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Abstract Numerical software for sequential or parallel machines with
memory hierarchies can benefit from locality optimizations which are
usually achieved by program restructuring or program transformations.
The choice of the program version that achieves the best performance is
usually complex as many dependencies have to be taken into account.
Thus program-based locality measures have been introduced to give pro-
grammers a guideline if a performance gain can be expected from a pro-
gram restructuring. The novel contribution of this paper is the extension
of these locality measures to support spatial locality. These extended
measures are applied to two applications from scientific computing and
the obtained prediction is compared to benchmark results.

1 Introduction

Modern computer systems use a deep memory hierarchy including multiple le-
vels of cache. Cache misses on these machines usually result in a waiting time of
multiple clock cycles and can slow down applications considerably. Hence, the
exploitation of the memory hierarchy provides the basis for an efficient execution
of a given application. The number of cache misses is influenced by hardware
specific parameters, e.g., the number of levels, the size and associativity of the
cache, and software dependent parameters like the locality of the memory acces-
ses. A high temporal locality is reached, if accesses to the same memory address
lie closely together. An example is the repeated use of a scalar variable, e.g., to
control the iterations of a loop. A high spatial locality is achieved, if accesses to
neighboring memory locations lie closely together. An example is the consecutive
use of the elements of an array variable.

Extensive research has been made to find program transformations which
preserve the correctness of a program and increase the locality of the memory
accesses. Applications from scientific computing usually spend a large proportion
of the computing time in deeply nested loops. Therefore many transformations
to increase memory locality for loop nests have been proposed. Examples include
loop blocking or loop interchange, see [1] for a good overview. Deciding which
program version achieves the best performance is a complex task and depends
on the program code, the input data and on the target platform. In the general
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case not all this information is available, e.g. when parts of the considered pro-
gram are not available in advance. Examples are solvers for ordinary differential
equations (ODEs) which are usually written as black-box code that can operate
on arbitrary ODE systems described by a function f .

Program-based locality measures, which allow the comparison of memory lo-
cality of different program versions, have been introduced in [2]. These measures
only rely on the program source and do not take hardware dependent properties
into account. Hence, an exact prediction of the cache misses is not possible as
a memory access can result in a cache miss on one platform and a cache hit on
another platform with a bigger cache. Nevertheless, the program-based locality
measures can be used in an optimizing compiler tool or by a programmer to
make a platform independent decision which program version to use or which
program tranformations to apply. It has been shown that these measures can
successfully capture the effects of temporal locality. The contribution of this pa-
per is the extension of these measures with support for spatial locality. We study
the extended cost measures for matrix multiplication and show the importan-
ce of spatial locality. As a more complex example we examine three different
versions of an iterated Runge-Kutta ODE solver.

The rest of the paper is structured as follows. Section 2 introduces the
program-based locality measures and suggests an extension for the support of
spatial locality. Benchmark results for different program versions of a matrix-
matrix-multiplication and a comparison with the predictions by the locality mea-
sures is discussed in section 3. Section 4 discusses related work and Section 5
concludes the paper.

2 Locality Measures Supporting Spatial Locality

The starting point of this work are the program-based locality measures presen-
ted in [2] which try to capture the memory access locality of a scientific applica-
tion in a single value. The resulting value only depends on the program version
and the input data size but is independent from platform specific characteristics.
These measures observe each storage location in isolation and are therefore not
able to uncover changes in spatial locality which plays an important role as we
will show in section 3. This section introduces an extended definition of these
cost measures which combines the effects of temporal and spatial locality.

To capture the effects of changes in spatial locality, accesses to physically
neighboring memory locations have to be considered. Since we only take the
program text as an input, it is not always possible to tell which of the variables
are physically neighboring. The placement of the statically declared variables is
subject to the compiler, which usually allocates neighboring storage locations
to variables that are declared in adjacent positions in the program source. But
most memory accesses are usually made to dynamically allocated memory, whose
physical location is determined by the underlying operating system and cannot
be predicted from the program source. As a consequence, we only consider the
spatial locality of memory accesses which are made to the same data structure.
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The locality measure is defined as a function µ : P × N → R
+ where P is a

set of equivalent program versions, n ∈ N is the input data size, and µ(A, n) is
the locality value for A ∈ P and input data size n. Lower values of this measure
correspond to a better memory access locality, e.g. if µ(A, n) < µ(B, n) for
program version A and B then A is expected to have a better locality behavior
than B for input data size n.

