes for
the standard M-task version are not competitive due to an
expensive two-step communication after each fixed point
iteration step which includes a broadcast within each pro-
cessor group followed by an exchange between all proces-
sor groups. An orthogonal execution is faster compared to a
pure data parallel execution for most test runs even though
the large SMP nodes offer a high communication perfor-
mance. Therefore, these results show that the CM-task pro-
gramming model is also suitable for shared memory plat-
forms.

6 Related Work

The programming model presented in this paper extends
approaches based on mixed task and data parallelism by
capturing additional communication patterns. The bene-
fits of combining task and data parallelism are discussed
in [3] and [2, 16] gives an overview of support systems
and models. Language extensions are often based on the



HPF data parallel language, e.g. BCL[4] and see [6] for an
overview. Spar[15] is a set of language extensions for Java.
The paradigm compiler[9, 12] is a parallelizing compiler for
mixed task and data parallelism with an integrated sched-
uler. A framework that allows the derivation and schedul-
ing of task graphs from sequential programs is presented in
[19]. The Lithium environment[1] includes task and data
parallel skeletons that may be nested within each other. The
ASSIST system[18] supports the hierarchical composition
of parallel and sequential modules as generic graphs. In
contrast to our model a communication between parallel
modules during their execution is not possible.

A lot of research has been invested in the development
of the BSP (bulk synchronous parallelism) model and there
exists a programming library (Oxford BSP library) that al-
lows the formulation of BSP programs in an SPMD style
[8, 11]. NestStep extends the BSP model by supporting
group-oriented parallelism by nesting of supersteps and a
hierarchical processor group concept [10]. NestStep is de-
fined as a set of extensions to existing programming lan-
guages like C or Java and is designed for a distributed ad-
dress space.

7 Conclusions

In this paper, we have presented a new parallel program-
ming model which extends existing programming models
that are based on a combination of task and data parallelism.
Similar to existing models, the new model allows the de-
composition of an application into a set of cooperating par-
allel tasks that can be executed on a flexible number of pro-
cessors. In addition, the extended model supports a new
type of communication that enables the exchange of data
between running tasks and is therefore able to express more
complex communication patterns, e.g. orthogonal commu-
nication.

For the implementation of the programs in the extended
model, we have introduced a specification language that can
be compiled by a transformation framework into an exe-
cutable program. The framework includes multiple trans-
formation steps where the user can observe each step and
adjust the intermediate results. The derived target program
can be either statically compiled for a fixed number of pro-
cessors on a homogeneous target platform or use a load bal-
ancing library to semi-dynamically adapt to a flexible num-
ber of processors or platform heterogeneity.

To demonstrate the benefits of the new programming
model, orthogonal implementations of solvers for ordinary
differential equations were considered. In particular, the
benchmark results obtained for the iterated Runge-Kutta
methods on different target platforms show a significant per-
formance improvement compared to data parallel or pure
task parallel realizations.
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