Let Vs be the set of variables of a program version A, where all variables,
scalar or array, are represented by a single element vs ∈ Vs. The total number
of accesses to a variable vs ∈ Vs is denoted as lvs

+ 1 ∈ N. The finite sequence
T = t1, t2, ... of consecutive natural numbers starting with t1 = 0 represents
the time indices of all memory accesses of a given program version. The access
sequence of a given vs ∈ Vs is defined as the subsequence

n0(vs), n1(vs), ..., nlvs
(vs) ⊂ T

of the sequence T . Furthermore, for array variables it is important to know,
which element was referenced by a memory access. This information is stored in
the offset sequence of a variable vs ∈ Vs that is defined as the sequence

o0(vs), o1(vs), ..., olvs
(vs) with oi(vs) ∈ N, 0 ≤ i ≤ lvs

.

For a scalar variable all elements of its offset sequence will be 0. We define the
spatial access distance dsi

(vs) of a variable vs ∈ Vs as

dsi
(vs) =

√

(ni(vs) − ni−1(vs))2 + (oi(vs) − oi−1(vs))2

with 1 ≤ i ≤ lvs
. In case of an array variable, the spatial access distance between

two consecutive accesses to this variable decreases, if either the temporal distance
is reduced or if the offsets of the elements involved lie closer together, i.e. the
spatial locality is increased.

Figure 1 (left) shows an example for the computation of the access distances
as defined for the temporal locality measures. Each element of the array has its
own access sequence and therefore spatial locality between neighboring elements
cannot be detected. In constrast the spatial access distances as defined in this
paper combine temporal and spatial information as shown in Figure 1 (right).
There is only one access sequence and an additional offset sequence for the array
X in the example. The euclidian distance between two consecutive memory
accesses to an array is used to computate the spatial access distances.

Based on the spatial access distances, the average spatial access distance of a
variable vs ∈ Vs is defined as

Ms(vs) :=





lvs
∑

i=1

dsi
(vs)



 /lvs

Following the definition of the temporal locality measures in [2] we define the
following new cost measures which combine temporal and spatial locality:
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Figure 1. Example for the calculation of the access distances di(v) as defined in [2]
(left) and dsi

(v) as defined in section 2 (right).

Arithmetic mean of access distances:

µsAM
(A, n) :=

(
∑

vs∈Vs
Ms(vs) · lvs

)

/
∑

vs∈Vs
lvs

,
Arithmetic mean of average access distances:

µsAA
(A, n) :=

(
∑

vs∈Vs
Ms(vs)

)

/#Vs,
Sum of access distances:

µsSA
(A, n) :=

∑

vs∈Vs

(

∑lvs

i=1 dsi
(vs)

)

,

Square of quadratic mean of access distances:

µsSQ
(A, n) :=

∑

vs∈Vs

(

∑lvs

i=1 dsi
(vs)

2
)

/
∑

vs∈Vs
lvs

,

Logarithmic geometric mean of access distances:

µsLG
(A, n) :=

∑

vs∈Vs

(

∑lvs

i=1 log2 dsi
(vs)

)

.

Note that these definitions of locality measures do not cover spatial locality
that may be exploited between different variables. This is only a disadvantage if
the application uses many small arrays and scalar variables. Applications from
scientific computing often operate on large data structures that are addressed
using only a few pointer variables. In this case, spatial locality between different
variables only plays a negligible role. Moreover, from the programmer’s point of
view, the placement of variables to memory locations cannot be directly influ-
enced, i.e., the spatial locality within a single data structure is usually the target
for program modifications.

3 Benchmark results

In this section, we present experimental results for different program versions and
compare the resulting execution times to the predictions obtained by applying
the locality measures. We use the multiplication of two square matrices as this
is part of many applications from scientific computing and because the locality
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properties have been studied extensively. The program transformations used
heavily rely on the exploitation of spatial locality. Therefore it is a good example
to demonstrate the advantage of the extended measures. In the second example
we study different program versions of an iterated RK solver for large ODE
systems. These program versions use different computation schemes to calculate
the argument vectors. The performance is influenced by temporal and spatial
locality.

The program-based locality measures were calculated by utilizing a library in
cooperation with a special simulation program. The simulation program mimics
the memory access pattern of the target program version and calls special library
function which accumulate all memory accesses and compute the cost measures.
Memory accesses to index variables used for loop control were not considered,
because, depending on the platform and the compiler, these variables are often
stored in processor registers. In future versions a fully automated determination
of the measures by a suitable compiler tool is planned.

The hardware characteristics of the platforms used for benchmark tests are
summarized in Table 1.

Table 1. Platforms used for benchmark tests.

Processor Intel Xeon Intel Itanium 2 Intel Pentium 3 Sun UltraSparc III

Clock Rate 2.0 GHz 900 MHz 650 MHz 750 MHz

L1 Cache 8K data + 12K
micro-ops

16K data + 16K
instr., 4-way

16K data + 16K
instr., 4-way

64K data + 32K
instr., 4-way

L2 Cache 512K, 8-way 256 KB, 8-way 256 KB, 8-way 8 MB, 2-way

L3 Cache n/a 1.5 MB, 12-way n/a n/a

3.1 Multiplication of two square matrices

As a first example we study different program versions for the multiplication
of two matrices. Figure 2 (left) shows the pseudo code of a straight forward
implementation. Through interchanging the loops in the second loop nest, six
different program versions are derived, which are denoted as mmm xyz(), where
x is the index variable of the outermost loop, y the index variable of the middle
loop and z the index variable of the innermost loop.

Assuming a row-wise data layout for all matrices, program version mmm ikj()
offers the best locality properties[1]. This is due to a stride 1 data access to the
matrices B and C in the innermost loop, which results in an optimal exploitation
of spatial locality. The accesses to matrix A can benefit from temporal locality
in the innermost loop and from spatial locality in the middle loop.

Loop blocking is another popular program transformation, which can increase
temporal locality. In each of the six program versions one, two or all three loops
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function mmm ijk():

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
C[i][j] = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)

C[i][j] += A[i][k] * B[k][j];

function mmm ikj 3(bs):

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
C[i][j] = 0;

for (i = 0; i < N; i+=bs)

for (k = 0; k < N; k+=bs)
for (j = 0; j < N; j+=bs)

for (ii = i; ii < min(i+bs, N); ii++)
for (kk = k; kk < min(k+bs, N); kk++)

for (jj = j; jj < min(j+bs, N); jj++)
C[ii][jj] += A[ii][kk] * B[kk][jj];

Figure 2. Pseudo code of a matrix-matrix-multiplication with loop ordering (i, j, k)
(left) and with loop ordering (i, k, j) and loop blocking applied to all three loops (right).
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Figure 3. Relative execution time of program versions of a matrix-matrix multiplica-
tion using 1024x1024 matrices on different platforms.

can be blocked. This results in 18 additional program versions, which have the
block size as a parameter. For simplicity we use the same block size for all loops.
We denote these program versions as mmm xyz n(bs), where x, y and z refer to
the loop ordering, n gives the number of blocked loops and bs is the block size
used. Figure 2 (right) gives the pseudo code of function mmm ikj 3(bs).

Figure 3 shows a selection of benchmark results scaled to a value of 1.0 for
the slowest version, which was mmm jki() in all cases. Considering the program
versions without blocking, mmm ikj() shows the best performance on all plat-
forms. The speedup achieved depends on hardware characteristics, like the cache
latency, and therefore differs from platform to platform. The block size leading
to a minimum runtime is platform depend. We show a block size of 16, because
it achieved competitive runtimes on all platforms.

Figure 4 shows on the left side the program-based locality measures for tem-
poral locality as introduced in [2] and on the right side the extended cost mea-
sures introduced in this paper, both scaled to a maximum of 1. The temporal
locality measures cannot predict the resulting runtime accurately, since temporal
locality plays only a negligible role in the program tranformations. All spatial
locality measures identify program version mmm jki() as the one with the worst
locality properties. The program versions with blocking and mmm ikj() achieve
the lowest spatial locality value and therefore are considered to have the best



7

0.25

0.5

0.75

1.0

R
el

at
iv

e 
lo

ca
lit

y 
va

lu
e

Locality measures for selected program versions

m
m

m
_ij

k(
)

m
m

m
_ik

j()

m
m

m
_jk

i()

m
m

m
_ik

j_1
(1

6)

m
m

m
_ik

j_2
(1

6)

m
m

m
_ik

j_3
(1

6)

µ
AM

µ
AA

µ
SA

µ
SQ

µ
LG

0.25

0.5

0.75

1.0

R
el

at
iv

e 
lo

ca
lit

y 
va

lu
e

Extended locality measures for selected program versions

m
m

m
_ij

k(
)

m
m

m
_ik

j()

m
m

m
_jk

i()

m
m

m
_ik

j_1
(1

6)

m
m

m
_ik

j_2
(1

6)

m
m

m
_ik

j_3
(1

6)

µ
s

AM

µ
s

AA

µ
s

SA

µ
s

SQ

µ
s

LG

Figure 4. Relative values of the temporal locality measures (left) and the spatial loca-
lity measures (right) for different program versions of a matrix-matrix multiplication.

memory access locality. These results match with the runtime tests shown in
Figure 3 and with the theoretical considerations in [1].

Altogether it can be stated, that the spatial locality measures are able to cap-
ture the locality properties of the different program versions of a matrix-matrix
multiplication. These effects could not be uncovered using only the temporal
locality measures.

3.2 Iterated Runge-Kutta methods

As a more complex example from scientific computing we study the spatial loca-
lity measures with different program versions of solvers for initial value problems
(IVPs) of ODEs. Large systems of ODEs arise, e.g. when discretizing time de-
pendent partial differential equations (PDEs) in the spatial domain using the
method of lines[3]. Iterated RK solvers are explicit methods which were derived
from classical implicit methods. The advantage of the iterated RK methods is the
data independence of the computation of the stage vectors admitting a parallel
execution [4]. From the implicit system of equations it is possible to construct

an explicit system by computing approximations µ
(i)
l , i = 1, . . . , m, for the stage

vectors vl, l = 1, . . . , s, using a fixed point iteration starting with ηk and using a
fixed number of steps m, which depends on the RK method.

The following computation scheme shows the core of an iterated RK solver,
where h is the step size and aij , bi and ci are parameters of the underlying
implicit RK method:

for (l = 1; l <= s; l++)

µ
(0)
l = f(xk, ηk);

for (i = 1; i <= m; i++)

for (l = 1; l <= s; l++)

µ
(i)
l = f(xk + clh, ηk + hk

∑s

j=1 aljµ
(i−1)
j );

ηk+1 = ηk + hk

∑s

j=1 biµ
(m)
j ;
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Figure 5. Runtime in seconds of a Radau IA method applied to the Brusselator ODE
on a Sun UltraSparc III (left) and on an Intel Itanium 2 (right).
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Figure 6. Locality measures µsAM
(left) and µsSA

(right) for Radau IA applied to the
Brusselator ODE.

Version A: Program version A is a straightforward implementation of the
computation scheme for iterated RK methods.

Version B: In this program version the computation of the argument vec-

tors needed to calculate the approximation µ
(j)
l is modified. Separate argument

vectors are introduced for each iteration, which results in a higher memory requi-
rement and an additional multiplication per iteration. Some of the dependencies
are resolved, so that further transformations are possible.

Version C: Through interchanging loops program version C is generated.
Each computation is put in a separate loop nest, which results in an optimal
exploitation of spatial locality. The computational and memory requirements are
equal to those of version B.

To compare the performance of the three program versions we executed
benchmark tests on different platforms. We use the Radau IA method [3] as
basic RK method and solve the Brusselator equation [5] as example ODE sy-
stem. The Brusselator equation is used to describe the reaction of two chemical
substances with diffusion in the two dimensional space.
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Figure 7. Locality measures µsSQ
(left) and µsLG

(right) for Radau IA applied to the
Brusselator ODE.

Figure 5 shows the runtime for different system sizes on a Sun UltraSparc
III processor and on an Intel Itanium 2 system. The performance of program
versions A and B on the UltraSparc III platform are about equal, whereas
program version C achieves an average speedup of 14%. On the Intel Itanium
2 the transformed program version B is 6% on the average slower compared
to the original version A. The final program version C performs better than
version B but cannot reach the performance of version A. This can be explained
by the additional operations performed by versions B and C introduced by the
transformation step.

Figure 6 (right) shows the spatial locality measure µsSA
for the program ver-

sions of an iterated RK solver. A similar result is obtained by applying measure
µsAA

. These two measures testify an about equal locality of memory accesses
to program versions A and B. Program version C shows smaller locality values
as expressed by the measures, i.e. is assumed to have a better memory access
locality. The results obtained by cost measure µsAM

shown in Figure 6 (left)
and by cost measure µsSQ

shown in Figure 7 (left) certify program version B a
better memory access locality compared to version A. In contrast measure µsLG

presented in Figure 7 (right) yields a lower locality value and therefore a better
memory access locality for program version A.

All spatial locality measures examined certify program version C the best
memory access locality. The locality values of program versions A and B lie
closely together for all measures. These result correspond with the measured
runtimes on the Sun UltraSparc III processor very well. On the Intel Itanium 2
processor program version A achieves a smaller runtime. This program version
requires fewer operations, which cannot be captured by the locality measures.

4 Related Work

An analytical examination of cache misses can be made by using cache miss
equations, which can be used to calculate the position of cold misses and re-
placement misses in arrays. Direct mapped caches were analysed in [6] and the
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results generalized to associative caches in [7]. In [8] a worst case scenario is con-
sidered, which allows the prediction, whether a memory access is always a cache
hit, always a cache miss or a prediction is not possible. The exact parameters of
the memory hierarchy must be known to use this approach.

Cache misses for matrix-multiplication were analyzed in [9] for caches with
different associativities and cache line sizes. In contrast, our approach tries to
give an architecture independent measure of locality properties. An architecture-
independent metric that represents the temporal behavior of data-movements of
parallel programs in a distributed shared-memory environment has been presen-
ted in [10].

5 Conclusion and Future Research

In this paper we have introduced an extension to program-based locality mea-
sures which adds support for spatial locality. It has been shown that the spatial
locality measures can be used to compare temporal and spatial locality proper-
ties of different program versions.

In future work we plan to add support for a fully automical determination
of these measures. An extension of the cost measures to include the number of
arithmetical operations is also possible. Another area of future research focuses
on the extension of the cost measures for parallel programs.
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